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Chapter 1

The PSRSALSA package

1.1 Programs part of the PSRSALSA package

The following programs are part of the PSRSALSA package and some of the functionality is described
in this documentation and examples are provided.

• avrg bin files — Program to average binary data, which can be useful in imaging processing as used
in section 4.2.3.

• fakeDist — Program to generate a random list of values drawn from various (combinations of)
distribution functions (see chapter 3).

• padd — Program to add pulsar data together.

• pconv — Program to convert pulsar data into other types of pulsar data.

• pdist — Program to generate or plot a histogram by binning data. Also a cumulative distribution
can be generated (see chapter 3).

• pdistFit — Program to fit a measured distribution with a model distribution using various possible
test statistics (see chapter 3).

• penergy — Program for calculating pulse energy statistics (see chapter 3).

• pfold — Program to fold (folded) single pulse data thereby visualising the subpulse modulation
cycle (see section 5.6).

• pheader — Program to retrieve header information from files.

• pmod — Program to modify pulsar data in various ways (see chapter 2 and examples throughout
this document).

• pplot — Program to plot pulsar data in various ways (see chapter 2 and examples throughout this
document).

• ppol — Program to convert Stokes parameters in position angle and linear intensity. The result
can be plotted and/or written out (see chapter 4).

• ppolFit — Program to fit the rotating vector model to a position angle swing as generated by ppol
(see chapter 4).

• pspec — Program to analyse (folded) single pulse data using mostly Fourier techniques (see chapter
5).

• pspecDetect — Interactive program designed to analyse features in the 2dfs to obtain centroid P2

and P3 values and corresponding error-bars (see chapter 5).

• pspecFig — Program to plot some of the pspec output (see chapter 5).

• pstat — Program to perform various statistical tests on input data. This program is used by
pdistFit (see chapter 3), but can be useful as a stand-alone program.

• rmsynth — Program to measure rotation measures.
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1.2 Help, pre-processing, header parameters and memory usage

If you want a short description of a particular piece of software, including the possible command line
options, run the program without any command line options. Example:

prompt> pmod

The command line options are described in different categories. First come the general options which
are the same in different programs part of this package. This include things like “General Input/Output
options”. In this context general means that these are options that are not just specific to pmod, but
different programs use identical options and show an identical description. An example is the “-header”
option, which allows you to override header parameters as being interpreted by the software while reading
in an input data-set. For example, this allows you to set values of not specified parameters which might
be useful when for instance reading in an ascii format with limited header information. Using this option
does not change the input file itself, just how the software interprets the data. The option “-headerlist”
gives you a list of parameters that can be changed.

Most programs will read in the whole data-set in memory, so you have to be careful using this software
on enormous files. Some programs allow you to change the default behavior with the an option like “-
memsave”, although not all operations might be compatible with this mode. The “General pre-process
options” are options which are applied after reading the whole file in memory and allow you to, for
instance, rebin the data. This is done before any processing specific to the program is being executed.
Again, different programs share the same pre-process command-line options.

Most programs expect an input file and command line options to be specified. The expected command
line is in general expected to be the name of the program, followed by the command-line options. The
input files are in general expected at the very end of the command. Not all programs allow multiple
input files to be specified. An example of a command line is:

prompt> pmod -rebin 256 -ext ar.rebin *.ar

This particular command reads in all .ar files, rebins the data to 256 pulse longitude bins and writes out
the data as files with the extension “.ar” replaced with “.ar.rebin”.

1.3 Data formats

Different file types are supported. Most file types are automatically recognized by the software. Use the
-formatlist to get a list of supported formats. If the file format cannot be automatically determined, the
-iformat option can be used to let the software know what format the data is in. However, chances are
that reading the input file will fail, or the data might be corrupted, because the input format is somewhat
different from what is expected. The -oformat option allows you to specify what format to use for the
output, which can be different compared to the input. For example the following command will write
out data in an ascii format.

prompt> pmod -rebin 256 -oformat ascii -ext ar.rebin *.ar

1.3.1 PSRFITS

PSRFITS is supported by the software. Note that the data files written out do not 100% conform with
the PSRFITS definition, so proper behavior in other software cannot be guaranteed. Especially timing
experiments are not recommended, as this software package is not designed with that aim in mind. For
example, the ephemeris/polyco/tempo2 predictor used to fold the data is ignored by this software and
will not appear in output data written in this format. Note that usually by default PSRCHIVE does
not output PSRFITS files. To generate PSRFITS files you might want to try the following PSRCHIVE
command

prompt> pam -a PSRFITS -e psrfits inputfile

Reading in a PSRFITS file in a PSRSALSA application might result in a system call to vap from
PSRCHIVE.
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1.3.2 ASCII

This format is identical to the format used by PSRCHIVE when writing out data with the pdv -t
command. The header information that can be stored in this format is limited.

1.3.3 PSRSALSA specific formats

Data written out by ppol (an ascii format) are automatically recognized by the software. There are two
flavours, one containing more information than the other.

1.3.4 PuMa

This is a binary format used by the no longer existing PuMa backend at the WSRT. Some PSRSALSA
specific header information is written out which does not conform with the PuMa format, but it should
be backwards compatible.

1.3.5 EPN

The EPN format comes in different versions. Data written out is probably not strictly compatible with
a certain fixed version, but it appears to work well for most input files in EPN formats between versions
6.0 and 6.3. Files written out in this format can be read in with PSRCHIVE.

1.3.6 Sigproc

Either folded or non-folded sigproc data in a binary format is supported in the PSRSALSA package,
but the data should be written as 8-bit unsigned bytes or 32-bit floating points. This can either be raw
filterbank data, data dedispersed with sigproc’s dedisperse or folded data using sigproc’s “fold -bin -d 1”.

There is also a sigproc ascii format which is handled as well. This is for folded data containing multiple
subints (sigproc’s “fold -d 1”). The ascii format is currently not automatically recognized, so it relies on
the user specifying the -iformat option.
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Chapter 2

Common first steps in data-analysis

2.1 The test data-set

You can try out the commands in this and other chapters by running the commands using the file
tutorial1.data. This file should have been provided together with this document. This file contains an
artificial pulsar signal, containing drifting subpulses and nulls. In addition there is some RFI and a
gradient in the background noise which should be removed prior to any analysis. How to do this is
explained in this chapter.

In addition, the result of the cleaning process described in Section 2.4 can be obtained straight away
with the command

prompt> pmod -ext clean.zero -zap "105 106" -fzap "0 0" -fzap "2 2" \

-fzap "6 6" -fzap "8 8" -fzap "14 14" tutorial1.data

prompt> pmod -ext clean.removed -zap "105 106" -fzap "0 0" -fzap "2 2" \

-fzap "6 6" -fzap "8 8" -fzap "14 14" -remove tutorial1.data

This should have made a file called tutorial1.clean.zero and tutorial1.clean.removed. The result of the
baseline removal (tutorial1.clean.debase.gg) can be reproduced by

prompt> pmod -debase -onpulse "121 178" -debase -device /null tutorial1.clean.removed

2.2 Explore the header parameters of data (using pheader)

Let us first explore what type of data we have generated. Header parameters can be explored with the
program pheader. The following command gives a summary of the header parameters:

prompt> pheader tutorial1.data

The information shown is very similar to what you get if you run other tools, like pmod, with the vebose
option (-v). You can also get a list of parameters you’re interested in by running for example:

prompt> pheader -c "nbin nsub nfreq npol" tutorial1.data

This should tells us that there are 300 bins in pulse phase, 1024 sub-integrations, 16 frequency channels
and 4 polarization channels. To find out how the different parameters are called you can include in the
-c option you can run

prompt> pheader -H

To find out what command line option there are, run the program without any command line options:

prompt> pheader
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2.3 Plotting data (using pplot)

To make a plot of the data you can use the program pplot. So for example if you run:

prompt> pplot tutorial1.data

This shows all data in the file. In this case there are 16 frequency channels plotted (on the vertical axis)
and there are 1024 subintegrations (on the horizontal axis). By default it shows the first polarization
channel, which for this data-set means Stokes I. There are a number of things to see in the data, which
become more obvious when plotting the data differently. The following command shows a similar plot,
now with all the subints summed together.

prompt> pplot -TSCR tutorial1.data

The pulsar signal now can be weakly seen in the middle of the plot and note that 5 frequency channels
look somewhat worse than the others. We will look into how to remove RFI in section 2.4. To look to
the evolution of the signal over time you can do

prompt> pplot -FSCR tutorial1.data

Now all the frequency channels are added together first. You should see that subintegration ∼ 100 looks
particularly bad. The pulsar signal itself is not really visible in this plot. However, the pulsar signal is
present, which can be seen by forming the pulse profile.

prompt> pplot -FSCR -TSCR tutorial1.data

Notice that the noise level is not zero. This means there is a “baseline” present, which will need to be
removed before any analysis. In section 2.5 it is discussed how you can try to get rid of it. For now, this
effect can be suppressed by running

prompt> pplot -debase -FSCR -TSCR tutorial1.data

This subtracts the average for each channel/subint independently. The effects of the baseline should
be largely disappeared. Notice that the noise level has become slightly negative, which is because the
average of noise plus pulsar signal has been removed from the data. To explore the data in more detail
you might want to run pplot in interactive mode:

prompt> pplot -ia -v tutorial1.data

The option -v means “verbose”, implying that more information is sent to the terminal. In general this
is a good idea, since it gives you a better idea of what steps are done by the software, hence it allows
you to so if (and why) things go wrong. For a start it will show you the header information, allowing
you to assess in the data is interpreted correctly. Once you start this command the terminal will ask you
to provide key presses to change what is plotted. Press ? (in the terminal) for a list of commands. For
example you can type in the terminal:

l 100 110

From the help you can see that this specifies the left/right bounds, i.e. the plotted x-range. You can
should see there are two subintegrations which look particularly bad and it will be explained in section
2.4 how to remove these subintegrations. Lets now zoom in a bit more.

l 300 301

So this the command you entered zooms in on a single subintegration somewhere in the middle of the
data-set. The pulsar signal is not obvious because of the 5 corrupted frequency channels. To see the
pulsar clearer, lets zoom in the vertical range to avoid the bad channels.

v 9 13
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This shows part of the vertical range (without much RFI) the pulse should have appeared in the middle
of the subint. You can experiment with the b and y to change what units are used for the x and y axis.
With the M option you can specify the type of plot. So for example M followed by l results in a line
plot. If you do this, you see horizontal flat lines, which in this case is because the different channels
are separated by 1 unit on the vertical axis (if the y-axis is in bin nr mode rather than in MHz), while
the amplitude of the signal is much less than 1 unit, making the curve appear to be flat. What you
could do is press a, which auto-scales the data and should allow you to show the data as non-flat lines.
Another option available is the p option. If you press p it cycles back to previous settings. You can press
p multiple times to go back to previous plots. To cycle through polarizations you can use P. If you look
carefully you can see that the polarization channels (counting from zero) 1 and 2 (Stokes Q and U) show
evidence for Faraday rotation. To quit press q.

There are more options to play with in interactive mode, and many more command-line options to
change the layout of the plot (type pplot without command-line arguments to get a list of options). For
example you could try out the following command:

prompt> pplot -showwedge -showtop tutorial1.data

The top plot shows clearly the RFI in the two subints as identified earlier. In section 2.5 it is discussed
how you can try to get rid of it.

2.4 Manually removing RFI from data

To identify RFI, you probably want to show a plot of frequency vs subint using pplot in interactive
mode. If the file is very large, consider making a file with a reduced time resolution first, which is still
good enough to identify the frequencies you would like to remove. If your data contains polarization
channels written out as coherency parameters rather than Stokes parameters, you might want to use the
-stokes option. The -debase option will remove the baseline, i.e. the non-zero noise level we noticed in
section 2.3. This is especially useful if the level of the background noise is varying significantly during the
observation. Since we didn’t define an onpulse region (i.e. a pulse longitude range at which the pulsed
emission occurs), the -debase option will make the average of the noise + pulsar signal zero, making
the baseline negative. This doesn’t matter here, since we just want to take out the largest variations
(especially those which are caused by strong RFI), which otherwise might it hard to see the data. See
section 2.5 how to properly remove the baseline, although this is not important for what we’re trying to
achieve here. To improve the quality of the fake data-set we start by running:

prompt> pplot -v -debase -ia tutorial1.data

The strategy is to first identify badly affected subints, before identifying bad frequency channels which
will be zapped throughout the whole data-set. In general it is some sort of iterative process to identify
which combination of zapped subints/channels results in the most optimum result. Some commands that
might be useful:

• z - Toggle between interactive channel/subint zapping

• Z - Start zapping, see terminal for help about how this is done.

• v - ’v’ is followed by two numbers, this allows you to zoom in the vertical range. To zoom out, you
can use the range 0 to a very large number.

• n - Go to next block in the vertical range. This allows you to step through the data.

• W - Write out a zap file containing the zapped channel numbers/subints (counting from zero)

• l 0 1 - Zoom in on first subint

• ,/. - Move to left, right when zoomed in

• q - quit

Lets start with removing the bad subintegrations we identified earlier. Start with zooming in to clearly
see which of the subints are effected.

7



l 103 109

Now make sure you’re in subint zapping mode by pressing the ’z’ key an appropriate number of times in
the terminal and by watching what is reported on the terminal. The terminal should tell you if you’re
in subint or frequency channel zap mode. Now press ’Z’ to remove a few subints and experiment with
taking out a range as well. Note that the result is only visible after you quit the ’Z’ option by pressing in
the plot window a different key. Note that when you select a range, the ’Z’ option is quit as well. The ’Z’
option does not remove any data from the input data-file. It just removes the data from the plot. When
you’re done, write out a list of subints with the ’W’ option, which we can use to apply these zapping
choices to the data. This should have created a file called tutorial1.subint.zap.

In general you probably would like to start with removing some subints, if they are badly affected by
RFI, so we end up with a cleaner data-set in which affected frequency channels can be easier identified.
So let’s apply the selection of subints to the data. This can be done using the following command:

prompt> pmod -ext zap1 -zapfile tutorial1.subint.zap tutorial1.data

This will write out a new file with the selected subints set to zero intensity (called tutorial1.zap1). Note
that the number of subints in your data-set is therefore not changed. You probably want to see the result
by using pplot. A second file written out is tutorial1.zapped.gg, which contains all the subints which
were zapped.
Depending on what you want to achieve, it might be desirable to remove the subints from the data-set
(reducing the number of subints in your file). This is achieved by adding the -remove flag in pmod.

prompt> pmod -ext zap2 -zapfile tutorial1.subint.zap -remove tutorial1.data

The new tutorial1.zap2 should not have any zero-weighted subints and therefore have less subints than
the original data-set.

After removing the worst affected subintegrations you want to repeat the procedure, but now identi-
fying the frequency channels you want to remove. Make a plot with pplot in interactive mode using the
file you just created, but now adding the -TSCR option to add all subintegrations together first. This
should enable you to see weaker RFI than without the -TSCR option. Since we sum the two subints
together, it should make no difference if we use the tutorial.zap1 or tutorial.zap2 file

prompt> pplot -v -debase -TSCR -ia tutorial1.zap1

After making sure you’re in vector zap mode, zap the 5 bad channels and write out the list of “vectors”
with the ’W’ option. This should have created a file called tutorial1.freq.zap. On the command line you
could check its contents by typing

prompt> cat tutorial1.freq.zap

It should contain the numbers 0, 2, 6, 8 and 14. A similar pmod command line as used before can be
used to remove these channels from the data, but use -fzapfile rather than -zapfile to zap frequency chan-
nels. We apply the same zapping (by zero-weighting the frequency channels) on the two files previously
generated: one the zapped subints removed, the other with the subints set to zero.

prompt> pmod -fzapfile tutorial1.freq.zap -ext clean.zero tutorial1.zap1

prompt> pmod -fzapfile tutorial1.freq.zap -ext clean.removed tutorial1.zap2

Note that in both cases the zapped frequency channels are weighted to zero. If you would remove the
channels, the frequency labeling will no longer be correct, hence things like dedispersion will go wrong.
You can confirm with pplot that the resulting tutorial1.clean.gg indeed has the desired channels removed.
If we make a plot showing the time variability of the signal after summing all frequency channels

prompt> pplot -FSCR tutorial1.clean.zero

The dominating effect to be seen is a linearly increasing signal from bottom to top. This is a slope in
the background (“baseline”) which is slowly increasing throughout the observation. In section 2.5 it is
discussed how you can try to get rid of it. Since there is a positive baseline, the two subints which were
set to zero have a lower intensity, and they appear as black lines. For now, this effect of the baseline can
be suppressed by running
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prompt> pplot -debase -FSCR tutorial1.clean.zero

The effect of the varying baseline should have been removed and the pulsar signal should be very clear.
You should see the drifting subpulses of the pulsar and you should see two episodes where the pulsar is
switched off (“nulls”). Notice that the noise during the nulls look different. This is because the noise
level is on average zero during the nulls, but negative when there is the pulsar signal, since the average
of noise plus signal is forced to be zero.

As stated above, you might go through this process multiple times, identifying the strongest RFI first,
which after zapping allows you to see weaker RFI you want to remove as well. Remember that removing
RFI implies removal of signal as well. So removing all data which contains RFI might not result in an
optimal S/N. Depending on the quality of your data and what you would like to achieve, it might be
possible to combine/skip some steps, especially for smaller data-sets.

2.5 Removing the “baseline” (using pmod)

Here it is assumed that you have the files tutorial1.clean.removed and tutorial1.clean.zero made following
the instructions in section 2.4. If not, you can make it directly from tutorial1.data with the commands
given in section 2.1.

In general there is a baseline in your data you will have to remove, i.e. setting the average noise level
to zero. If you plot the data without doing anything, the noise is most likely not zero. You can check
this by running pplot to produce a pulse profile

prompt> pplot -FSCR -TSCR tutorial1.clean.removed

Two pre-process options are selected, which in this case add all frequency channels and all subintegrations
together. Pre-process means that these options are applied directly after reading in the data, but before
the program gets access to the data. Many pre-process option are available via the same command line
options in different programs. As you can see, the noise is not zero on average (the noise level is positive
in this case) and there is also a very small slope in the baseline. The reason is that a linearly increasing
slope has been added to this artificial data-set. This is more obvious if you run:

prompt> pplot -FSCR tutorial1.clean.removed

Now only frequency channels are summed, and the plot shows subsequent subintegrations on top of each
other. In the artificial data “drifting subpulses” are generated, and there is a baseline which is increasing
over time. To remove the baseline you can use pmod.

prompt> pmod -debase tutorial1.clean.removed

The program asks you to specify a pgplot device, so for instance /xs can be used. The program asks
you to identify the onpulse region in order to estimate the noise level. So all bins which are not selected

are used to determine the baseline. Therefore it is crucial that everything that is not selected, does not
contain any signal. So it is better to make the selected regions too wide rather than too narrow. In this
particular case, maybe select a region starting at bin ∼ 120 up to bin ∼ 180. You can select more than
one region if desired: only not selected regions are used in the baseline calculation. After pressing S inside
the pgplot window, the baseline is subtracted. A plot is shown which shows the baseline value (average
value of the noise) found as function of subintegration number. The plot is for the first frequency channel
and first polarization channel only, but the actual baseline values are determined for each frequency
and polarization channel separately. The produced plot indeed shows that there is a linearly increasing
baseline over time.

The accuracy with which the baseline can determined depends on the timescale with which the baseline
is varying and the number of off-pulse bins given that the average of the off-pulse region is determined
by the rms of the white noise times the square-root of the number of off-pulse bins. For some pulsars
there might be only a very small nr of off-pulse bins if the duty cycle of the pulsar is very large. In that
case, you might want to experiment with the -debase length option, which allows you to use a “running
mean” calculated using multiple subintegrations rather than determining the average on a single subint
basis. See help (just type pmod on the terminal) for more available options.

In this particular case the default process is good enough for our purposes here. You can check the
result by plotting a profile made from the output.
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prompt> pplot -TSCR -FSCR tutorial1.clean.debase.gg

The average of the noise is indeed zero. There is still a slight slope present, since we just subtracted an
average value of the baseline for each subintegration. By making a plot of the individual subintegrations
you can see that most of the baseline is no longer there and the drifting subpulses stand out more clearly.

prompt> pplot -FSCR tutorial1.clean.debase.gg

The strange appearance of the noise during the “nulls” has also been resolved.
In principle, this process should be done on the two versions of the cleaned data-set (removed/zero-

weighted subints), as different types of analysis prefer one over the other. In the other chapters we will
only make use of tutorial1.clean.debase.gg.
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Chapter 3

Pulse energy distribution and null
analysis

The following commands in this chapter assume you have a tutorial1.clean.debase.gg, as made in chapter
2. The baseline should have been removed before doing any analysis. If you don’t know what this means,
read chapter 2 first. If you want to analyse pulse energy distribution and you had to get rid of bad
subintegrations (single pulses), you probably want to remove them from the pulse stack rather than
setting those pulses to zero. Otherwise you will, for instance, in a pulse energy distribution get an excess
of pulse energies at exactly zero which is completely artificial without any physical meaning.

The first step we do here is to add noise to the data, thereby more typical of what often can be
expected in real data.

prompt> pmod -ext weak -addnoise 5e-6 tutorial1.clean.debase.gg

3.1 Determining pulse energies

The term “pulse energy” is used to indicate the integrated intensity over a certain pulse longitude range.
If the baseline is not removed, all values are offset. If the baseline is variable the determined values will
be smeared out. So removing the baseline is important. The program penergy can be used to get energy
values for each individual subintegration.

prompt> penergy -v -FSCR tutorial1.clean.debase.weak

Here the -v option results in more information in the terminal, which helps you understand what is being
done. The -FSCR pre-process option ensures that all frequency channels are summed before calculating
the pulse energies. By default only the first polarization channel will be analysed (which is total intensity
in this case). Since no onpulse regions were selection on the command line, it asks you to specify a pgplot
device to manually make the selection. When selecting multiple onpulse regions, only the first is used to
calculate the onpulse statistics. Non-selected regions are used for the off-pulse statistics. This allows you
for instance to select a first onpulse region which is relatively narrow to ensure that all included bins have
sufficient S/N, while you could select a second onpulse region which is a bit too broad to ensure that no
signal is included in the noise statistics. It also allows you to consider the pulse energy statistics of part
of the profile, for instance the main pulse while not including an interpulse signal in the noise statistics.
The choice you made result in a suggestion of how to repeat the command with an identical selection of
the on-pulse regions. For instance:

prompt> penergy -v -FSCR -onpulse "127 174" -onpulse "121 181" tutorial1.clean.debase.weak

The output is an ascii file called tutorial1.clean.debase.weak.en, which is in ascii format (see section
1.3.2). At the end of the file a short description of the different columns and relevant on-pulse selection
that have been made can be found. The columns are:

1. Polarization channel number

2. Frequency channel number
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3. Subintegration number

4. On-pulse peak intensity, which is the maximum intensities within the first selected onpulse region.

5. Off-pulse peak intensity, which is the maximum intensities within the not selected regions.

6. On-pulse energy, which is the sum of the intensities within the first selected onpulse region.

7. Off-pulse energy, which is the sum of the intensities of the not-selected regions.

8. on-pulse RMS, which is rms within the first selected onpulse region.

9. off-pulse RMS, which is rms within the not selected regions.

10. S/N, which is the summed on-pulse intensity, divided by the expected noise resulting from adding
the given number of on-pulse bins together, each containing a rms equal to that of the offpulse
region.

When measuring pulse intensities, be aware that interstellar scintillation can affect your measurements.

3.2 Pulse energy distribution

Another thing you might want to do is to make a distribution of the on-pulse energies. The program
pdist can be used for this purpose, which is fact can make a histogram of any list of numbers. If you use
the -plot option a plot is generated rather than an output file. Run pdist without command line options
to get a list of possible parameters. When you run

prompt> pdist -v -plot -n 50 tutorial1.clean.debase.weak.en

pdist will ask you for a plotting device (/xs for example). A plot should be produced with 50 bins. Other
things can be specified on the command-line including for instance the specification of a bin-width rather
than the number of bins as is used in the next command we use. The histogram shows two peaks: one
centered at zero, which are the nulls, and one at a positive energy, which are the active pulses. The -v
option allows you to see more information, including for instance the bin-width that the software has
chosen. Instead of a graph the histogram can also be outputted to an ascii file.

prompt> pdist -dx 5e-05 tutorial1.clean.debase.weak.en

The above command outputs the histogram to the file tutorial1.clean.debase.weak.en.hist. We can make
a similar distribution for what can be expected from the noise. Notice that in the command below the
first “on-pulse” region has an equal width to what was used above, but now located in the off-pulse
region. Hence the integrated energies are those which can be expected from the noise within a region
with a width equal to what we used for the on-pulse region.

prompt> penergy -v -ext off.en -FSCR -onpulse "27 74" -onpulse "121 181" \

tutorial1.clean.debase.weak

prompt> pdist -dx 5e-05 tutorial1.clean.debase.weak.off.en

Note that the histograms are written out with the same bin widths. The two histograms can be plotted
in gnuplot

gnuplot> plot "tutorial1.clean.debase.weak.en.hist" with histeps, \

"tutorial1.clean.debase.weak.off.en.hist" with histeps

3.3 Fitting of energy distributions

The program pdistFit can be used to fit energy distributions (or any distribution function you might
have) with various analytic distributions. Noise, either white noise or the observed noise distribution,
can be taken into account, as well as a nulling fraction. The aim is to find a mathematical description of
a distribution which, once convolved with the noise distribution, matches the observed distribution. Run
pdistFit without any command-line options to see what possibilities there are.
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What follows is a particular example of how you can fit the distribution. Here it is chosen to use the
observed off-pulse distribution we generated earlier as an input in the fitting process. This distribution
should be available as a list of numbers, which can be extracted from the earlier made file with the
following Linux commands (If you copy/paste from this document, you might have to replace the single
quotes with proper single quotes in the awk bit).

prompt> grep -v "File" tutorial1.clean.debase.weak.off.en | grep -v "#" \

| awk ’{print $6}’ > noise.dist

The command quoted below which can be used to fit the pulse energy distribution depends on the average
of the measured energy distribution. A way to find the average value of the observed distribution is to
make a distribution with pdist in verbose mode, such as the command

prompt> pdist -v -n 50 -plot tutorial1.clean.debase.weak.en

The output should tell you that the average is 4.752696× 10−4.
The pulse energy distribution can be fitted with the following command.

prompt> pdistFit -v -plotcdf -lognorm "-7 1 0.03 0.01" -null "4.752696e-04 0 1" \

-noisefile noise.dist tutorial1.clean.debase.weak.en

Run pdistFit without command-line parameters to see what the options mean. In this particular com-
mand the -v option ensures that some useful information is given in the terminal, -plotcdf means that a
plot with the cummulative distribution (fit and data) will be shown after the fitting is completed. The
pulse-energy distribution is assumed to be a lognormal distribution and initial parameters and stepsizes
are provided. In addition, nulls are added to ensure that the modelled distribution has the same average
as the observed average. Although this is a parameter we can fit for, in this command the average is used
as a fixed parameter. The modelled noise distribution is convolved with the observed noise distribution
before being compared with the observed energy distribution. Since no particular statistical test has been
specified on the command-line, the optimisation is based on a χ2 test of the cummulative distribution.

The resulting plot should show that the fitted distribution (white) and the measured distribution (red)
are relatively similar, indicating that the measured distribution can be described relatively well with a
combination of a lognormal distribution, nulls and the noise distribution. If you run the same command
again you can notice that the reported numbers are different. This is because the fitting process runs
for each itteration the program fakeDist, which randomly picks values from the model distribution. This
distribution is compared to the measured distribution. Since the model distribution is based on a finite
number of samples (which can be specified on the command line), the paramters will be affected by
this uncertainty. The comparison is done by calling pstat (type pstat to get a better idea what various
statistical tests do, including the one used by pdistFit). To get a better idea of what is happening in the
background, you can consider using the -debug option, which gives you more information than -v.

The terminal should (if -v was used) report how to generate a model distribution with fakeDist. As
an exercise you can try to overplot a histogram of this distribution with the observed distribution (using
pdist). In addition the fit parameters are reported and a KS-test (Kolmogorov-Smirnov test).
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Chapter 4

Measuring, plotting and fitting
polarization properties

You should have a cleaned dataset in the sense that the frequency channels with bad RFI are already
removed. If there are subintegrations you want to remove, either removing them completely (pmod -
remove) them to zero is fine if you want to make a profile with a PA-swing. If you want to study the
statistics of individual subintegrations, you’re probably want to remove them. The following commands
in this chapter assume you have a tutorial1.clean.debase.gg, as made in chapter 2. The baseline should

have been removed before doing any analysis. If you don’t know what this means, read chapter 2 first.
Polarization products are derived as follows by ppol.

• The error on Stokes I and V samples is taken to be the off-pulse rms, and is therefore the same for
all samples in a given sub-integration/channel number.

• For the linear polarization intensity L, by default the Wardle and Kronberg 1974 (ApJ 194, 249)
de-bias is applied, although it is not assumed that the rms on each Stokes parameter is equal. This
means that

L =
√

Q2 + U2

√

√

√

√1−

(

σ
√

Q2 + U2

)2

. (4.1)

If σ =
√

(σ2

Q + σ2

U )/2 >
√

Q2 + U2, then L is taken to be zero. It is possible to disable this de-bias

(use -noLdebias), or subtract the median off-pulse
√

Q2 + U2 instead (use -medianLdebias). The
error on L is taken to be the rms of the off-pulse L, which is therefore slightly conservative.

• For the error in PA Gaussian error propagation on the Stokes parameters is applied, without
assuming that the rms of all Sokes parameters are equal. By default a threshold in the significance
of L is applied, where the ratio of L and the error (as defined above) need to exceed 3. The threshold
can be changed with the -sigma option.

• P =
√

Q2 + U2 + V 2 can be computed by using the -extendedpol option. The median offpulse P is
subtracted. This is far from ideal, but so far a better alternative (such as done for L) has not been
implemented. The error is taken to be the offpulse rms (before the any bias has been subtracted).

4.1 Make a polarized profile

The position angle (PA) and linear intensity (L) etc. can be calculated using ppol. To get a polarized
profile you can run:

prompt> ppol -TSCR -FSCR tutorial1.clean.debase.gg

If you run the above command ppol will ask you to specify a pgplot device, which allows you to select
on-pulse regions. This information is only used to determine the off-pulse statistics. The non-selected
regions are used for the off-pulse statistics. So like with pmod -debase, in general it is therefore better to
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have the region a bit too broad to ensure that no signal is included in the noise statistics. More than one
region can be selected, for instance to deal with an interpulse. The choice you made result in a suggestion
of how to repeat the command with an identical selection of the on-pulse regions.

After pressing S, you can specify an additional pgplot device, which shows you the polarized profile
and PA points. The white, red and green lines are Stokes I, total amount of linear polarization and
Stokes V. The resulting plot shows that the signal is not 100% linearly polarized. In fact, this data is not
properly de-Faraday rotated. Another thing that could potentially go wrong is confusion between Stokes
parameters and coherency parametes. Here the problem is that the rotation measure (RM) is set to zero
in the header, while there is Faraday rotation present in the data. To fix the problem we can overwrite
header paramters with the -header option (the input file will not be changed). See the help of ppol for
more information of these and other options. ppol should have reported a warning about the RM being
zero, so make sure you understand all warnings you encounter. In general it is always a good idea to run
all software with the -v option to get a better idea what is being done to the data, which allows you to
spot where things might go wrong. To fix this particular issue run:

prompt> ppol -v -onpulse "125 177" -header "rm 100" -TSCR -FSCR tutorial1.clean.debase.gg

The profile now should be fully linearly polarized. Note that each PA-point is shown twice, as by default
the full PA range is 360 degrees rather than 180. It is probably good to check if the linear polarization
is correctly de-Faraday rotated. You could run something like the following command to check if Stokes
Q is independent of frequency.

prompt> pplot -ia -stokes -defarad -TSCR tutorial1.clean.debase.gg

The above command runs pplot in interactive mode. By pressing P you can cycle through the Stokes
parameters. You should see obvious Faraday rotation in Stoke Q and U , despite having requested for
de-Faraday rotation. Inclusion of the above used -header option should get rid of the Faraday rotation.

ppol has a number of options to make nice looking figures, which you can output for instance as
postscript files. By using the option -ofile or -ext you can generate an ascii file containing the polarized
profile. Run the following command to write out a polarized profile with PA points.

prompt> ppol -v -onpulse "125 177" -header "rm 100" -TSCR -FSCR \

-ext paswing tutorial1.clean.debase.gg

4.2 Fitting a PA-swing

4.2.1 Basic RVM fit

Here we will fit the Rotating Vector Model (RVM) to the polarized profile with PA points we produced
in Section 4.1. Run ppolFit to see what the unexplained command-line options in the examples below
do, and what other options are available.

A good first step in obtaining a RVM solution is to take a coarse α-β grid (the -g option) to get a feel
for the parameter space. After this step we can refine things on the command line. The -l option can
be used to make an initial guess for the location of the inflection point of the RVM. Since the pulse is
centered at pulse longitude 180 this seems a reasonable first step. The initial step size in longitude will
be 5 degrees with the following command.

prompt> ppolFit -g "50 50" -l "180 5" -showwedge -best tutorial1.clean.debase.paswing

This should result in a reduced-χ2 map and a model PA-swing with the observed PA-points superimposed.
The cross in the reduced-χ2 map indicates where the best solution was found, which is the model PA-
swing in the other plot. The reduced-χ2 surface is in this case located on the positive β side, so the
grid can be constructed more efficiently by specifying a β range with the -B option. Looking at the
output on the terminal, the inflection point (l0) was indeed found close to 180 degrees. However, the pa0
value is something like 110 degrees, so adding the -pa option will result in better results than the default
assumption made by the program.

prompt> ppolFit -g "50 50" -l "180 5" -pa0 "110 5" -B "-5 20" \

-showwedge -best tutorial1.clean.debase.paswing
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Clearly this very high signal-to-noise data-set which furthermore has a perfect RVM PA-swing results
in a very small allowed range in the reduced-χ2 map. Zooming in further, this time also in alpha (-A
option) results in a resolved reduced-χ2 map. A higher resolution map has been specified as well.

prompt> ppolFit -g "200 200" -l "180 5" -pa0 "110 5" -A "50 90" -B "8 11.5" \

-showwedge -best tutorial1.clean.debase.paswing

Note that if -best is removed from the command line, the program will stay in interactive mode once
being run. Press ’h’ inside the pgplot window to get a list of available commands in interactive mode.

4.2.2 Adding a ρ contour

Often, the RVM fit is poorly constrained in α-β space and a typical banana-shape is seen. Here only a
small part of the banana (which starts at (α = 0, β = 0) and extends to (α = 180deg, β = 0)). Further
constraints can often be obtained by making assumptions and measuring the pulse width.

Start by measuring the pulse width. This can be guessed by using pplot in interactive mode (toggle
’b’ such that you see the horizontal axis in degrees and zoom in with ’l’)

prompt> pplot -ia tutorial1.clean.debase.paswing

The pulse-width can be defined in different ways (width at different intensity levels, different ways to
deal with asymmetries), but in this example the pulse width is taken to be 50 degrees.

Secondly a opening angle for the beam (assuming it is circular) has to be chosen. Looking at the
output of ppolFit, the inflection point (l0) is at pulse longitude ∼ 183, so ∼ 3 degrees after the symmetry
point (peak) of the profile. This can be interpreted in terms of the “BCW effect”. Given the pulse period
and assuming the emission is from the open field line region of a (static) dipole this can be used to obtain
a predicted half opening angle of the beam. The combination of this prediction and the measured pulse
width leads to an additional constraint on α and β.

prompt> ppolFit -g "200 200" -l "180 5" -pa0 "110 5" -A "50 90" -B "8 11.5" -wmp 50 \

-showwedge tutorial1.clean.debase.paswing

Note that by taking out the -best option an interactive mode is entered. Press ’r’ in the pgplot window to
enable the drawing of rho contours. Nothing should appear, which is because by default the contours are
drawn too far apart to see within the narrow range which we selected in α-β space. Press ’n’ in the pgplot
window and enter the number of requested contours on the terminal. Select 180 contours (those for the
interpulse are not used, so set it to zero, or anything else). This should result in contours separated by 1
degree in ρ. We can see that if the predicted half opening angle ρ is in the range 23-27 degrees, it would
be consistent with the RVM fit result.

4.2.3 Adding a ρ contour collection

Continuing with the fit made in the previous subsection, lets now consider the case where we have a
range of allowed ρ and pulse widths. This should correspond to a region in parameter space which is
allowed. Working out what region is parameter space is allowed for a range of contours will be at best
complicated, and potentially impossible to do analytically. Therefore to generate the area allowed in α-β
space it is much easier to simply generate contours corresponding to a finely sampled range of acceptable
parameters. If it is sampled finely enough, it will resemble a continuous region. So each combination of
allowed values result in a contour, eventually resulting in a region covered by this collection of contours.
Unfortunately pgplot does not allow transparency, so the contours will block the χ-square surface. Below
it is explained how to resolve this, but lets start with defining which collection of contours to consider.

First of all, a file needs to be generated defining what contours need to be generated. So for instance
by running the following command

prompt> awk ’{for(x=24; x<=26;x+=0.01) printf("50 %f\n", x)}’ > contours.list

followed by a press of ’return’ and a ’ctrl-d’ should result in a file contours.list. Each line will define a
contour, all corresponding to a pulse width of 50 degrees in this case, and ρ being between 24 and 26
degrees. Start ppolFit once more and note that the -wmp option is no longer required since we’re going
to use the file as input.
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prompt> ppolFit -g "200 200" -l "180 5" -pa0 "110 5" -A "50 90" -B "8 11.5" \

-showwedge tutorial1.clean.debase.paswing

Press ’R’ in the pgplot window to specify the input file with contours to be used. Type the file name
(contours.list) in the terminal. We consider here the main pulse only, so type MP. Say n to disable
plotting the found cross-points between the contours and the χ2 surface. Make sure to toggle ’r’ to show
the contours. You might want to take out the labeling of the contours ’t’.

To make the region appear as a transparent region you need to first write out two separate files: one
being a plot of the χ2 surface only and one of the region covered by the ρ contours. Continuing from
the command above, we can first disable the plotting of the ρ contours by pressing ’r’ once more. To
avoid the cross indicating the best fit to appear in the generated plot, press ’C’ twice. To write out the
plot to a file, press ’w’. Say yes to the question if you want to specify the plot device yourself. For
instance “chi2surface.ps/cps” will write out the plot as a colour postscript file named chi2surface.ps. You
probably want to invert the gray-scale, so that white correspond to a high χ2. Next the program asks
you to provide an α and β value. These values are used to make a file called pa.ps, which contains the
observed PA-swing with a RVM fit corresponding to the specified values. Since this graph is not used for
what we’re doing here, so what values of α and β you choose is irrelevant. After writing out the graphs
to a postscript file, you might want to check in a different terminal if the generated postscript file looks
like the χ2 grid you generated.

Now we need another postscript file with the contours. The final result looks visually better by leaving
the gray-scale surface in this plot1 Press ’r’ to enable the drawing of the ρ contours. Now proceed with
writing out the a new postscript file with the ’w’ option. You could, for instance, now use the device
“allowedregion.ps/cps”. We now have everything we need, so you can quit by pressing ’q’.

To combine the two images, you can use the following commands. Here avrg bin files is part of the
PSRSALSA package, while convert and identify are part of the ImageMagick.

prompt> identify -density 200 allowedregion.ps chi2surface.ps

prompt> convert -depth 8 -density 200 allowedregion.ps allowedregion.rgb

prompt> convert -depth 8 -density 200 chi2surface.ps chi2surface.rgb

prompt> avrg_bin_files allowedregion.rgb chi2surface.rgb combined.rgb

prompt> convert -depth 8 -size "1447x1464" combined.rgb combined.ps

Here the first command identifies the resolution of the two plots (here assumed to be 1447x1464). The
second and third line converts the postscript files in a simple headerless binary format. The avrg bin files
command combines the two images by taking the average, giving the impression of transparency. The final
command converts the image back in a postscript file. The -density option ensures that the resulting
postscript file has a high resolution. You can experiment in the last step with converting it into a
postscript with a .ps2 or .ps3 extension, which might reduce the file size.

1In principle, by pressing ’g’ the grayscale χ
2 surface disappears. To make the χ

2 contours disappear, press ’c’ and type

“0” in the terminal. However, the final result will look better by not doing this.
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Chapter 5

Subpulse modulation and fluctuation
analysis

You should have a cleaned dataset in the sense that the frequency channels with bad RFI are already
removed. If there are subintegrations (presumably single pulses) you want to remove, there are two
options: either you remove them completely (pmod -remove) or you set them to zero. Which one is
best depends on what aspect of subpulse modulation you’re investigating. For fluctuation spectra you
probably want to set the subintegrations to zero. This ensures the periodicities (for instance P3) are less
distorted. However, extra modulation power will be introduced since by setting pulses to zero, intensity
fluctuation has been artificially introduced. Any periodicities in the pulse numbers set to zero will end
up in the fluctuation spectra. At the other hand the calculation of the modulation index is independent
of periodicities in the data. In fact, the order of the pulses is irrelevant. This means that removing the
affected subintegrations will be better, since this ensures the modulation index in not artifically increased
by intruducing modulation power.

The following commands in this chapter assume you have a tutorial1.clean.debase.gg, as made in
chapter 2. The baseline should have been removed before doing any analysis. If you don’t know what
this means, read chapter 2 first. In this data two pulses were removed. Since they happened during a
null, this process did not impacted the periodicity of the drifting subpulses. Therefore for all processes
discussed in this chapter, the data with removed subintegrations can be used.
You probably want to consider Stokes I and sum all frequency channels first to end up with a pulse-stack.
This is something we can do first, which will shorten the commands used below.

prompt> pmod -stokes -polselect 0 -FSCR -output tutorial1.pulsestack tutorial1.clean.debase.gg

The inclusion of -stokes was not necessary, since the data already was written in Stokes parameters.
The above command should have written out the file tutorial1.pulsestack. This dataset has very obvious
drifting subpulses, as you can see with

prompt> pplot tutorial1.pulsestack

5.1 Fluctuation spectra

Various type of fluctuation spectra can be calculated using pspec, which can also do various other oper-
ations, see help (run pspec without command line options). Here we will generate a longitude resolved
fluctuation spectrum (lrfs) and a two-dimensional fluctuation spectrum (2dfs).

prompt> pspec -lrfs -2dfs tutorial1.pulsestack

The program ask you to identify a (or multiple) on-pulse region. These regions are used as follows:

• Everything what is not selected is used for noise calculations, so make sure that all signal is selected
in one or more ranges you define. For a lrfs, this is the only way the selected regions are used.

• A 2dfs is generated for each of the selected on-pulse regions.
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So a strategy could be to make a first selection which only contains bins with a clearly detected signal.
This ensures that the first 2dfs to be produced is only based on clearly detected signal and less noise
is included compared to when a wider selection would have been made. If you adopt this strategy you
probably want to make a seconds selection which is wider, to ensure that the off-pulse region does not
contain any signal. After pressing ’S’ in the pgplot window it shows you what selection you have made.
In this case you could have selected the regions ’131 170’ and ’118 187’ for example.

The next plot which is shown is the lrfs. In this case all power is concentrated in a very low frequency
P3 fluctuation, which corresponds to 0.01 cycles per period (cpp), which means P3 is about 100 pulses.
However part of the low-frequency modulation detected is because of the nulls, which also corresponds to
intensity modulation at a low frequency. The P3 resolution of the lrfs (and also the 2dfs) is determined
by the length of the fft’s which are performed. This length can be set with the -nfft option.

The next plot is the 2dfs of the first component, which shows power at the same P3 frequency, which
in this plot is clearly offset from the vertical axis. This indicates that the subpulse modulation is drifting
in pulse phase. In the mathematical definition of the 2dfs used in this software, a negative P2 corresponds
to a drift towards later phases. A rough estimation of P2 would be 22 cpp = 1/22 period = 0.045 period
= 13.5 pulse longitude bins since the data has 300 bins covering a full period.

Since we made two onpulse selections, also a second 2dfs is shown. This essentially is the same plot
as the previous 2dfs, but it contains slightly more noise. Note also that covered P2 range depends on the
with of the onpulse region, which might be different for the two plots.

To confirm that the P3 and P2 values make sense, you might want to check the original data itself by
plotting it in interactive mode:

prompt> pplot -ia tutorial1.pulsestack

You might want to zoom in in the vertical range (using the v key) and the pulse longitude range (l
option).

5.2 Modulation index

You can calculate and show a modulation index with

prompt> pspec -mod -prof tutorial1.pulsestack

It asks for an onpulse region, in this case it is only used to identify the noise, so make it slightly wider
than the pulse to be at the save side. The option -prof calculates the average profile. Without this option
the result is not plotted. After making the selection the profile and modulation index are shown.

As noted in the help on the command line, the analytic errorbars are in general not very accurate.
Instead you can use a process called bootstrapping to get more reliable errorbars, so you could run the
following command to determine the errorbars with 100 iterations. As explained in the help the resulting
errorbars are reliable, but slightly conservative.

prompt> pspec -mod -prof -bootstrap 100 tutorial1.pulsestack

5.3 Making nice plots

The above results can be combined in a nice looking plot. In order to do this the results should be written
to files first, so one can do something like:

prompt> pspec -lrfs -2dfs -mod -prof -bootstrap 100 -w -nfft 256 \

-onpulse "131 170" -onpulse "118 187" tutorial1.pulsestack

These are all the previously used options plus the -w option which allows you to write out the results.
Here we also changed the default FFT-size to 256. Since the input data-set only consists of 1022 pulses,
this means that the first 768 pulses will be analysed rather than only the first 512. Reducing the FFT-size
will result in a lower P3 resolution.

The results are written to:
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• tutorial1.profile - ASCII file containing the profile + standard deviation + modulation index. The
columns are: (1) bin number (2) intensity of profile (3) std. dev. (4) 1 sigma error on std. dev. (5)
modulation index (6) error on modulation index.

• tutorial1.lrfs - The lrfs which you can plot with for example pplot.

• tutorial1.1.2dfs - The 2dfs based on the first selection you made.

• tutorial1.2.2dfs - The 2dfs based on the second selection you made.

These results can be combined in a single figure using pspecFig. To make the figure with the default
options you can run:

prompt> pspecFig tutorial1.pulsestack

You probably want to output the results to a postscript file, either by typing in the appropriate device
name, or running something like

prompt> pspecFig -device "tutorial1.ps/ps" tutorial1.pulsestack

By default only the first 2dfs is shown. Note also that the 2dfs is flipped, as the feature in the 2dfs now
appears at the right-hand-side in the figure. So by default a positive P2 value in the pspecFig figures
mean positive drifting, which is drifting towards later phases.

There are various options to make the plot look nicer. Run pspecFig without command line option
to see what options are available. For example you could try out:

prompt> pspecFig -device "tutorial1.ps/ps" -l "100 260" -scalel 10 -scale2 30 -nostddev \

-title "pspecFig test" -xlabel3 -ylabel3 -ytop tutorial1.pulsestack

5.4 Analysis of features in fluctuation spectra

The obtained fluctuation spectra can be interactively explored with the program pspecDetect. This
program is designed to analyse features in the 2dfs to obtain centroid P2 and P3 values and corresponding
error-bars. To start the program run

prompt> pspecDetect -v tutorial1.pulsestack

which assumes the lrfs and 2dfs are written out with the default extensions. Press ’h’ inside the pgplot
window to get a list of supported key presses.

The first plot shown is the 2dfs. By pressing the space-bar you can cycle through the different plots.
The next plot shows the lrfs, whith the pulse profile superimposed to more easily indentifying what part
of the profile corresponds to what modulation power. The next plot shows the 2dfs again, from which
you can zap power by clicking with the mouse and making boxes. The remainder of the power is assumed
to be power associated with white noise, so get rid of anything that looks like signal. In the terminal
a sigma value is reported, which should be something like 2.8 × 10−7 after removal of all signals. After
pressing space another time, you should end up with the first plot.

In the plot showing the 2dfs (first plot) you can zoom in on features by defining boxes with the mouse.
’f’ resets the zoom range only, while ’r’ also resets the earlier flagged points to identify the noise. By
default zooming in always selects a symmetric P2 range, to avoid any bias in the centroid P2 value derived.
By zooming in on the low-frequency power and pressing return you should be able to find out that the
centroid values (indicated by the cross) correspond to something like P3 = 140 periods and P2 = −44
cpp.

In this case it is clear there are drifting subpulses detected, while the reported centroid values are
heavely biassed because of the power centred at the origin, which is related to the nulling. By pressing
’c’ the centring of the P2 range can be switched off, allowing you to zoom in to the drift feature itself,
without considering the power close to the origin. This should allow you to determine that P2 is more
like −14.5 cpp in reality. Note that the reported error-bar is tiny. However, a major source of error on
centroid values is the what region in the spectra are included in the centroid calculation, since this is at
some level an arbitrary decision. Therefore it makes sense to use a few different selected ranges to see
what spread in the centroid values you get.
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5.5 Subpulse phase track

Analysing the subpulse phase as function of pulse longitude gives you some feeling for the average shape
of the drift bands in your data. In particular, it shows for instance if there is any curvature, or if the
drift bands are straight.

The method is based on the same type of analysis done to compute the LRFS. The pulse stack is
divided into equal sized blocks (in pulse number) with a length given by the chosen length of the fft’s.
FFT’s are computed in columns of data, i.e. for a given pulse longitude, the FFT is done over the recorded
intensities for the subsequent pulses. The FFT results in complex Fourier components. The amplitude is
related to the strength of the modulation, while the phase tells you something about the required delay
of a sinusoid with a given frequency to match the data. For linear drift bands this phase (subpulse phase)
should change linearly with pulse longitude. As a side note: the subpulse phase is actually the negative
of the phase obtained from the FFT’s. This choice has been made in PSRSalsa to ensure that a positive
gradient of the subpulse phase as function of pulse longitude corresponds to positive drifting.

To do the analysis, first the P3 spectral bin of interest from the LRFS needs to be identified. In
section 5.4 we identified that P3 = 140 periods, corresponding to 0.0071 cpp. To compute the phase track
you could do

prompt> pspec -v -freq "0.0070 0.0072" -track tutorial1.pulsestack

This fails, because there is no complete frequency bin within the specified range. So the frequency
range should be specified to be wide enough. The following will work

prompt> pspec -v -freq "0.005 0.009" -track tutorial1.pulsestack

Note that a warning is generated stating that the frequency range is now so wide that two spectral
bins are being used. Although the software will try to do something sensible, it is highly recommended
to only analyse a single spectral bin. So if you want to use this frequency range, it would be better to
use shorter FFT lengths, resulting in wider spectral channels, to ensure that a single frequency bin falls
within the selected frequency range. A balance needs to be struck between making your spectral channels
wide enough so that enough signal is present within the analysed channel, without it being so wide that
it includes more than just the signal you’re interested in. So to ensure that a single frequency bin falls
within the selected range we could do

prompt> pspec -nfft 256 -v -freq "0.005 0.009" -track tutorial1.pulsestack

We can also compute the amplitude, as well as the phase, using

prompt> pspec -amplitude -w -nfft 256 -v -freq "0.005 0.009" -track tutorial1.pulsestack

Here we also specified the -w option, which writes out the found results to a files (tutorial1.track and
tutorial1.amplitude). The first column is the pulse longitude bin number, followed by the subpulse phase
in one case, and subpulse amplitude in the other. The file with the subpulse phase information has -1
in the last column. This corresponds to the error on the subpulse phase, which is currently undefined.
Errors can be computed using the -bootstrap option. So we could do the following to obtain errors

prompt> pspec -bootstrap 100 -amplitude -w -nfft 256 -v -freq "0.005 0.009" \

-track tutorial1.pulsestack

You can use pspecFig to plot the results, if desired.

prompt> pspecFig -phaseplot -device "phaseplot.ps/cps" -l "140 220" tutorial1.pulsestack

Note that the subpulse phase is increasing with pulse longitude (and is wrapping a few times). This is
consistent with the positive drift in the input data-set.

The subpulse amplitude shows structure, which in this case is most likely because the very small
number of complete cycles in the data-set. The subpulse phase is not quite linear. You can play with the
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-phaseslope option of pspecFig to subtract out a linear gradient, thereby more clearly show the deviations.
A similar result can be obtained by using the -slope and the -track dphase option in pspec.

A final note about the computation of the subpulse phase track: A subpulse phase track is determined
for each separate block of data with a length given by the FFT length. These phase tracks are averaged
coherently by aligning the subpulse phase tracks of the individual blocks. Although the shape of the
subpulse phase tracks are expected to be similar for the different blocks, they will have essentially arbitrary
offsets in subpulse phase. The offsets are determined by a cross-correlation technique. By default the
fully specified on pulse region is used. However, the total on pulse region selected, also with the aim of
specifying which pulse longitudes to exclude from the determination of the off pulse rms, is in general
wider than the longitude range where the subpulses are strong. This implies that the -track firstregion
option is useful. This allows you to first specify a relatively narrow on pulse region (the first selected),
which will be used to align the subpulse phase tracks of the individual blocks (the cross-correlation is
only using the first specified on pulse region). Then additional wider on pulse regions can be selected,
which reduces the pulse longitude range to be used for the noise calculation.

5.6 P3 folding

P3 folding is the process of averiging the modulation cycle with the periodicity P3, which means we get
a plot of how the average drift band looks like. A complication is that P3 is in general not constant
throughout the data, hence we have to resolve the fluctuations in P3. This is something pspec can do.
We start with a fake data-set called tutorial2.pulsestack, which includes clear drifting subpulses, but now
with a somewhat variable P3 value. If you want, you can plot the data with pplot, which should show
that the driftbands are closer and further apart in different stretches of the data. You can also see that
the slope of the driftbands is varying at the same time (you probably need to zoom in while using the
interactive mode), so different parts of the data should be folded with a different P3 value.

Before we’re going to fold the data, lets start with calculating the LRFS in order to find the typical
value of P3 in the data.

prompt> pspec -lrfs -v tutorial2.pulsestack

You should see that the feature in the lrfs is smeared out in P3, confirming it is indeed varying. Maybe
a good input value for P3 to use would be a value corresponding to 0.14 cpp (so P3 = 7.15 periods).
Hopefully the software will be able to find the correct P3 value throughout the whole data set. Note that
it probably takes a bit of experimenting what input parameters gives you the best results. In the end,
P3 folding should be considered to be a nice way to graphically represent the data, and 100% accuracy
should not be expected since in reality the driftbands might not be repetitive enough, for instance because
of nulling, mode-changing etc. So lets try this P3 value as the initial guess. In addition it needs to be
specified how in how many (equally spaced) bins the P3 cycle will be divided. For now, lets generate 7
pulse shapes throughout the modulation cycle. The intrinsic resolution of the P3 fold will be one pulse
period, so making the number of bins much larger than the value of P3 (expressed in periods) has very
little use. In the command below the P3 cycle will be separated in 7 bins.

prompt> pfold -p3fold "7.15 7" -v tutorial2.pulsestack

The selected on-pulse region is used to do the correlations (as explained below in more detail), but the
full pulse longitude range will be folded. When you select the onpulse region, a relatively small on-pulse
region might give the best result (include no noise, and maybe even leave out the outer bits of the profile).
The reason is that the correlations are done on whatever you selected, hence the correlation can be done
most accurately by considering those parts of the profile which are strong. The output (the average drift
band) is shown twice on top of each other for continuity. It should show very clearly what the average
drift band looks like. This command tries to resolve the variations in P3. If you want, you can find out
what would be obtained if you would use a fixed P3 value by adding the -p3fold norefine option, which
results in complete failure to detect the drifting subpulses.

If you want to see in more detail how the driftbands deviate from a diagonal line it could be useful
to subtract a constant slope from the observations. This might be especially useful if the driftbands are
steep. You can see the result using the following command:

prompt> pfold -p3fold "7.15 7" -v -slope 25 tutorial2.pulsestack
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Here a slope of 25 deg/deg is subtracted from the drift bands. The drifting subpulses now appear in
the plot as an on/off modulation, i.e. the P3 modulation without the drift in pulse longitude. You can
introduce a vertical shift to the result using the -p3fold dphase option, which might make your plot nicer.
For instance the following comment should result result in a plot which starts at the minimum of the
modulation cycle.

prompt> pfold -p3fold "7.15 7" -v -slope 25 -p3fold_dphase 90 tutorial2.pulsestack

Resolving variations in P3 is a iterative process. There are two important parameters which specify
the way this is done. There is an option -p3fold nritt, which sets the number of iterations which are
performed. In order to find the variations in P3, knowledge about the shape of the driftbands is required.
This is because essentially you take a block of P3 pulses, i.e. a full cycle, then take the next block and you
fit for the offset between the patterns observed in the two blocks. So if P3 is a bit larger than the typical
value provided on the command line, the driftband appears a bit late in the second block compared to
the first. Hence when folding the data, the extra shift, or offset, has to be subtracted first. However,
after folding the full data set, the result, i.e. the “average drift band” can be used as a template to do the
comparisons to find the offsets in each block. This has the advantage that the obtained average drift band
has a high S/N, hence the offsets can be determined more accurately than just using the previous block,
i.e. the offsets obtained by making comparisons between individual drift bands. By default this loop is
only done once, but you can increase this number by using the -p3fold nritt option. You can experiment
with increasing this number to see if the result is improving and to see after which number no changes in
the end result are apparent. Another parameter to try out to refine the results is the -p3fold cpb option.
This specifies the number of P3 cycles used per block of data analysed. So for instance if this number
is set to 2 (default is 1), it means the software takes the first 2 × P3 pulses to generate the average of
two driftbands (using a fixed P3 folding with the number specified on the command line), it then takes
the next block of 2 × P3 pulses and the offset between the driftbands is obtained by a cross-correlation
of the two blocks. In other words, increasing this number increases the S/N of the drifting subpulses
in each block, which increases the precision of the determined offsets, however at the same time the
drifting subpulses are smeared out. The latter is because the fixed period folding done before doing the
cross-correlation. Again, experimenting is required to find the optimum compromise. In this example
you cannot do much better than using the default values since the simulated pattern is quite regular.

You might want to “over-sample” the data, which means specifying more P3 bins than the number of
available pulses per P3 cycle. This might result in nicer looking plots, but remember that each row will
no longer be independent on the other rows. Try out the following command which will generate 20 P3

bins:

prompt> pfold -p3fold "7.15 20" -slope 25 -v tutorial2.pulsestack

Depending on the number of bins used, you might see strange patterns arising which are caused by
unequal sampling of different parts of the output. In order to remove these artifacts you can use the
-p3fold smooth option, which allows you to replace the top-hat weight used to assign power of each
individual pulse to the different P3 bins with a Gaussian weight with this width in P3 phase bins. This
will smooth the output, hence could make oversampling look nicer. The following command smooths the
output with 1 P3 bin (i.e. the intrinsic resolution). In the example below also the -w option is included,
which means that the result is written to an output file.

prompt> pfold -w -p3fold "7.15 20" -slope 25 -v -p3fold_smooth 1 tutorial2.pulsestack

Note that this makes the calculation considerably slower, hence you might want to include this option
after you’re happy with the result obtained using the other options. The output by default is in psrfits
format and hence can be read in by PSRCHIVE and other software of this package, for instance you
can make a plot using pplot

prompt> pplot -v -showtwice -showright -showtop -showwedge tutorial2.p3fold
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