
Phys 60441

Techniques of Radio Astronomy

Part 1: Python Programming

LECTURE 2

Tim O’Brien

Room 3.214 Alan Turing Building

tim.obrien@manchester.ac.uk

Lists

• A compound data type (elements can be same type

or different types)

Tim O'Brien Phys 60441 Techniques of Radio Astronomy 2

>>> group = [“Foot”, 32, “shoe”, -1.7]

>>> group[0]

>>> group[-2]

>>> group[1:-1]

>>> word=“Dog”

>>> word[0] = “L”

>>> group[1] = 27

>>> group[0] = group[0] + “print”

Parts of strings cannot be

changed, but elements in

lists can be

>>> len(group)

A while loop

• Edit a script ex2.py to contain a program to calculate

the Fibonacci series

Tim O'Brien Phys 60441 Techniques of Radio Astronomy 3

Fibonacci series

the sum of two elements defines the next

a, b = 0, 1

while b < 10:

print b

a, b = b, a+b

A compound assignment

equivalent to a=0 on one

line and b=1 on the next

While the condition b<10

remains true, the group of

indented statements below

is repeated.

Any non-zero integer is

true, zero is false.

< is less than, > is greater

than, == is equals, <= less

than or equal to, >= greater

than or equal to, != is not

equal to

Indentation has to be the

same for all statements in a

group, convention is to use

4 spaces but emacs will

default to some value

(in interactive mode need a

blank line to terminate the

group)

Print statement is used for

nicer output e.g. try

print “b=“, b

print b,

(ex2.py)

while exercise

• Write a Python script which uses a while loop to

calculate and display on the screen the factorials of

integers from 1 to 5

Tim O'Brien Phys 60441 Techniques of Radio Astronomy 4

if statement and input

Tim O'Brien Phys 60441 Techniques of Radio Astronomy 5

x = int(raw_input("Please enter an integer: "))

if x < 0:

x = 0

print ‘Negative changed to zero’

elif x == 0:

print ‘Zero’

elif x == 1:

print ‘Single’

else:

print ‘More’

Input a number from the

screen

elif is shorthand for “else

if” and simply saves typing

(ex3.py)

for loop

• The for loop repeats a group of statements whilst

iterating over the items of any sequence (a list or

string) in the order they appear

Tim O'Brien Phys 60441 Techniques of Radio Astronomy 6

a = [‘Shakespeare', ‘Dickens', ‘Hartley']

for x in a:

print x, len(x)

>>> range(10)

>>> range(5,10)

a = [‘Shakespeare', ‘Dickens', ‘Hartley']

for i in range(len(a)):

print i, a[i]

Works through a, item by

item, assigning each to x

range creates a numerical

progression

len(a) is 3,

range(3) creates a list [0,1,2],

these items are then assigned

in turn to i

Alternatively use the

enumerate function which

returns both position & value

a = [‘Shakespeare', ‘Dickens', ‘Hartley']

for i, author in enumerate(a):

print i, author

(ex4.py)

Try using for i in range(5):

for exercise

• Write a Python program to calculate, for the integers

1 to 10, their sum and mean

Tim O'Brien Phys 60441 Techniques of Radio Astronomy 7

for loop continued

• Example script to find prime numbers:

Tim O'Brien Phys 60441 Techniques of Radio Astronomy 8

for n in range(2, 10):

for x in range(2, n):

if n % x == 0:

print n, 'equals', x, '*', n/x

break

else:

loop fell through without finding a factor

print n, 'is a prime number'

x % y means “remainder of

x / y”

break jumps out of the smallest

enclosing for (or while) loop

continue continues with the

next iteration of the loop

The else clause is executed

when the loop terminates

through exhaustion of the list

(with for) or when the

condition becomes false (with

while), but not when the loop

is terminated by a break
statement.

(ex5.py)

Defining functions

• You are used to existing mathematical functions like sine or
cosine (later we’ll see how these are implemented in Python).
Here we define our own function to calculate the Fibonacci
series:

• Either type this direct into
interpreter or input the script into
interpreter with import ex6

• Then to call the function
type ex6.fib(2000)

Tim O'Brien Phys 60441 Techniques of Radio Astronomy 9

def fib(n):

write Fibonacci series up to n

"""Print a Fibonacci series up to n. """

a, b = 0, 1

while a < n:

print a,

a, b = b, a+b

Function name fib is followed by list

of parameters in parentheses

First statement is documentation,

display with print fib.__doc__

Statements must be indented

(ex6.py)

ex6.py contains the function

definition and is known as a

module. A module can contain

many function definitions and

executable statements.

Running modules as scripts

• Can run a module as a script with an argument on

the command line:

Tim O'Brien Phys 60441 Techniques of Radio Astronomy 10

def fib(n):

write Fibonacci series up to n

"""Print a Fibonacci series up to n. """

a, b = 0, 1

while a < n:

print a,

a, b = b, a+b

if __name__ == "__main__":

import sys

fib(int(sys.argv[1]))

(ex7.py)

Within a module, the module’s name

(as a string) is available as the value of

the global variable __name__.

If the module is run as a script with

python ex7.py then __name__ is

set to __main__ (as it is deemed the

main module).

The extra statements at the end in

this example allow it to be run with

python ex7.py 50, for example,

where 50 is taken as a command-line

argument for function fib.
1st argument in list on command line

Scope of variables in functions

Tim O'Brien Phys 60441 Techniques of Radio Astronomy 11

def fib(n):

write Fibonacci series up to n

"""Print a Fibonacci series up to n.""“

a, b = 0, 1

while a < n:

print a,

a, b = b, a+b

print x

x = “Hi there”

#print a,

fib(2000)

#print a,

Variables defined within the function

are local to the function.

For variables referenced (by which we

mean “used” i.e. on right hand side of

assignment statement) in the

function, interpreter looks first in the

local symbol table, then outside

(globally).

(ex8.py)

Just type python ex8.py

Try uncommenting the print a,

statements or moving statements

above the function definition

Functions which return values
• Every function returns a value whether explicitly or

not

Tim O'Brien Phys 60441 Techniques of Radio Astronomy 12

>>> import ex6

>>> print ex6.fib(0)

As fib did not define a return value,

the value None is returned and is not

usually printed

def fib(n):

Fibonacci series up to n

"""Return a list containing Fibonacci

series up to n. """

result = []

a, b = 0, 1

while a < n:

result.append(a)

a, b = b, a+b

return result

result is a list object (initially

empty).

append is a method belonging to list

objects (different types have different

methods – you can define your own

object types and methods using

classes).

result.append adds a new item

to the list and is equivalent to

result = result + [a]

(ex9.py)

>>> import ex9

>>> ex9.fib(100)

>>> answer=ex9.fib(100)

>>> answer

Arguments to functions

• e.g. Arguments with default values:

Tim O'Brien Phys 60441 Techniques of Radio Astronomy 13

def ask_ok(prompt, retries=4, complaint='Yes or no, please!'):

“””Demonstrate default values”””

while True:

ok = raw_input(prompt)

if ok in ('y', 'ye', 'yes'):

return True

if ok in ('n', 'no', 'nop', 'nope'):

return False

retries = retries - 1

if retries < 0:

raise IOError('refusenik user')

print complaint

(ex10.py)

Default values

in keyword tests whether a

sequence contains a

particular value

raise statement allows

you to throw your own

error

Ways to call this function:

ask_ok('Do you really want to quit?') # with the one mandatory argument value

ask_ok('OK to overwrite the file?', 2) # also with one of the optional arguments

ask_ok('OK to overwrite the file?', 2, 'Come on, only yes or no!') # with all the arguments

