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Drift Scan Telescopes

m All intensity mapping experiments have a common set of
analysis challenges:

Wide field at given instant
All sky as total surveyed area is large
Polarised analysis to address leakage

m Restrict to drift scan instruments

m Signal is power from one antenna or correlation betweeb
two.

m Instantaneously signal is a linear combination of the Stokes
parameters on the sky.

m Transit instrument, no moving parts, time variation comes
only from Earth rotation, plus noise.



Drift Scan Analysis

m Visibility is the instantaneous correlation Vij o< (FiF). After
including noise (n,) and sky rotation (¢)
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and the transfer function is
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m Signal is periodic in ¢ — fourier transform. Using spherical
transform, and map @, U — E, B
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m-~transform

m Observing process does not mix m-modes on the sky. V,,
uncorrelated for stationary noise.

m Write as vector equation for each m
v=Ba+n. (4)

m Dramatically reduces correlated degrees of freedom. Huge
computational saving.

m Expresses problem in a language we understand. Linear
signal processing. (e.g. imaging = inversion)

m Gives an alternative way of analysing interferometers.

m Naturally treats all wide-field effects.
m Polarisation is fully treated from the start.



m Coping with polarisation leakage will always require
knowing the full polarised response of every antenna.
m How do we measure this? Pulsar holography
m Cross correlate every feed with an external antenna tracking
a source as it drifts through the beams.

m Pulsar gating (subtract off from on), removes confusion
l[imitations.

m Directly measures electric field response at pulsar location.

m Also require high stability of system (> 30 dB). Use
rigidization to achieve this.
m Inject a known, common, stable noise source.
m Cross correlate with each to determine complex gain
fluctuations.



Foreground Removal

m Spectral smoothness allows separation of 21cm. Options:

H Fit power law to maps

Remove low order polynomials

Measure components and model (Liu and Tegmark)
FastICA (Chapman et al., for EoR)

m Most methods have difficulties:

Mode mixing of angular and frequency fluctuations by
frequency-dependent beams (esp. interferometers) [1, 2]

Robustness Biasing introduced if foreground model poorly
understood (esp. non-gaussianities). [1, 3]

Statistical Optimality Need to keep track of transformations
on statistics, for optimal PS estimation [1, 2]



Signal-to-Noise Eigenmodes

m Construct the covariances of the signal and foregrounds
S :B<a5a1,> Bt F:B<a,fa}> Bf 5)
m Jointly diagonalise both matrices (eigenvalue problem)
Sz = \Fz (6)

Gives a new, uncorrelated, basis. Eigenvalue \; gives ratio of
signal to foreground variance for mode 1.

m Foreground removal is performed by projecting out modes
with low signal-to-foreground ratio.
m Addresses the previous problems

m Analysis uses all measured data to avoid mode mixing.
m Can be made arbitrarily robust, by increasing threshold.
m Linear transform on data, keeps track of statistics



Conclusions

m Instruments like CHIME are a very different class of
interferometers, require completely different analysis
technique.

m m-mode decomposition reduces entire analysis to linear
signal processing, naturally treats effects that are traditionally
very difficult: wide-field imaging, polarisation leakage.

m Computational efficiency allows ‘optimal’ foreground
removal and power spectrum estimation.

m Requirements are strict:
Time stability by rigidization
Polarisation response by pulsar holography



Signal/Foreground Spectrum
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Sky simulation
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Beam Projected
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