

 $\Delta v \approx 2500 \text{ kms}^{-1}$ $v \approx 6700 \text{ kms}^{-1}$ $V = H_0 d$ $\Delta d \quad \Delta v \quad 2500$ d v 6700 ≈ 0.4 i.e. 40% error

Dark Matter

- Rotation Curves of Galaxies
- Missing Mass in Clusters
- Gravitational Lensing

Galactic Rotation

- The mass of the stars in galaxies is mostly concentrated towards the central regions
- This means the rotation speed of the galaxy should fall off with increasing radius in the outer parts

M33 Optical with H I overlaid in blue

Colour-coded doppler shift showing rotation

Keplerian Rotation

 Equating centripetal force to gravitational force gives

Flat Rotation Curves

- Observed rotation curves are flat out to as far as they can be observed
- H I rotation curves extend significantly beyond the starlight and are still flat
- Must be some extended distribution of matter that is not seen to emit at any wavelength – dark matter

From Universe textbook

From Universe textbook

Missing Mass in Clusters

- The speeds that galaxies move around under gravity in clusters is a measure of the mass contained within them
- We can equate the kinetic energy of the galaxies with the gravitational potential energy of the cluster
- (A more accurate description differs by factors of a few)

$$KE \approx PE$$

$$\frac{1}{2}mv^{2} \approx \frac{GMm}{r}$$

$$v \approx \sqrt{\frac{2GM}{r}}$$

with M the mass of the cluster and r the size of the cluster

- The observed speeds of galaxies in clusters (the peculiar motions) are much larger than the visible mass in the galaxies can explain
- The cluster would fly apart if there was not more mass present than the visible mass
- The amount of dark matter required is much more than in individual galaxies

Class Example

 Estimate the mass of the galaxy cluster from its peculiar motion seen on the redshift slice at the beginning of the lecture assuming its radius is 1 Mpc

 $M \approx \frac{rv^2}{2G} \approx \frac{3 \times 10^{22} (2500 \times 10^3)^2}{2 \times 7 \times 10^{-11}} \approx 1 \times 10^{45} \text{ kg}$ $\approx 7 \times 10^{14}$ solar masses

Coma Cluster - http://bf-astro.com/abell1656.htm

Gravitational Lensing

- When light from a distant galaxy or quasar passes through a foreground galaxy or cluster of galaxies the light is bent by gravity
- This lensing effect produces distorted or multiple images of the background source

© Natural History Magazine, Inc., 2007

Einstein Rings

• The source, lens and observer must be aligned to a small angle given by

$$\theta_E \approx \sqrt{\frac{4GM}{D_L c^2}}$$

called the Einstein ring radius

If the alignment is perfect the image becomes a ring

Class Example

 Calculate the Einstein ring radius caused by a typical galaxy 1000 Mpc away

$$\theta_E \approx \sqrt{\frac{4 \times 7 \times 10^{-11} \times 10^{11} \times 2 \times 10^{30}}{1000 \times 3 \times 10^{22} \times (3 \times 10^8)^2}}$$
$$= 4 \times 10^{-6} \text{ radians}$$
$$= 1 \text{ arcsecond}$$

Einstein Ring Gravitational Lens (SDSS J162746.44-005357.5)

8 arcsec

Credit: <u>NASA</u>, <u>ESA</u>, A. Bolton (Harvard-Smithsonian CfA) and the SLACS Team

Dark Matter in Clusters

- Clusters of galaxies bend the light even more
- The amount of bending depends on the mass
- The amount of mass required is about 10 times that seen in the visible galaxies

Galaxy Cluster Abell 2218's "Gravitational Lens"

Credit: <u>NASA</u>, <u>ESA</u>, Richard Ellis (Caltech) and Jean-Paul Kneib (Observatoire Midi-Pyrenees, France) Acknowledgment: <u>NASA</u>, A. Fruchter and the ERO Team (<u>STScl</u> and ST-ECF)

What is the Dark Matter?

- We do not know
- It is not
 - dust
 - failed stars
 - black holes
- It is likely to be made of an as yet undiscovered fundamental particle

Summary

- Rotation curves provide evidence for dark matter in galaxies
- Member velocities and gravitational lensing show there is even more dark matter in clusters
- The nature of dark matter is one of the great unsolved problems in astrophysics