

BAORadio

Réza Ansari

Intensity Mapping workshop November 2012 St Anne's College, Oxford

Intensity Mapping Workshop

Oxford, UK 23 November 2012

- # 21cm intensity mapping
 - Brief history of CRT & BAORadio
- ***** BAORadio project
 - Electronic developments
 - BAORadio system with UNIBOARD inteconnexion
- * Toward a large 21 cm survey for Dark Energy
 - PAON project (demonstrator array France)
 - * HSA-D (Hydrogen Structure Array Demonstrator) USA
 - Tianlai (China)

BAO@21 cm / Intensity mapping instrument concept

- Large field of view (10-100 deg^2) lobe synthesis/interferometer instrument
 - → ~ 100-1000 simultaneous beams → Digital system
- * Large bandwidth (100-500 MHz) \rightarrow significant redshift band $\Delta z \sim 0.5$
- Digital beam former / correlator : data rates ~ TO/s
- Cylinders or packed array of small (D ~ 5 m) dishes or tiles, or single dish (D ~50 - 100 m) with FPA / multi horn receiver
- Resolution 10 arcmin, Surface ~ 10 000 m^2
 - antenna / receivers distributed over ~ 100 m × 100 m

- 2006 : J. Peterson, Ue-Li Pen ... CRT proposal (Moriond Cosmology), discussions in France (LAL, IRFU)
- 2007 : Start of BAORadio electronic design in France (LAL-IRFU), Prototype cylinder built in Pittsburgh
- 2008 : Observatoire de Paris & Nançay join the project in France, first tests of the electronic system at the NRT, FAN prototype at Nançay
- 2008-2009 : Fermilab group gets involved in the project , Site testing in Morocco
- 2009-2010 : Observation campaigns with the BAORadio electronic, acquisition / visibilities & processing software at Pittsburgh
- 2009-2011 : discussions on instrument configuration, dish arrays vs.
 cylinders
- * 2010-2012 : Collaboration with NAOC / X. Chen, the Tianlai project

2007-2012

NATIONAL ASTRONOMICAL OBSERVATORIES , CHINESE ACADEMY OF SCIENCES

BAGRadio

LAL - IN2P3/CNRS

R. Ansari J.E. Campagne M. Moniez A.S. Torrento D. Breton C. Beigbeder

*T. Cacaceres*D. Charlet*B. Mansoux*C. PaillerM. Taurigna

IRFU - CEA

C. Magneville C. Yèche J. Rich J.M. Legoff P. Abbon E. Delagnes H. Deschamps C. Flouzat P. Kestener

Observatoire de Paris

P. Colom J.M. Martin J. Borsenberger J. Pezzani F. Rigaud S. Torchinsky

27 cm

Ansari et al., Compte Rendu Physique (2012), Vol 13

CasA24 - Pittsburgh/Nov 2009

C.Magneville - Avril 2010

CRT / BAORadio ...

HSA - D

Toward a large instrument and a collaboration for 21 cm DE survey

- Tianlai project (NAOC / China)
- HSA D (US, P. Timbie, J. Peterson) Hydrogen Structure Array Demonstrator packed 4x4 array of D~5 m dishes + CASPER electronics + PC-GPU correlator
- PAON demonstrator (France)

Possible development plan for a 21 cm DE survey (Tianlai ?)

- Stage 0 : tests with cylinders, dishes, feed design, electronic development ...
- Stage 1 : Engineering array, 32-48 feeds (2013-2014)
 Aim : detect optical × 21cm cross correlation at z ~ 0.3-0.5
- * Stage 2 : First science array, 256 feeds (2015-2016)
 - * Aim: detect BAO with 21 cm signal at $z \sim 0.7 1.0$
- * Stage 3 : DE survey, \geq 1000 feeds
 - * Aim: measure BAO with 21 cm signal in the redshift range 0.5...2.0

Component separation Original 21 cm signal Recovered signal

p*Lobe(25 arcmin) @ 884 MHz

0

-0.1

0.2

edLSS Map @ 884 MHz (GSM)

Sensitivity to DE parameters

21 cm BAO vs optical redshift survey 10 000 sq.deg, 3 years survey, 5 redshift bands (0.5 1.0 1.5 2.0 2.5) 10 000 m^2 collecting area, 400 beams

> Ansari et al., A&A (2012) - 21 cm survey sensitivity & foreground subtraction

Test interferometer for an array of small dishes (RAID concept) PAON-2 : 2 × D=3 m dishes, currently operating PAON-4 : 4 × D=5 m dishes, construction phase Spring/Summer 2013

PAON Paraboles A l'Observatoire de Nançay

PAON-2 Installed at Nançay September 2012

Outlook

- Exciting scientific perspectives (DE, HI mass distribution at z ~ 1.5 ...) for a cosmological radio survey
- Interesting technical problems (electronic/computing)
- Scientific challenge : data processing, 3D map making & foreground subtraction
- * 21 cm BAO: new Cosmology & Astrophysics playground ?
 - → 5-15 M€ (7-20 M\$) project for 2014-2020?

Backup slides

Electronic chain modules

- AEM : Analog Electronic Module (Amplification, filtering, frequency shifter) - (IRFU)
- * **DISCLK** : Clock and trigger distribution system (*IRFU*)
- * DIG/FFT : Digitizer Frequency Separator (ADC-Board) 4 channel, 500 MHz sampling, with on the fly FFT capability, dual high speed optical data transfer (LAL, IRFU)
- * PDR : PCI-Express data reception module (LAL)
- * TAcq : Acquisition / control software (LAL-IRFU) parallel (multi-thread, multi node) OO/C++

• Ansari et al, Comptes Rendus Physique, 2012, Volume 13, p. 46 (Version abrégée en français arXiv:1106.5659)

• Ansari et al, NIM 2013 en préparation (Design and qualification of an electronic chain for 21 cm cosmology)

LSS / BAO in radio with galaxies $S_{21}^{Jy} \simeq 0.021 \, 10^{-6} \, \text{Jy} \, \frac{M_{H_I}}{M_{\odot}} \times \left(\frac{1 \, \text{Mpc}}{D_L}\right)^2 \times \frac{200 \, \text{km/s}}{\sigma_v} \, (1+z)$ $S_{lim} = \frac{2 \, k \, T_{sys}}{A \, \sqrt{2t_{integ} \, \Delta \nu}}$

 S_{lim} en μ Jy pour $t_{integ} = 86400 \text{ s}, \Delta \nu = 1 \text{ MHz}$

 S_{21} en μ Jy pour $M_{H_I} = 10^{10} M_{\odot}$

A (m^2)	Tsys (K)	Slim	Z	S21 (µJy)
5000	50	66	0.25	175
E 000		22	0.50	40
5000	25	33	1.0	9.6
100000 🔨	50	3.5	1.5	3.5
100000	25	1.7	2.0	2.5

> 100 000 m² \rightarrow Need SKA !

R.Ansari - Sep 2011

BAO with 21 cm intensity mapping $T21(\alpha,\delta,z)$

- Needs only a modest angular resolution 10-15 arcmin
- Needs a large instantaneous field of view (FOV) and bandwidth (BW)
- \equiv Instrument noise (Tsys)
- \equiv Foregrounds / radio sources and component separation
- Peterson, Bandura & Pen (2006)
- Chang et al. (2008) arXiv:0709.3672
- Ansari et al (2008) arXiv:0807.3614
- Wyithe, Loeb & Geil (2008) arXiv:0709.2955
- Peterson et al (2009) arXiv:0902.3091
- Ansari et al (2012)

mK sensitivity with Tsys $\sim 50\text{-}75~\mathrm{K}$

- * Large integration time $(10^4-10^5 s) \rightarrow \propto 1/\sqrt{(t_int \Delta v)}$
- Instrument (Tsys, beam ...) stability
- multi beam large FOV radio telescope
- * interferometer or FPA/multi feed receivers with single dish

Radio foreground (GSM) @ 720 MHz (z=1.) - Kelvin

 \mathbf{X}

21 cm sky brightness @ 720 MHz (z=1.) - milliKelvin

P(k)@21cm - PNoise(k) PNoise(k) @ z=1

R.Ansari - Sep 2011

Foreground removal

- * Exploit frequency smoothness and power law (∝ ν^β) behavior of foregrounds (synchrotron/radio sources)
- power law / polynomial / foreground model fit & subtraction
- Mode mixing, bias, error propagation ...

21 cm LSS signal

Component separation 21cm LSS signal extraction @ z=0.6

Original simulated 21cm signal

0.74

0

-0.76

-1.5

0.2

0.099

0

-0.1

-0.2

LSS-Map*Lobe(25 arcmin) @ 884 MHz

Recovered 21cm signal, in presence of continuum radio signals, and instrument response

Ansari et al. 2011, A&A Dec 2011, arXiv:1108. ExtractedLSS Map @ 884 MHz (GSM)

Signal-to-Noise Eigenmodes

Measurement v is a combination of the sky a and noise n

$$\mathbf{v} = \mathbf{B}\mathbf{a} + \mathbf{n} \tag{1}$$

Construct the covariances of the signal and foregrounds

$$\mathbf{S} = \mathbf{B} \left\langle \mathbf{a}_s \mathbf{a}_s^{\dagger} \right\rangle \mathbf{B}^{\dagger}, \qquad \mathbf{F} = \mathbf{B} \left\langle \mathbf{a}_f \mathbf{a}_f^{\dagger} \right\rangle \mathbf{B}^{\dagger}$$
(2)

Jointly diagonalise both matrices (eigenvalue problem)

Karhunen-Loève (KL) Transform: Sx

 $\mathbf{S}\mathbf{x} = \lambda \mathbf{F}\mathbf{x}$

 Gives a new basis, where we expect that all modes are uncorrelated. Eigenvalue λ_i gives ratio of signal to foreground variance for mode *i*.

cf. Bond 1994, Vogeley and Szalay 1996

Richard Shaw, Ue-Li Pen (CITA) Kris Sigurdson, Michael Sitwell (UBC) ArXiv 1204.??? Slides by Kris Sigurdson UBC

₍₃₎Signal/Foreground Spectrum

21cm intensity mapping dark energy survey instrument concept - Dense interferometric array 8-12 cylindrical reflectors (CRT) OR

100-400 parabolic 5-6 meter diameter dishes (RAID) 200-1000 receiver elements - Data flow : 0.1 - 1 TBytes/s R.Ansari - Sep 2011