A Bayesian approach: The CMB experience

Ingunn Kathrine Wehus JPL/Caltech

Intensity mapping workshop, Oxford, 23rd November 2012

The Bayesian approach

• Assume we have data, **d**, that can be described by some parametric model, for instance

$$\mathbf{d} = \mathbf{s} + \mathbf{f} + \mathbf{n}$$

where

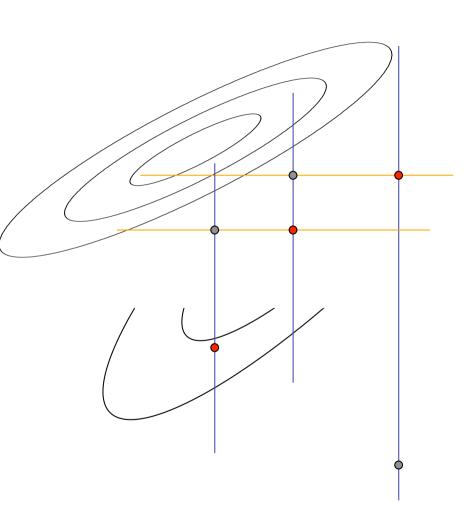
- **s** is the cosmological signal
 - Often assumed to be a Gaussian field with power spectrum C_1
- **f** are foregrounds and/or systematics
- **n** is instrumental noise
- What most cosmological experiments (and data analyses) attempt to estimate is really the *joint posterior* in some form or other,

$P(\mathbf{s}, C_{\ell}, \mathbf{f} | \mathbf{d})$

- If we can find this, we also know all marginals, like $P(C_i | \mathbf{d})$ and $P(\mathbf{s} | \mathbf{d})$, which describes the main cosmological results
- But how do we compute this for modern data sets?
 - The observations consists of millions of data points
 - The models have millions of free parameters
 - The probability distributions are typically non-Gaussian and strongly coupled

Gibbs sampling

- Gibbs sampling: Sample from joint distribution by cycling through conditionals
- Consider simple two-dimensional example, P(x, y)
 - Choose arbitrary initial point
 - Sample y from P(y|x)
 - Sample x from P(x|y)
 - Iterate
- This is a special case of Metropolis-Hastings, and guaranteed to converge to the right answer
- Why is this useful?
 - Because conditionals are very often much simpler than the joint distribution
 - Complicated distributions can be build up by Gaussians, inverse gammas etc...

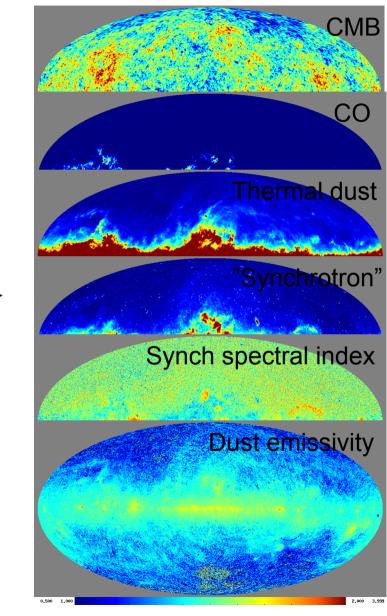


The CMB experience

- We are currently using this algorithm to analyze the Planck observations
 - Default Planck code for cosmological analysis of temperature observations on large angular scales, where foregrounds matter the most
 - Only code to produce a full suite of physical foreground components
- Current model looks like this:

$$\begin{aligned} d_{\nu}(p) = s(p) + & \text{CMB} \\ A_{s}(p)a2t(\nu) \left(\frac{\nu}{\nu_{s}}\right)^{\beta(p)} + & \text{Synchrotron/AME} \\ \left(A_{ff}(p)a2t(\nu) \left(\frac{\nu}{\nu_{f}f}\right)^{-2.15} + \right) & \text{Free-free (optional)} \\ A_{d}(p)a2t(\nu)g(T(p), e(p))m_{d}(\nu) + & \text{Thermal dust} \\ A_{co}(p)a2t(\nu)h(\nu) + & \text{CO} \\ M_{\nu} + \sum_{i=1}^{3} D_{\nu}(p) + n_{\nu}(p) & \text{Monopole, dipole, noise} \end{aligned}$$

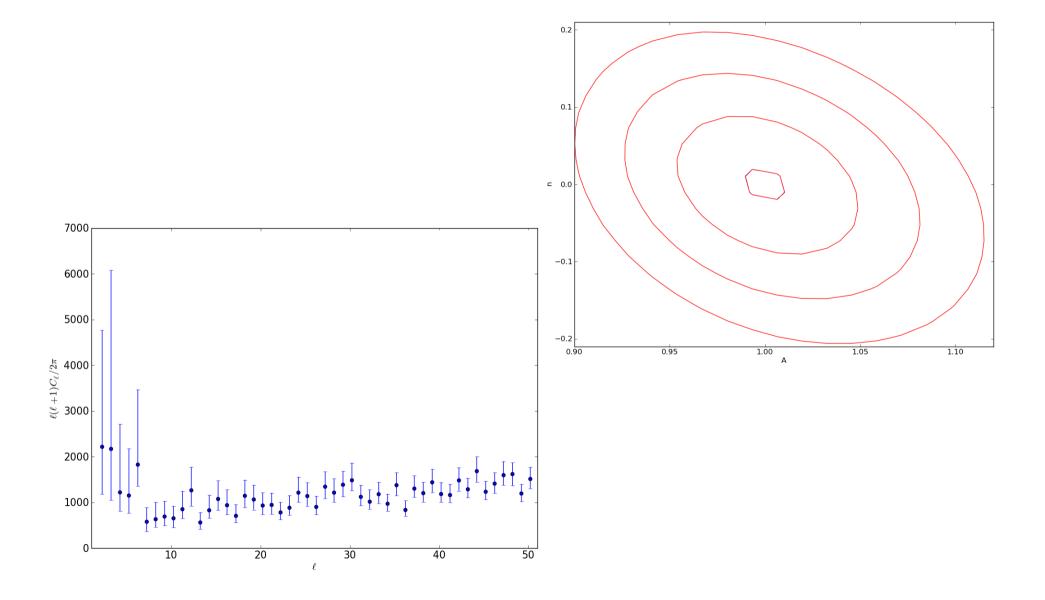
Analysis of Planck simulations





1.0e+03 7.3e+05

Analysis of Planck simulations



СМВ	Total intensity	Feasible?
-----	-----------------	-----------

	СМВ	Total intensity	Feasible?
Angular resolution	5 arcmin	1 degree?	Yes!

	СМВ	Total intensity	Feasible?
Angular resolution	5 arcmin	1 degree?	Yes!
Lmax	2500	300?	Yes!

	СМВ	Total intensity	Feasible?
Angular resolution	5 arcmin	1 degree?	Yes!
Lmax	2500	300?	Yes!
Frequency coverage	~Ten 2D fields	100 2D slices?	Yes

	СМВ	Total intensity	Feasible?
Angular resolution	5 arcmin	1 degree?	Yes!
Lmax	2500	300?	Yes!
Frequency coverage	~Ten 2D fields	100 2D slices?	Yes
Power spectrum	Six 1D spectra	One 2D spectrum	Yes

	СМВ	Total intensity	Feasible?
Angular resolution	5 arcmin	1 degree?	Yes!
Lmax	2500	300?	Yes!
Frequency coverage	~Ten 2D fields	100 2D slices?	Yes
Power spectrum	Six 1D spectra	One 2D spectrum	Yes
Signal model	CMB, dust, CO, synch, free-free, AME	HI, <i>strong</i> synchrotron	Remains to be seen

⇒ Computational problems are under full control – the big question is how well behaved the foregrounds are

Summary

- Major strengths of the Bayesian approach:
 - Relies on a well defined and transparent physical data model
 - Easy to impose priors whereever necessary
 - Seamless end-to-end propagation of both foreground and systematic uncertainties
 - Provides proper goodness-of-fit and chi-square statistics
 - Allows naturally for joint CMB and total intensity analysis
- Significant challenges:
 - Computationally more expensive than most other alternatives
 - Requires a good understanding of all important effects; difficult to "hide problematic issues under the carpet"
 - For example, accurate zero-point estimation is critical
- The upcoming Planck release will provide a very direct demonstration of the power and impact of the Bayesian approach
 - There is every reason to expect the same to happen in the total intensity field once the data mature

The cosmological Gibbs sampler

• For the model described earlier, the Gibbs sampler looks like:

$$\mathbf{A} \leftarrow P(\mathbf{A}|C_{\ell}, \mathbf{f}, \mathbf{d})$$
$$\mathbf{f} \leftarrow P(\mathbf{f}|\mathbf{A}, C_{\ell}, \mathbf{d})$$
$$C_{\ell} \leftarrow P(C_{\ell}|\mathbf{f}, \mathbf{A}, \mathbf{d})$$

• Need to write down the individual conditionals

Conditional distributions

• All amplitudes are Gaussian, and given by a Wiener filter plus fluctuations

$$(\mathbf{S}^{-1} + \mathbf{N}^{-1})\mathbf{A} = \mathbf{N}^{-1}\mathbf{d} + \mathbf{S}^{-1/2}\omega_1 + \mathbf{N}^{-1/2}\omega_2$$

• Spectral indices are given by the chi-square

$$-2\ln \mathcal{L}(\beta) = (\mathbf{d} - \mathbf{A}\nu^{\beta})^t \mathbf{N}^{-1} (\mathbf{d} - \mathbf{A}\nu^{\beta})$$

• Angular power spectra are given by an inverse Gamma distribution

$$C_{\ell} = \frac{\sum_{m=-l}^{l} |a_{lm}|^2}{\sum_{i=1}^{2\ell-1} \cdot 2}$$

- Systematics are typically modelled on a case-by-case basis
 - Usually approximated as Gaussians or determined by chi-square fits