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Trne moclael

* The model presented here uses a modified version of the 1-level 3D
maser model originally developed for the investigation of rotation as a
possible explanation for {e.g. methanol} flaring events (Gray, Mason &
Etoka 2018).

¢ The current model is a 3-{upper-}levels (1 lower level) & solves for the
propagation of the polarised emission following the methodology of
Landi Del'Innocenti (1987).

* The non-linear Orthomin algorithm, based on the implementation of
Chen and Cai (2001), is used for the computation of the populations
{fractional inversions} of the 0" & Tt transitions.

The maser domain

* The domain is generated by Delaunay triangulation of irregularly
distributed points (which represent the nodes of the maser domain)
following Zienkiewicz & Taylor (2000).

* The figure here below, displays the triangulated domain used for the
work presented here:
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Invearsions

* The full radiative transfer equation, di/dt=ni
(where T Is the optical depth and n represents the
Stokes matrix), leads to the following system of
equations to be solved:

* The figure here below presents the
fractional inversions

achieved for the 0", m and o for selected
nodes (the colour code is the same as used for the nodes
in the figure displaying the “maser domain"):

—

o
o))

— Node: 1 transition type: 1
Node: 1 transition type: 0
Node: 1 transition type: -1
Node: 9 transition type: 1
Node: 9 transition type: 0
Node: 9 transition type: -1

fractional inversion

o
N
T

Node: 10 transition type: 1

Node: 10 transition type: 0

Node: 10 transition type: -1
— Node: 8 transition type: 1
— Node: 8 transition type: 0

— Node: 8 transition type: -1

0.0 x x !
0 5 10 15
depth

Note: Transitiontype 1 «0" /0 o /-1 « O

Chen & Cai, 2001, Appl. Math Comput 124, 351

Landi Degl'Innocenti E., 1987, in: W. Kalkofen (ed.), Numerical Radiative Fransfer (Cambridge, CUP), p265

Tobin, Kemball & Gray 2019, 971, 189

Brigntness maps & Specira

* In the current model a uniform field is used, allowing the
selection of a frame of reference for the formal solutions where
Stokes Q or U is 0. For this implementation, we chose a frame of
reference such that Stokes U=0.

* The figures here-below present typical {Stokes I, Q & V}
brightness maps with the associated spectra:
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