Testing General Relativity with 21 cm Intensity Mapping

Alex Hall

with Camille Bonvin and Anthony Challinor

Institute of Astronomy and Kavli Institute for Cosmology, Cambridge UK

Oxford Martin Workshop on Intensity Mapping

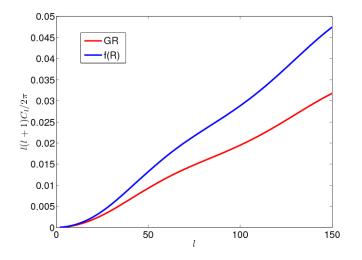
Modified Gravity

- Modified gravity may explain the accelerated expansion of the universe.
- All theories are therefore tightly constrained to reproduce an expansion history not too far from ACDM. Have to look *beyond* background cosmology in order to distinguish models.

On sufficiently small (quasi-static) scales, we have

$$-k^2\Psi = 4\pi G a^2 \mu(a, k) \rho \Delta, \qquad (1)$$

$$\Phi = \gamma(a, k)\Psi, \tag{2}$$

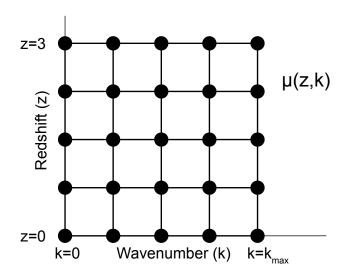

Define a third function $\Sigma = \frac{1}{2}\mu(1+\gamma)$ such that

$$\nabla^2(\Psi + \Phi) = 8\pi G a^2 \Sigma(a, k) \rho \Delta$$
(3)

Observational Probes

- We need to measure the detailed 3D clustering of matter on linear scales to constrain μ and $\Sigma.$
- Galaxy surveys? Big, costly. Requirement of spectroscopic redshifts inevitably reduces the number of sources than can be observed.
- Weak lensing? Several large projects planned (LSST, Euclid), some years away. Difficult systematics to overcome (intrinsic shear correlations, point-spread irregularities, luminosity distribution uncertainties).
- CMB? ISW and weak lensing signal sensitive to $\Phi + \Psi$, but not so sensitive to individual potentials at late times.
- 21 cm intensity mapping

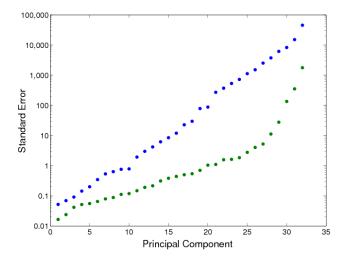
Brightness temperature angular power spectrum at z = 0



・ロト・(型ト・(ヨト・(ヨト・(ロト)

Intensity Mapping

Results



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ □ ● ● ●

Preliminary Results: 21cm + Planck

AH, Bonvin & Challinor (in prep.)

Results

Conclusions

- 21 cm Intensity Mapping offers a cheap and short-term method for learning about late-time structure formation.
- Can potentially learn a lot about the 3D clustering of matter, and hence learn something about gravity.
- Considerable technical challenges to be overcome, but not insurmountable.
- Preliminary results indicate that a typical experiment can constrain ~ 25 modes of the free functions introduced by modified gravity.
- Extraction of small scale information limited by the *non-linear* scale rather than the beam size at high frequencies. This is *larger* in modified gravity than in GR (Jennings et al. 2012), and presents a big obstacle in constraining scalar-tensor theories.