PCIS-DASK ver. 3.25

for PC Compatibles

Function Reference Manual

@Copyright 1997-2002 ADLink Technology Inc.
All Rights Reserved.

Manual Rev 3.25: Sep. 06, 2002

The information in this document is subject to change without prior notice in order to improve reliability,
design and function and does not represent a commitment on the part of the manufacturer.

In no event will the manufacturer be liable for direct, indirect, special, incidental, or consequential damages
arising out of the use or inability to use the product or documentation, even if advised of the possibility of
such damages.

This document contains proprietary information protected by copyright. All rights are reserved. No part of
this manual may be reproduced by any mechanical, electronic, or other means in any form without prior
written permission of the manufacturer.

Trademarks

IBM PC is a registered trademark of International Business Machines Corporation. Intel is a registered
trademark of Intel Corporation. Other product names mentioned herein are used for identification purposes
only and may be trademarks and/or registered trademarks of their respective companies.

CONTENTS

HOW t0 USE ThISIMANUAL..........cocviiiiiiiiiciie et Y%
USINg PCIS-DASK FUNCLIONS........coiieiiiiesieeieseesie e siee e eee s esee e e e s sne s e 1
1.1 The Fundamentals of Building Windows 2000/NT/98 Application

WIth PCIS-DASKooiiiiiii e 1

111

Creating a Windows 2000/NT/98 PCIS-DASK Application Using Microsoft
VISUBIL CICH F ettt bbb 1

1.1.2 Creating a Windows 2000/NT/98 PCIS-DASK Application Using Microsoft
VISUAI BASIC.....cvvvirecieiesieiresesis sttt sssste s sssss s sss st ssssssssssssssessnens 1
1.2 PCIS-DASK FUNCLIONS OVEIVIEW......ceiiiiiiiiieeiiiiiee et niaeee e 3

Function Description 5

21
2.2

Data Types 5

FUNCLION REFEIENCEooiiiie e s 6
220 Al OLLL CONIG et eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesesesssssssssssssesssssssssssssessseseeanerssss 6
3 2 IR 1 2 00 1T o 6
223 Al_91L3 CONIG ot eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesesssssssssssssssessssssssssssesssseseeasrssss 7
224 Al_OLLA CONIG correereeeeeeeeeeees oo eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesssssssssssssssssessssesssssssssssseseeasssssss 7
225 Al_9114 PreTrigCoNfig ..o sesessssssesssssssesens 8
226 Al_91L6 CONIG coorierereeeeeeeeeeseeseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeessesesssssssssssssesssssssssssssessseseeserssss 8
227 Al_9116 CoUNLErTNIEIVAL......cceereeecerireeerie sttt eeeene 10
228 Al_91L8 CONMIG coireriereesesessssssssssssssssesssssssssssssesssessssssssses 10
229 Al_98L2 CONIG ceireteereseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseessessssssssssssssssesesssssssssssessseesssssssss 12
2.2.10 Al_ASYNCCRNECK ...ttt s s sas ettt ees s ssesssssessens 13
2,201 Al_ASYNCCIEAN ...ttt s s 14
2.2.12 Al_AsyncDDbIBufferHalfREadY...........cccrerrerinrinresseeeic e 15
2.2.13 Al_AsynCDDIBUFEIMOUE. ..o 15
2.2.14 Al_AsyncDDIBUTEr TraNSEScvvereerrcrec s 16
2.2.15 Al_ContReadChaNNE...........ccrrirereeirrirerie et s s 16
2.2.16 Al_ContReadChannel TOFII€........cococrrinirirrrieerereeeesesesie st 18
2.2.17 Al_ContReadMUultiChannelS........coocrinirieerreeesreeee s 19
2.2.18 Al_ContReadMultiChannelsToFile

2.2.19 Al_ContScanChannels........cccceveeerrenererereneeesesenseeenene

2.2.20 Al_ContScanChannelSTOFle........ccovnirrrenecerrenneeenn.

2.2.21 Al _CONESBLUS....eeeevrereririririeieisisesisisesesis sttt sttt b s bbb s bbb bbb s sebenenas

Contents - i

2.2.22
2.2.23
2.2.24
2.2.25
2.2.26
2.2.27
2.2.28
2.2.29
2.2.30
2231
2.2.32
2.2.33
2.2.34
2.2.35
2.2.36
2.2.37
2.2.38
2.2.39
2.2.40
2241
2.2.42
2.2.43
2.2.44
2.2.45
2.2.46
2.2.47
2.2.48
2.2.49
2.2.50
2.251
2.2.52
2.2.53
2.2.54
2.2.55
2.2.56
2.2.57
2.2.58
2.2.59
2.2.60

F e R O 1AV o= = T 28

Al_INitialMemOryAIlOCALEdcovvveeerereeeiriresssisiress st sesssssesssssesens 29
Y R (== Vo (@1 = o o= TP 29
Al_VREAACNANNEL ..ottt 30
e 0] S o =TT 31
AO_6208A Config

AO_6308A_Config

AO_6308V_Config

X @ I I I o o o T 33
AO 9112 CONFIQuuiirirrrerrerrreresieisesessssseesesssessssesssssssssssssssssssssssessssssssesssssssssssssssssessens 33
AO_SIMUVWIITECNANNEL ...t 34
AO_SIMUWEITECNANNELc.coececieseeeeereee st 35
F O Yo L5 o = T 35
AO_VWILECNANNEL ...t 36
AO_WHLECHANNEL ...t 37
CTR_ 8554 CKL_CONFIG ovvrvveeeeeeresseseeeeeeseeeeeeesessssssseesessssesseessssssssesssssssssseesssssssen 37
CTR _8554 CIKSIC_CONfig..uinirererireririrersisisisessssssssesssssssssessssssssessssssssssssssessssssseees 38
CTR_8554 Debounce_Config

(O I 1= T TR
CTR _REAM. ...ttt ettt sttt bbb bbb bbbt 39
(O I S = L1] o 40
DI_7200_CONfiQururtrurirrerrrererirseesrerssssssessssesssssssssssssssssssssssssssssssssssssessssssssessssssssesssssnns 42
DI_7300A _CONFiQ cuovrireerrrrerierieirirssesiresesss s sssessssssssesssssssesssssessssssssssssssssessssnns 43
DI_7300B_CONfiQg ..cvivreeeriririerieiririseeisessssssessssssssessssssssssssssssssssssssssssssssessssssssesssssnns 44
DI_ASYNCCRNECK ...ttt s st sss st sessssansesssnnns 45
DI _ASYNCCIEANcueeeiceeteirescesietresssestsesssse s ase st ssssss s s sssesssssssessssssnsesssnsns 46
DI_AsyncDbIBufferHalfReadYc.cccoeeverireeirirerseiesessiessessstsssessssesssssssessesenns 46
DI_AsyncDbIBUFErMOE.........couireirecrierirese sttt ssesssssesssssssesseenns a7
DI_AsyncDbIBUfEr TFaNSFENcceveeeeeriscre et ssesssssesssssssesseenns a7
DI_AsyncMultiBuffer NextReady

DI_ContMUItiBUFfEr SELUDocvveeereeireesierisesie s seesesse st ssessssssssssssssessesenns
DI_COontMUItiBUFFEIr SEAI Tcveveccecirecete st ssssassesssenns 49
DI_CONtREAAPOIT ...ttt sasesss s sesss st sssssssessssssssesssssnns 50
DI_ContREAAPOMTORII€.....c.cocveereeirecsierisesiesssessssssessssss e sssssessesssssesssssssesssenns 51
DI_CONESALUS ..ottt 51
DI_InitialMemOryAHOCALEdccveeeeererererireseteesesee st ssessssesseenns 52
[T == Vo | TP 53
[T == Vo | o TR 55
DIO_7300SELINLEITUPDL ...evvereirisiresisise st sees 57

ii - Contents

2.2.61 DIO_AUXDI_EventMessage
2.2.62 DIO_GetCOSLatchDatacccovveveeererereeeererersseererenens
2.2.63 DIO_INT1_EventMeSSage........ccouvrererirerereriserenensnenens
2.2.64 DIO_INT2_EVventMEeSSage........ccovvurererirerererinereneninenens
2.2.65 DIO _POrtCONfig..cciciseceeiriiesiesieisessstsesessessesesssssssssssssssssssssssssssssssssessssssssssssssssessens
2.2.66 DIO_SEtCOSINIEITUDLovieeiriririririririsisisisesisisss st tseses bbb sss bbbt ssssssseseses 63
2.2.67 DIO_SetDUAIINLEITUPDL c.vvvecerieireeeeeseseses et sessssssessssssssesessss s sesssssesssssssssssssssssesens 64
2.2.68 DIO_T2 EVENIMESSAQEccevrureriririririsirisisisisisisisisisisissssssssssssssssssssssssesssssssssssssssesesns 66
2.2.69 DO_7200_CONFiQurtierrererrerrenseesessssesessseessessssesesssesssesssesssessssessesssssssesssssssesssssssesssns 67
2.2.70 DO_7300A _CONFiQ .trrerrrrrrerrereeesensseesessseessesssssssesssesssesssesssessssessesssssssesssssssesssssssesesns 67
2.2.71 DO _7300B_CONFiQ .errrurrerrerrereeesenseessenseesesssessesssesssesssesssesssssssesssssssesssssssesssssssesssns 68
2.2.72 DO _ASYNCCNECK.......cuiiereeiriricsirrerestsiresss sttt s e sssssesaens 69
2.2.73 DO _ASYNCCIEANcucurerereetririiesieisesesstsssessss s sessse e sssssssssssssse s ss st ssssssnssssssssssesaens 70
2.2.74 DO_AsyncMultiBUffer NEXtREAYcccceuverireerrereseesesesessssesssssessesssssssesssssesens 70
2.2.75 DO_ContMUltiBUFfer SEIUPcvrureeeerererss s seseses s sssssessesssssssesssssesens 71
2.2.76 DO_ContMUItiBUFfEr Stcceuveeeeerercesesese st ssesssssesens 71
2277 DO _CONEIALUS....coovrireriririririsirisesisisesisis sttt ssss e bsss s bbb sebesesssesesesas 72
2.2.78 DO_CONWEITEPOIT ...ttt 73
2.2.79 DO_InitialMemOoryAHOCALE........coceuererereeireririesesesess s ssesssssssesssssesens 74
2.2.80 DO PG ..uvorieerierrererieesessseessessssessesssssssessssesse st sessse st sessse st ssesse st sessse st sssssesssssssesssns 74
2.2.81 DO _PGSOP.....coieerrereeserieesessseessesssssssesssesssessssssse st sessse st sesssestssessessssssse st sssssessssssesesns 75
2.2.82 DO _REAALINE......ccceeererereeteirircesistsesssstsesesss e se s st s ssss st sssssssssssssssesaens 75
P22 < 1 T 1@ B =" Vo | o T 76
2.2.84 DO _WIEEXITIIGLINE c..vvcvviececeetrereeteerees e s st sssss s sssssesens 77
2.2.85 DO _WIELINE ...ttt s sttt s s sesens 78
2.2.86 DO _WIIEPOI ..ottt ssss st s e nassesaens 79
2.2.87 EDO_9111 CONiQ .iiirirrrrrrririsieisersssssressssssssesssssssssssssssssssssssssssssssssessssssssssssssssessens 81
2.2.88 GCTR_REAM.......oteueeereeeitiesesiseessestseese st ssssse st bbbttt 81
2.2.89 GCTR_CIEAN.....oieueeeeeeeiereessesiseessesissesse st ssssse st bbbttt 82
2.2.90 GCTR_SEIUD. ..veueurrereessereeessessseessessseessess st ssssse st s ss st sess st ssss bt stsessessses 82
2.2.91 GELACLUBIRALE.......cceeeceeeeecerer e es s ernnes 83
2.2.92 REQISIEN _CaAlU...occeeeeeecectriresssteisesestss st ssss st esssssssssnsssesanns 84
2.2.93 REEASE CArd.....ccceeerererieiririrrstsisesestse sttt s e ssssesens 86
APPENdIX A SEBEUS COUESocveviiieieeeee ettt 88
Appendix B Al RaNQGE COUES.......cceoieieereee e ee e see s 90
AppendiX C Al DATA FORMAT ...ttt st nne s 92

Contents -

Appendix D DATA FIIe FORMAT ..ot

Appendix E Function Support

iv- Contents

How to Use This Manual

This manual is designed to help you use the PCIS-DASK software driver for NuDAQ
PCl-bus data acquisition cards. The manual describes how to install and use the
software library to meet your requirements and help you program your own software
applications. It is organized as follows:

e Chapter 1, "Using PCIS-DASK Functions" gives the important information about
how to apply the function descriptions in this manual to your programming
language and environment.

e Chapter 2, 'Function Description" gives the detailed description of each function
call PCIS-DASK provided.

e Appendix A, "Status Codes" lists the status codes returned by PCIS-DASK
functions, as well as their meanings.

e Appendix B, "Al Range Codes " lists all the valid Al range codes for each card.

e Appendix C, "Al Data Format" lists the Al data format for the cards performing
analog input operation, as well as the calculation methods to retrieve the A/D
converted data and the channel where the data read from.

e Appendix D, "Function Support” shows which data acquisition hardware each
PCIS-DASK function supports.

How to usethismanual v

Using PCIS-DASK Functions

PCIS-DASK is a software driver for NUDAQ PCI-bus data acquisition cards. It is a high
performance data acquisition driver for developing custom applications under Windows
NT environment.

Using PCIS-DASK also lets you take advantage of the power and features of Microsoft
Windows NT for your data acquisition applications. These include running multiple
applications and using extended memory. Also, using PCIS-DASK under Visual Basic
environment makes it easy to create custom user interfaces and graphics.

1.1

The Fundamentals of Building Windows 2000/NT/98

Application with PCIS-DASK

111 CreatingaWindows 2000/NT/98 PCIS-DASK Application Using Microsoft Visual
C/C++

To create a data acquisition application using PCIS-DASK and Microsoft Visual C/C++,
follow these steps after entering Visual C/C++:

step 1. Open the project in which you want to use PCIS-DASK. This can be a new or
existing project

step 2. Include header file DASK.H in the C/C++ source files that call PCIS-DASK
functions. DASK.H contains all the function declarations and constants that you
can use to develop your data acquisition application. Incorporate the following
statement in your code to include the header file.

#include “DASK.H’

step 3. Build your application.

Setting the appropriate compile and link options, then build your application by
selecting the Build command from Build menu (Visual C/C++ 4.0). Remember
to link PCIS-DASK s import library PCI-DASK.LIB.

112 Creating a Windows 2000/NT/98 PCIS-DASK Application Using Microsoft Visual
Basic

Using PCIS-DASK Functions - 1

To create a data acquisition application using PCIS-DASK and Visual Basic, follow
these steps after entering Visual Basic:

step 1. Open the project in which you want to use PCIS-DASK. This can be a new or
existing project

Open a new project by selecting the New Project command from the File menu.
If it is an existing project, open it by selecting the Open Project command from
the File menu. Then the Open Project dialog box appears.

Open Project [2]
Look jn: i 9 Microsoft Visual Basic _v_I ﬁ.l r- =
T bitmaps @ report @ Auto32ld.vbp
clizer Dsamples
heo Ea zetup
ioohs 3 setupkit
include ([veOnine
metafile Ea winapi

File: hiame: || Open I
Files of type: |F‘miectFiIes[“.pr;“.Mak] :I Cancel I

Changed directory to the place the project file located. Double-click the project
file name in the File Name list to load the project.

step 2. Add file DASK.BAS into the project if this file is not included in the project. This
file contains all the procedure declarations and constants that you can use to
develop your data acquisition application.

From the File menu, select the Add File command. The Add File window appears,

displaying a list of files in the current directory.

Add File [7]

Lookjm | ‘23 include =] §| |_

File: name: |Da,sk.ba.s DOpen

Files of type: I\-"B Files[". Fim;* Bas;* Cls;* Res) j Cancel |

Select DASK.BAS from the Files list by double-clicking on it. If you can't find this file
in the list, make sure the list is displaying files from the correct directory. By default,
DASK.BAS is installed in C:\ADLiInk\PCI-DASK\INCLUDE.

2. Using PCIS-DASK Functions

step 3. Design the interface for the application.

To design the interface, you place the desired elements, such as command button,
list box, text box, etc., on the Visual Basic form. These are standard controls from
the Visual Basic Toolbox. To place a control on a form, you just move pointer to
Toolbox, select the desired control and draw it on the form. Or you can double-click
the control icon in the Toolbox to place it on the form.

step 4. Set properties for the controls.

To view the property list, click the desired control and then choose the Properties
command from the View menu or press F4, or you can also click the Properties

button on the toolbar.

step 5. Write the event code.

The event code defines the action you want to perform when an event occurs. To
write the event code, double-click the desired control or form to view the code
module and then add code you want. You can call the functions that declared in the
file DASK.BAS to perform data acquisition operations.

step 6. Run your application.

To run the application, choose Start from the Run menu, or click the Start icon E

on the toolbar (you can also press F5).

step 7. Distribute your application.

Once you have finished a project, you can save the application as an executable
(.EXE) file by using the Make EXE File command on the File menu. And once you
have saved your application as an executable file, you've ready to distribute it.
When you distribute your application, remember also to include the PCIS-DASK's
DLL and driver files. These files should be copied to their appropriate directory as
section 1.4.1 described.

1.2 PCIS-DASK Functions Overview

PCIS-DASK functions are grouped to the following classes:
General Configuration Function Group

Actual Sampling Rate Function Group

Analog Input Function Group

- Analog Input Configuration functions

- One-Shot Analog Input functions

- Continuous Analog Input functions

- Asynchronous Analog Input Monitoring functions

Analog Output Function Group

Using PCIS-DASK Functions - 3

Digital Input Function Group

- Digital Input Configuration functions

- One-Shot Digital Input functions

- Continuous Digital Input functions

- Asynchronous Digital Input Monitoring functions

Digital Output Function Group

- Digital Output Configuration functions

- One-Shot Digital Output functions

- Continuous Digital Output functions

- Asynchronous Digital Output Monitoring functions
Timer/Counter Function Group

- Timer/Counter functions

- The General-Purpose Timer/Counter functions

DIO Function Group

- Digital Input/Output Configuration function
- Dual-Interrupt System Setting functions

4. Using PCIS-DASK Functions

Function Description

This chapter contains the detailed description of PCIS-DASK functions, including the
PCIS-DASK data types and function reference. The functions are arranged
alphabetically in 3.2 Function Reference.

Data Types

We defined some data types in DASK.H. These data types are used by PCIS-DASK
library. We suggest you to use these data types in your application programs. The
following table shows the data type names, their ranges and the corresponding data
types in C/C++, Visual Basic and Delphi (We didn t define these data types in
DASK.BAS and DASK.PAS. Here they are just listed for reference)

Type Name Description Range Type
C/C++ | Visual Basic | Pascal (Delphi)
(for 32-
bit
compiler)
us 8-bit ASCII 0to 255 unsigned Byte Byte
character char
116 16-bit signed -32768 to 32767 short Integer Smallint
integer
u16 16-bit unsigned 0 to 65535 unsigned |Not supported Word
integer short |by BASIC, use
the signed
integer (116)
instead
132 32-bit signed -2147483648 to long Long Longlnt
integer
2147483647
u32 32-bit unsigned 0 to 4294967295 unsigned |Not supported Cardinal
integer long |by BASIC, use
the signed long
integer (132)
instead
F32 32-bit single- -3.402823E38 to float Single Single
precision
3.402823E38
floating-point
F64 64-bit double- -1.797683134862315E308(double Double Double
precision to
floating-point 1.797683134862315E309

Function Description - 5

2.2 Function Reference

221 Al_9111 Config

@ Description

Informs PCIS-DASK library of the trigger source and trigger mode selected for the
PCI-9111 card with card ID CardNumber. You must call this function before calling
function to perform continuous analog input operation.

@ Cards Support
9111

@ Syntax
Microsoft C/C++ and Borland C++
116 Al_9111 Config (U16 CardNumber, U16 TrigSource, U16 PreTrgEn, U16
TraceCnt)
Visual Basic
Al_9111 Config (ByVal CardNumber As Integer, ByVal TrigSource As Integer,
ByVal PreTrgEn As Integer, ByVal TraceCnt As Integer) As Integer

@ Parameter
CardNumber : The card id of the card that want to perform this operation.
TrigSource : The continuous A/D conversion trigger source.
Valid values:
TRIG_INT_PACER: on-board Programmable pacer
TRIG_EXT_STROBE: external signal trigger
PreTrgEn: Enable or Disable Pre-Trigger mode.
TRUE: Enable Pre-Trigger mode
FALSE: Disable Pre-Trigger mode
TraceCnt: The number of data will be accessed after a specific trigger event.

@ Return Code
NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

222 Al_9112 Config

@ Description

Informs PCIS-DASK library of the trigger source selected for the PCI-9112/cPCI-9112
with card ID CardNumber. You must call this function before calling function to
perform continuous analog input operation.

@ Cards Support
9112

@ Syntax
Microsoft C/C++ and Borland C++
116 Al_9112 Config (U16 CardNumber, U16 TrigSource)
Visual Basic
Al_9112 Config (ByVal CardNumber As Integer, ByVal TrigSource As Integer) As
Integer

6 - Function Description

@ Par ameter

CardNumber : The card id of the card that want to perform this operation.
TrigSource : The continuous A/D conversion trigger source.
Valid values:
TRIG_INT_PACER: on-board Programmable pacer
TRIG_EXT_STROBE: external signal trigger
@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

223 Al_9113 Config

@ Description

Informs PCIS-DASK library of the trigger source selected for the PCI-9113 with card
ID CardNumber. You must call this function before calling function to perform
continuous analog input operation.

@ Cards Support

9113

@ Syntax
Microsoft C/C++ and Borland C++
116 Al_9113 Config (U16 CardNumber, U16 TrigSource)

Visual Basic
Al_9113 Config (ByVal CardNumber As Integer, ByVal TrigSource As Integer) As
Integer
@ Parameter
CardNumber : The card id of the card that want to perform this operation.
TrigSource : The continuous A/D conversion trigger source.
Valid values:
TRIG_INT_PACER: on-board Programmable pacer
@ Return Code
NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

224 Al_9114 Config

@ Description

Informs PCIS-DASK library of the trigger source selected for the PCI-9114 with card
ID CardNumber. You must call this function before calling function to perform
continuous analog input operation.

@ Cards Support

9114

@ Syntax

Microsoft C/C++ and Borland C++
116 Al_9114 Config (U16 CardNumber, U16 TrigSource)

Visual Basic

Function Description - 7

Al_9114 Config (ByVal CardNumber As Integer, ByVal TrigSource As Integer) As
Integer
@ Parameter
CardNumber : The card id of the card that want to perform this operation.
TrigSource : The continuous A/D conversion trigger source.
Valid values:
TRIG_INT_PACER: on-board Programmable pacer
TRIG_EXT_STROBE: external signal trigger
@ Return Code
NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

225 Al_9114 PreTrigConfig

@ Description

Informs PCIS-DASK library of the trigger source and trigger mode selected for the
PCI-911 with card ID CardNumber. You must call this function before calling function
to perform continuous analog input operation.

@ Cards Support

9114

@ Syntax
Microsoft C/C++ and Borland C++
116 Al_9114 PreTrigConfig (U16 CardNumber, U16 PreTrgEn, U16 TraceCnt)

Visual Basic
Al_9114 PreTrigConfig (ByVal CardNumber As Integer, ByVal PreTrgEn As Integer,
ByVal TraceCnt As Integer) As Integer
@ Par ameter

CardNumber : The card id of the card that want to perform this operation.
PreTrgEn: Enable or Disable Pre-Trigger mode.

TRUE: Enable Pre-Trigger mode

FALSE: Disable Pre-Trigger mode
TraceCnt: The number of data will be accessed after a specific trigger event.
@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

226 Al _9116 Config

@ Description

Informs PCIS-DASK library of the trigger source, trigger mode and trigger properties
selected for the PCI-9116 with card ID CardNumber. You must call this function before
calling function to perform continuous analog input operation.

@ Cards Support

9116

@ Syntax

Microsoft C/C++ and Borland C++

8- Function Description

116 Al_9116_Config (U16 CardNumber, U16 ConfigCtrl, U16 TrigCtrl, U16 PostCnt,
Ul6 MCnt, U16 ReTrgCnt)

Visual Basic
Al_9116_Config (ByVal CardNumber As Integer, ByVal ConfigCtrl As Integer, ByVal
TrigCtrl As Integer, ByVal PostCnt As Integer, ByVal MCnt As Integer,
ByVal ReTrgCnt As Integer) As Integer

@ Par ameter

CardNumber : The card id of the card that want to perform this operation.

ConfigCtrl : The setting for A/D mode control. This argument is an integer
expression formed from one or more of the manifest constants defined
in DASK.H. There are three groups of constants:

(1) A/D Polarity Control

P9116 Al _BiPolar

P9116_Al_UniPolar
(2) A/D Channel Input Mode

P9116 Al_SingEnded

P9116_Al_Differential
(3) Common Mode Selection

P9116 Al _LocalGND: Local Ground of cPCI-9116

P9116_Al_UserCMMD: User defined Common Mode
When two or more constants are used to form the ConfigCtrl
argument, the constants are combined with the bitwise-OR
operator(]).

TrigCtrl : The setting for A/D Trigger control. This argument is an integer
expression formed from one or more of the manifest constants defined
in DASK.H. There are seven groups of constants:

(1) Trigger Mode Selection
P9116_TRGMOD_SOFT : Software Trigger (no trigger)
P9116_TRGMOD_POST : Post Trigger
P9116 TRGMOD_DELAY: Delay Trigger
P9116_TRGMOD_PRE : Pre-Trigger Mode
P9116_TRGMOD_MIDL : Middle Trigger
(2) Trigger Polarity
P9116_AIl_TrgNegative: Trigger negative edge active
P9116_Al_TrgPositive: Trigger positive edge active
(3) Time Base Selection
P9116_AI_IntTimeBase: Internal time Base (24 MHz)
P9116_ Al_ExtTimeBase: External time base
(4) Delay Source Selection
P9116_AIl_DlylnSamples: delay in samples
P9116_AIl_DlyInTimebase: delay in time base
(5) Re-Trigger Mode Enable
P9116_Al_ReTrigEn: Re-trigger in an acquisition is enabled
(6) MCounter Enable
P9116_Al_MCounterEn: Mcounter is enabled and then the trigger
signal is ignore before M terminal count is reached.
(7) AD Conversion Mode Selection
P9116_Al_SoftPolling: Software Polling
P9116_AIl_INT: Interrupt mode of continuous Al
P9116_Al_DMA: DMA mode of continuous Al

Function Description - 9

When two or more constants are used to form the TrigCtrl argument,
the constants are combined with the bitwise-OR operator(]).

PostCnt : The number of data will be accessed after a specific trigger event.
This argument is only valid for Middle trigger and Delay trigger mode.

MCnt : The counter value of MCounter . This argument is only valid for Pre-
trigger and Middle trigger mode.

ReTrgCnt : The accepted trigger times in an acquisition. This argument is only

valid for Delay trigger and Post trigger mode.

@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

227 Al_9116_CounterInterval

@ Description

Informs PCIS-DASK library of the scan interval value and sample interval value
selected for the analog input operation of PCI9116. You must call this function before
calling function to perform continuous analog input operation of PCI9116.

@ Cards Support
9116

@ Syntax
Microsoft C/C++ and Borland C++

116 AI_9116_Counterinterval (U16 wCardNumber, U32 Scanintrv, U32 Samplntrv)
Visual Basic

Al_9116_Counterinterval (ByVal CardNumber As Integer, ByVal Scanintrv As Long,
ByVal Sampintrv As Long) As Integer

@ Par ameter

CardNumber : The card id of the card that want to perform this operation.

Scanlintrv : The length of the scan interval (that is, the counter value between the
initiation of each scan sequence).
Range: 96 through 16777215

Samplntrv :The length of the sample interval (that is, the counter value between
each A/D conversion within a scan sequence).
Range: 96 through 65535

Note: the value of Scanlntrv must be greater than or equal to the sum of the total sample
interval (that is, the number of channelsin a scan sequence * Samplintrv).

@ Return Code
NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

228 Al_9118 Config

@ Description

10 - Function Description

Informs PCIS-DASK library of the trigger source, trigger mode and trigger properties
selected for the PCI-9118 with card ID CardNumber. You must call this function before
calling function to perform continuous analog input operation.

@ Cards Support
9118

@ Syntax
Microsoft C/C++ and Borland C++
116 Al_9118 Config (U16 CardNumber, U16 ModeCtrl, U16 FunCtrl, U16 BurstCnt,
U16 PostCnt)

Visual Basic
Al_9118_Config (ByVal CardNumber As Integer, ByVal ModeCtrl As Integer, ByVal
FunCtrl As Integer, ByVal BurstCnt As Integer, ByVal PostCnt As Integer)
As Integer

@ Par ameter

CardNumber : The card id of the card that want to perform this operation.

ModeCitrl : The setting for A/D mode control. This argument is an integer
expression formed from one or more of the manifest constants defined
in DASK.H. There are four groups of constants:

(1) A/D Polarity Control

P9118 Al _BiPolar

P9118_Al_UniPolar
(2) A/D Channel Input Mode

P9118 Al_SingEnded

P9118_Al_Differential
(3) External Gate Enable

P9118 Al_ExtG: 8254 counter is controlled by TGIN pin
(4) External Trigger Enable

P9118_Al_ExtTrig: External Hardware Trigger Mode enabled
When two or more constants are used to form the ModeCtrl argument,
the constants are combined with the bitwise-OR operator(]).

FuncCitrl : The setting for A/D Function. This argument is an integer expression
formed from one or more of the manifest constants defined in
DASK.H. There are four groups of constants:

(1) Digital Trigger Polarity
P9118_Al_DtrgNegative: Digital trigger negative active
P9118_Al_DtrgPositive: Digital trigger positive active
(2) External Trigger Polarity
P9118_Al_EtrgNegative: External trigger negative active
P9118_Al_EtrgPositive: External trigger positive active
(3) Burst Mode Enable
P9118_Al_BurstModeEn: Burst Mode is enabled
(4) Burst Mode with Sample and Hold Mode Enable
P9118_Al_SampleHold: Burst mode with sample and hold is
enabled
(5) Trigger Mode Enable
P9118_ Al _PostTrgEn: Post trigger mode is enabled
P9118_Al_AboutTrgEn: About trigger mode or Pre-trigger mode is
enabled

Function Description -

11

When two or more constants are used to form the ModeCtrl argument,
the constants are combined with the bitwise-OR operator(]).

BurstCnt : The burst number

PostCnt : The number of data will be accessed after a specific trigger event

@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

229 Al_9812 Config

@ Description

Informs PCIS-DASK library of the trigger source, trigger mode, and trigger properties
selected for the PCI-9812 card with card ID CardNumber. You must call this function
before calling function to perform analog input operation.

@ Cards Support
9812/10

@ Syntax
Microsoft C/C++ and Borland C++

116 Al_9812_ Config (U16 CardNumber, U16 TrgMode, U16 TrgSrc, U16 TrgPol,
U16 CIkSel, U16 TrgLevel, U16 PostCnt)

Visual Basic
Al_9812_ Config (ByVal CardNumber As Integer, ByVal TrgMode As Integer, ByVal
TrgSrc As Integer, ByVal TrgPol As Integer, ByVal ClkSel As Integer, ByVal
TrgLevel As Integer, ByVal PostCnt As Integer) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.

TrgMode : The setting for A/D trigger mode. The valid trigger modes are as
follows:

P9812_ TRGMOD_SOFT : Software Trigger (no trigger)
P9812 TRGMOD_POST : Post Trigger
P9812_TRGMOD_PRE : Pre-Triger Mode
P9812 TRGMOD_DELAY: Delay Trigger
P9812 TRGMOD_MIDL : Middle Triger
TrgSrc : The setting for A/D Trigger Source. The valid trigger sources are as
follows:
P9812 TRGSRC_CHO : Channel 0
P9812 TRGSRC_CH1 : Channel 1
P9812 TRGSRC_CH2 : Channel 2
P9812_TRGSRC_CHS3 : Channel 3
P9812 TRGSRC_EXT_DIG : External Digital Trigger
TrgPol : The setting of Trigger polarity. The valid values are:
P9812_TRGSLP_POS : Positive slope Trigger
P9812 TRGSLP_NEG : Negative slope Trigger
ClkSel : The setting of A/D clock source. This argument is an integer
expression formed from one or more of the manifest constants defined
in DASK.H. There are two groups of constants:
(1) A/D Clock Frequency

- Function Description

P9812 AD2_GT_PCI : Freq. of A/D clock is higher than PCI
clock freq.
P9812_AD2 LT _PCI: Freq. of A/D clock is lower than PCI
clock freq.
(2) The ADC clock source
P9812_ CLKSRC_INT : Internal clock
P9812 CLKSRC_EXT_SIN :External sin wave clock
P9812 CLKSRC_EXT_DIG :External square wave clock
When two constants are used to form the ClkSel argument, the
constants are combined with the bitwise-OR operator(|).

Note: if the ADC clock sourceis P9812 CLKSRC_EXT_DIG or
P9812 CLKSRC _EXT_SIN, the clock divider is a constant, 2.
Hence, the sampling rate is the half of the frequency of the source
clock.

TrgLevel : The setting of Trigger level. The relationship between the value of
TrgLevel and trigger voltage is listed in the following table:

TrgLeve trigger trigger
OXFFE 0.992v 4.96V
OXFE 0.984Vv 4,92V
0x81 0.008Vv 0.04v
0x80 0.000V 0.00V
Ox7F -0.008V -0.04V
0x01 -0.992V -4.96V
0x00 -1.000V -5.00V
PostCnt: The post count value setting for Middle Trigger mode or Delay Trigger

mode. This argument is expressed as:
For Middle Trigger mode: the number of data accessed for each
selected channel after a specific trigger event
For Delay Trigger mode: the counter value for deferring to access
data after a specific trigger event
@ Return Code
NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

2.2.10 Al_AsyncCheck

@ Description

Check the current status of the asynchronous analog input operation.
@ Cards Support

9111, 9112, 9113, 9114, 9116, 9118, 9812/10

@ Syntax

Microsoft C/C++ and Borland C++
116 Al_AsyncCheck (U16 CardNumber, BOOLEAN *Stopped, U32 *AccessCnt)

Visual Basic

Function Description - 13

Al_AsyncCheck (ByVal CardNumber As Integer, Stopped As Byte, AccessCnt As
Long) As Integer

@ Parameter

CardNumber : The card id of the card that performs the asynchronous operation.

Stopped : Whether the asynchronous analog input operation has completed. If
Stopped = TRUE, the analog input operation has stopped. Either the
number of A/D conversions indicated in the call that initiated the
asynchronous analog input operation has completed or an error has
occurred. If Stopped = FALSE, the operation is not yet complete.
(constants TRUE and FALSE are defined in DASK.H)

AccessCnt: In the condition that the trigger acquisition mode is not used,
AccessCnt returns the number of A/D data that has been transferred
at the time calling Al _AsyncCheck() .

If any trigger mode is enabled by calling Al _9111 Confi g(),
Al _9812 Config(), or Al_9118 Config(), and double-
buffered mode is enabled, AccessCnt returns the next position after
the position the last A/D data is stored in the circular buffer at the time
calling Al _AsyncCheck().

@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered
ErrorFuncNotSupport

2.2.11 Al_AsyncClear

@ Description

Stop the asynchronous analog input operation.
@ Cards Support

9111, 9112, 9113, 9114, 9116, 9118, 9812/10

@ Syntax
Microsoft C/C++ and Borland C++
116 Al_AsyncClear (U16 CardNumber, U32 *AccessCnt)

Visual Basic
Al_AsyncClear (ByVal CardNumber As Integer, AccessCnt As Long) As Integer

@ Parameter
CardNumber : The card id of the card that performs the asynchronous operation.

AccessCnt . In the condition that the trigger acquisition mode is not used,

AccessCnt returns the number of A/D data that has been transferred
at the time calling Al _AsyncCl ear ().

If double-buffered mode is enabled, AccessCnt returns the next
position after the position the last A/D data is stored in the circular
buffer. If the AccessCnt execeeds the half size of circular buffer, call
"Al_AsyncDblBufferTransfer " twice to get the data.

@ Return Code

14 - Function Description

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

2.2.12 Al_AsyncDblBufferHalfReady

@ Description

Checks whether the next half buffer of data in circular buffer is ready for transfer
during an asynchronous double-buffered analog input operation.

@ Cards Support

9111, 9112, 9113, 9114, 9116, 9118, 9812/10

@ Syntax

Microsoft C/C++ and Borland C++
116 Al_AsyncDblBufferHalfReady (U16 CardNumber, BOOLEAN *HalfReady,
BOOLEAN *StopFlag)

Visual Basic
Al_AsyncDblBufferHalfReady(ByVal CardNumber As Integer, HalfReady As Byte,
StopFlag As Byte) As Integer

@ Parameter

CardNumber : The card id of the card that performs the asynchronous double-
buffered operation.

HalfReady : Whether the next half buffer of data is available. If HalfReady =
TRUE, you can call Al _AsyncDbl Buf f er Tr ansf er () to copy the
data to your user buffer. (constants TRUE and FALSE are defined in
DASK.H)

StopFlag : Whether the asynchronous analog input operation has completed. If
StopFlag = TRUE, the analog input operation has stopped. If StopFlag
= FALSE, the operation is not yet complete. (constants TRUE and
FALSE are defined in DASK.H)

@ Return Code
NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

2.2.13 Al_AsyncDblBufferMode

@ Description

Enables or disables double-buffered data acquisition mode.
@ Cards Support

9111, 9112, 9113, 9114, 9116, 9118, 9812/10

@ Syntax
Microsoft C/C++ and Borland C++
116 Al_AsyncDblBufferMode (U16 CardNumber, BOOLEAN Enable)

Visual Basic
Al_AsyncDbIBufferMode (ByVal CardNumber As Integer, ByVal Enable As Byte) As
Integer

@ Parameter

Function Description -

15

CardNumber : The card id of the card that double-buffered mode to be set.
Enable : Whether the double-buffered mode is enabled or not.
TRUE: double-buffered mode is enabled.
FALSE: double-buffered mode is disabled.
(constants TRUE and FALSE are defined in DASK.H)

@ Return Code
NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

2.2.14 Al_AsyncDblBuffer Transfer

@ Description

Depending on the continuous Al function selected, half of the data of the circular
buffer will be logged into the user buffer (if continuous Al function is:
Al_ContReadChannel, Al_ContReadMultiChannels and Al_ContScanChannels) or a
disk file (if continuous Al function is: Al_ContReadChannelToFile,
Al_ContReadMultiChannelsToFile and Al_ContScanChannelsToFile).

You can execute this function repeatedly to return sequential half buffers of the data.

@ Cards Support
9111, 9112, 9113, 9114, 9116, 9118, 9812/10

@ Syntax
Microsoft C/C++ and Borland C++
116 Al_AsyncDblIBufferTransfer (U16 CardNumber, U16 *Buffer)

Visual Basic
Al_AsyncDbIBufferTransfer (ByVal CardNumber As Integer, Buffer As Integer) As
Integer

@ Parameter

CardNumber : The card id of the card that performs the asynchronous double-
buffered operation.

Buffer : The user buffer. An integer array to which the data is to be copied. If
the data will be saved into a disk file, this argument is of no use.
Please refer to Appendix C, Al Data Format for the data format in
Buffer or the data file.

@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered,
ErrorFuncNotSupport, ErrorNotDoubleBufferMode,
ErrorinvalidSampleRate

2.2.15 Al_ContReadChannel

@ Description

This function performs continuous A/D conversions on the specified analog input
channel at a rate as close to the rate you specified.

@ Cards Support
9111, 9112, 9113, 9114, 9116, 9118, 9812/10

@ Syntax

16 - Function Description

Microsoft C/C++ and Borland C++
116 Al_ContReadChannel (U16 CardNumber, U16 Channel, U16 AdRange, U16
*Buffer, U32 ReadCount, F32 SampleRate, U16 SyncMode)

Visual Basic
Al_ContReadChannel (ByVal CardNumber As Integer, ByVal Channel As Integer,
ByVal AdRange As Integer, Buffer As Integer, ByVal ReadCount As Long,
ByVal SampleRate As Single, ByVal SyncMode As Integer) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.

Channel : Analog input channel number
Range: 0 through 15 for PCI-9111
Range: 0 through 15 for PCI-9112/cPCI-9112
Range: 0 through 31 for PCI-9113
Range: 0 through 31 for PCI-9114
Range: 0 through 63 for cPCI-9116
Range: 0 through 15 for PCI-9118
Range: 0 for PCI-9812/10

AdRange : The analog input range the specified channel is setting. We define
some constants to represent various A/D input ranges in DASK.H.
Please refer to the Appendix B, Al Range Codes, for the valid range
values.

Buffer : An integer array to contain the acquired data. Buffer must has a
length equal to or greater than the value of parameter ReadCount. If
double-buffered mode is enabled, this buffer is of no use, you can
ignore this argument. Please refer to Appendix C, Al Data Format for
the data format in Buffer.

ReadCount : If double-buffered mode is disabled, ReadCount is the total number of
A/D conversions (except cPCI9116) or the total number of scans (for
cPCIl9116) to be performed. For double-buffered acquisition,
ReadCount is the size (in samples) of the circular buffer (except
cPCIl9116) or the size (in samples) allocated for each channel in the
circular buffer (for cPCI9116) and its value must be a multiple of 4.

Note: if the card is PCI-9111, PCI-9113 or PCI-9114, this function uses
FIFO-Half-Full interrupt transfer mode. So the value of ReadCount
must be the multiple of 512 for non-double-buffer mode, or multiple
of 1024 for double-buffer mode.

SampleRate : The sampling rate you want for analog input in hertz (samples per
second). Your maximum rate depends on the card type and your
computer system.

On cPCI9116, this parameter is ignored. Use

Al _9116_Counterlnterval () to set the scan rate.

If you set A/D trigger mode as external trigger by calling

Al 9111 Config(), Al _9112 Config(),

Al _9113 Config(), Al _9114 Config(), Al _9812 Config()
or Al_9118_Config(), the sampling rate is determined by an
external trigger source, you have to set this argument as
CLKSRC_EXT_SampRate.

Function Description -

17

If you set A/D trigger mode as external trigger by calling

Al _9812_Config(), the frequency divider is set as 2 by the driver.
Hence, the sampling rate is:

Frequency of external clock source / 2

SyncMode : Whether this operation is performed synchronously or
asynchronously. If any trigger mode is enabled by calling
Al _9111_Config(), Al _9812_Config(),

Al _9116_Config(), or Al _9118_Confi g(), this operation
should be performed asynchronously.
Valid values:
SYNCH_OP: synchronous A/D conversion, that is, the function
does not return until the A/D operation complete.
ASYNCH_OP:asynchronous A/D conversion

@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
ErrorinvalidloChannel, ErrorinvalidAdRange, ErrorTransferCountTooLarge,
ErrorContloNotAllowed, ErrorinvalidSampleRate

2.2.16 Al_ContReadChannelToFile

@ Description

This function performs continuous A/D conversions on the specified analog input
channel at a rate as close to the rate you specified and saves the acquired data in a
disk file. The data is written to disk in binary format, with the lower byte first (little
endian). Please refer to Appendix D, Data File Format for the data file structure and
Appendix C, Al Data Format for the format of the data in the data file.

@ Cards Support
9111, 9112, 9113, 9114, 9116, 9118, 9812/10

@ Syntax
Microsoft C/C++ and Borland C++
116 Al_ContReadChannelToFile (U16 CardNumber, U16 Channel, U16 AdRange,
U8 *FileName, U32 ReadCount, F64 SampleRate, U16 SyncMode);
Visual Basic
Al_ContReadChannelToFile (ByVal CardNumber As Integer, ByVal Channel As
Integer, ByVal AdRange As Integer, ByVal FileName As String, ByVal
ReadCount As Long, ByVal SampleRate As Double, ByVal SyncMode As
Integer) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.
Channel : Analog input channel number

Range: 0 through 15 for PCI-9111

Range: 0 through 15 for PCI-9112/cPCI-9112

Range: 0 through 31 for PCI-9113

Range: 0 through 31 for PCI-9114

Range: 0 through 63 for cPCI-9116

Range: 0 through 15 for PCI-9118

18 - Function Description

Range: 0 for PCI-9812/10

AdRange : The analog input range the specified channel is setting. We define
some constants to represent various A/D input ranges in DASK.H.
Please refer to the Appendix B, Al Range Codes, for the valid range
values.

FileName : Name of data file which stores the acquired data

ReadCount : If double-buffered mode is disabled, ReadCount is the number of A/D
conversions (except cPCI9116) or the total number of scans (for
cPCI9116) to be performed. For double-buffered acquisition,
ReadCount is the size (in samples) of the circular buffer (except
cPCIl9116) or the size (in samples) allocated for each channel in the
circular buffer (for cPCI9116) and its value must be a multiple of 4.

Note: if the card is PCI-9111, PCI-9113 or PCI-9114, this function uses
FIFO-Half-Full interrupt transfer mode. So the value of ReadCount
must be the multiple of 512 for non-double-buffer mode, or multiple
of 1024 for double-buffer mode.

SampleRate : The sampling rate you want for analog input in hertz (samples per
second). Your maximum rate depends on the card type and your
computer system.

On cPCI9116, this parameter is ignored. Use

Al _9116_Counterl nterval () to set the scan rate.

If you set A/D trigger mode as external trigger by calling

Al _9111 Config(), Al _9112 Config(),

Al _9113_Config(), Al _9114 Config(), Al _9812 Config()
or Al _9118_Confi g(), the sampling rate is determined by an
external trigger source, you have to set this argument as
CLKSRC_EXT_SampRate.

If you set A/D trigger mode as external trigger by calling

Al _9812_Config(), the frequency divider is set as 2 by the driver.
Hence, the sampling rate is:

Frequency of external clock source / 2

SyncMode : Whether this operation is performed synchronously or
asynchronously. If any trigger mode is enabled by calling
Al 9111 Config(), Al _9116_Config(),
Al _9812_Config(), or Al_9118_Confi g(), this operation
should be performed asynchronously.
Valid values:
SYNCH_OP: synchronous A/D conversion, that is, the function
does not return until the A/D operation complete.
ASYNCH_OP:asynchronous A/D conversion

@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
ErrorinvalidloChannel, ErrorinvalidAdRange, ErrorTransferCountTooLarge,
ErrorContloNotAllowed, ErrorinvalidSampleRate, ErrorOpenFile

2.2.17 Al_ContReadMultiChannels

Function Description -

19

@ Description

This function performs continuous A/D conversions on the specified analog input
channels at a rate as close to the rate you specified. This function takes advantage of
the PCI-9118 and PCI-9116 auto-scan and channel-gain queue functionality to
perform multi-channel analog input.

@ Cards Support
9116, 9118

@ Syntax

Microsoft C/C++ and Borland C++
116 Al_ContReadMultiChannels (U16 CardNumber, U16 nhumChans, U16 *Chans,
U16 *AdRanges, U16 *Buffer, U32 ReadCount, F32 SampleRate, U16
SyncMode)

Visual Basic
Al_ContReadMultiChannels (ByVal CardNumber As Integer, ByVal numChans As
Integer, Chans As Integer, AdRanges As Integer, Buffer As Integer, ByVal
ReadCount As Long, ByVal SampleRate As Single, ByVal SyncMode As
Integer) As Integer

@ Par ameter

CardNumber : The card ID of the card that want to perform this operation.
numChans: The number of analog input channels in the array Chans. The valid
value:
cPCI-9116: 1 through 511
PCI-9118: 1 through 255
Chans : Array of analog input channel numbers. The channel order for
acquiring data is the same as the order you set in Chans.
cPCI-9116: numbers in Chans must be within 0 and 63. Since there is
no restriction of channel order setting, you can set the
channel order as you wish.
PCI-9118: numbers in Chans must be within 0 and 15. Since there is
no restriction of channel order setting, you can set the
channel order as you wish.

AdRanges : An integer array of length numChans that contains the analog input
range for every channel in array Chans.
PCI-9118/cPCI9116:
Please refer to the Appendix B for the valid range values. Since
PCI-9118/cPCI-9116 supports different ranges, the range values
in AdRanges can be any of the valid range values of PCI-
9118/cPCI-9116.
Buffer : An integer array to contain the acquired data. The length of Buffer
must be equal to or greater than the value of parameter ReadCount.
The acquired data is stored in interleaved sequence. For example, if
the value of numChans is 3, and the numbers in Chans are 3, 8, and
0. Then this function input data from channel 3, then channel 8, then
channel 0, then channel 3, then channel 8, ... The data acquired is put
to Buffer by order. So the data read from channel 3 is stored in
Buffer[0], Buffer[3], Buffer[6], ... The data from channel 8 is stored in
Buffer[1], Buffer[4], Buffer[7], ... The data from channel 0 is stored in

20 - Function Description

Buffer[2], Buffer[5], Buffer[8], ... If double-buffered mode is enabled,
this buffer is of no use, you can ignore this argument. Please refer to
Appendix C, Al Data Format for the data format in Buffer.

ReadCount : If double-buffered mode is disabled, ReadCount is the number of A/D
conversions (for PCI9118) or the total number of scans (for cPCI9116)
to be performed. For double-buffered acquisition, ReadCount is the
size (in samples) of the circular buffer (for PCI9118) or the size (in
samples) allocated for each channel in the circular buffer (for
cPCI9116) and its value must be a multiple of 4.

SampleRate : The sampling rate you want for analog input in hertz (samples per
second). The maximum rate depends on the card type and your
computer system.

On cPCI9116, this parameter is ignored. Use

Al _9116_Counterl nterval () to set the scan rate.

If you set A/D trigger source as external trigger by calling

Al _9118_Confi g(), the sampling rate is determined by an external
trigger source, you have to set this argument as
CLKSRC_EXT_SampRate.

SyncMode : Whether this operation is performed synchronously or
asynchronously. If any trigger mode is enabled by calling
Al _9118_Config() or Al _9116_Confi g() this operation should
be performed asynchronously.

Valid values:
SYNCH_OP: synchronous A/D conversion, that is, the function
does not return until the A/D operation complete.
ASYNCH_OP:asynchronous A/D conversion

@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
ErrorinvalidloChannel, ErrorinvalidSampleRate, ErrorinvalidAdRange,
ErrorTransferCountToolLarge, ErrorContloNotAllowed

2.2.18 Al_ContReadMultiChannelsToFile

@ Description

This function performs continuous A/D conversions on the specified analog input
channels at a rate as close to the rate you specified and saves the acquired data in a
disk file. The data is written to disk in binary format, with the lower byte first (little
endian). Please refer to Appendix D, Data File Format for the data file structure and
Appendix C, Al Data Format for the format of the data in the data file. This function
takes advantage of the PCI-9118 auto-scan and channel-gain queue functionality to
perform multi-channel analog input.

@ Cards Support
9116, 9118

@ Syntax

Microsoft C/C++ and Borland C++
116 Al_ContReadMultiChannelsToFile (U16 CardNumber, U16 NumChans, U16
*Chans, U16 *AdRanges, U8 *FileName, U32 ReadCount, F64

SampleRate, U16 SyncMode)

Visual Basic

Function Description -

21

Al_ContReadMultiChannelsToFile (ByVal CardNumber As Integer, ByVal numChans
As Integer, Chans As Integer, AdRanges As Integer, ByVal FileName As
String, ByVal ReadCount As Long, ByVal SampleRate As Double, ByVal
SyncMode As Integer) As Integer

@ Par ameter

CardNumber :
numChans:

Chans :

AdRanges :

FileName :
ReadCount :

SampleRate :

SyncMode :

The card ID of the card that want to perform this operation.

The number of analog input channels in the array Chans. The valid

value:

cPCI-9116: 1 through 511

PCI-9118: 1 through 255

Array of analog input channel numbers. The channel order for

acquiring data is the same as the order you set in Chans.

cPCI-9116: numbers in Chans must be within 0 and 63. Since there is
no restriction of channel order setting, you can set the
channel order as you wish.

PCI-9118: numbers in Chans must be within 0 and 15. Since there is
no restriction of channel order setting, you can set the
channel order as you wish.

An integer array of length numChans that contains the analog input

range for every channel in array Chans.

CPCI-9116/PCI-9118:

Please refer to the Appendix B for the valid range values.
Since PCI-9118 supports different ranges, the range values
in AdRanges can be any of the valid range values of PCI-
9118/cPCI-9116.

Name of data file which stores the acquired data
If double-buffered mode is disabled, ReadCount is the number of A/D
conversions (for PCI19118) or the total number of scans (for cPCI9116)
to be performed. For double-buffered acquisition, ReadCount is the
size (in samples) of the circular buffer (for PCI9118) or the size (in
samples) allocated for each channel in the circular buffer (for
cPCI9116) and its value must be a multiple of 4.
The sampling rate you want for analog input in hertz (samples per
second). The maximum rate depends on the card type and your
computer system.
On cPCI9116, this parameter is ignored. Use
Al _9116_Counterl nterval () to set the scan rate.
If you set A/D trigger source as external trigger by calling
Al _9118_Confi g(), the sampling rate is determined by an external
trigger source, you have to set this argument as
CLKSRC_EXT_SampRate.
Whether this operation is performed synchronously or
asynchronously. If any trigger mode is enabled by calling
Al _9118_Confi g() ,this operation should be performed
asynchronously.
Valid values:
SYNCH_OP: synchronous A/D conversion, that is, the function
does not return until the A/D operation complete.
ASYNCH_OP:asynchronous A/D conversion

22 - Function Description

@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
ErrorinvalidloChannel, ErrorinvalidSampleRate, ErrorinvalidAdRange,
ErrorTransferCountTooLarge, ErrorContloNotAllowed, ErrorOpenFile

2.2.19 Al_ContScanChannels

@ Description
This function performs continuous A/D conversions on the specified continuous analog
input channels at a rate as close to the rate you specified. This function takes

advantage of the hardware auto-scan functionality to perform multi-channel analog
input.

@ Cards Support
9111, 9112, 9113, 9114, 9116, 9118, 9812/10

@ Syntax
Microsoft C/C++ and Borland C++
116 Al_ContScanChannels (U16 CardNumber, U16 Channel, U16 AdRange, U16
*Buffer, U32 ReadCount, F64 SampleRate, U16 SyncMode)
Visual Basic
Al_ContScanChannels (ByVal CardNumber As Integer, ByVal Channel As Integer,
ByVal AdRange As Integer, Buffer As Integer, ByVal ReadCount As Long,
ByVal SampleRate As Double, ByVal SyncMode As Integer) As Integer

@ Par ameter

CardNumber : The card ID of the card that want to perform this operation.
Channel : The largest channel number of specified continuous analog input
channel. The channel order for acquiring data is as follows:
PCI-9111: number of Channel must be within 0 and 15. The
continuous scan sequence is ascending and the first one
must be zero. For example, 0, 1, 2, 3.
PCI1-9112/cPCI-9112: number of Channel must be within 0 and 15.
The continuous scan sequence is descending,
and the first one must be zero. For example, 3,
2,1,0.
PCI-9113: number of Channel must be within 0 and 31. The
continuous scan sequence is ascending and the first one
must be zero. For example, 0, 1, 2, 3.
PCI-9114: number of Channel must be within 0 and 31. The
continuous scan sequence is ascending and the first one
must be zero. For example, 0, 1, 2, 3.
cPCI-9116: number of Channel must be within 0 and 63. The
continuous scan sequence is ascending and the first one
must be zero. For example, 0, 1, 2, 3.
PCI-9118: number of Channel must be within 0 and 15. The
continuous scan sequence is ascending and the first one
must be zero. For example, 0, 1, 2, 3.
PCI-9812/10: number of Channel must be 0, 1 or 3. The continuous
scan sequence is ascending and the first one must be
zero. For example, 0, 1, 2, 3.

Function Description -

AdRange :

Buffer :

ReadCount :

SampleRate :

SyncMode :

The analog input range the continuous specified channel is setting.
Please refer to the Appendix B for the valid range values.

An integer array to contain the acquired data. The length of Buffer
must be equal to or greater than the value of parameter ReadCount.
The acquired data is stored in interleaved sequence. For example, if
the value of Channel is 3, and the scanned channel numbers is
descending (e.g. PCI-9112/cPCI-9112), then this function input data
from channel 2, then channel 1, then channel 0, then channel 2, then
channel 1, ... The data acquired is put to Buffer by order. So the data
read from channel 2 is stored in Buffer[0], Buffer[3], Buffer[6], ... The
data from channel 1 is stored in Buffer[1], Buffer[4], Buffer[7], ... The
data from channel 0 is stored in Buffer[2], Buffer[5], Buffer[8], ... If
double-buffered mode is enabled, this buffer is of no use, you can
ignore this argument. Please refer to Appendix C, Al Data Format for
the data format in Buffer.

If double-buffered mode is disabled, ReadCount is the number of A/D
conversions (except cPCI9116) or the total number of scans (for
cPCIl9116) to be performed. For double-buffered acquisition,
ReadCount is the size (in samples) of the circular buffer (except
cPCI9116) or the size (in samples) allocated for each channel in the
circular buffer (for cPCI9116) and its value must be a multiple of 4.

Note: if the card is PCI-9111, PCI-9113 or PCI-9114, this function uses
FIFO-Haf-Full interrupt transfer mode. So the value of ReadCount
must be the multiple of 512 for non-double-buffer mode, or multiple
of 1024 for double-buffer mode.

The sampling rate you want for analog input in hertz (samples per
second). The maximum rate depends on the card type and your
computer system.

On cPCI9116, this parameter is ignored. Use

Al _9116_Counterlnterval () to setthe scan rate.

If you set A/D trigger mode as external trigger by calling

Al 9111 Config(), Al _9112 Config(),

Al _9113 Config(),Al _9114 Config(), Al _9812 Config()
or Al _9118_Confi g(), the sampling rate is determined by an
external trigger source, you have to set this argument as
CLKSRC_EXT_SampRate.

If you set A/D trigger mode as external trigger by calling

Al _9812_Config(), the frequency divider is set as 2 by the driver.
Hence, the sampling rate is:

Frequency of external clock source / 2

Whether this operation is performed synchronously or
asynchronously. If any trigger mode is enabled by calling
Al 9111 Config(), Al _9116 Config(),
Al _9812_Config() or Al_9118_Confi g(), this operation
should be performed asynchronously.
Valid values:

SYNCH_OP: synchronous A/D conversion, that is, the function

does not return until the A/D operation complete.

24 . Function Description

ASYNCH_OP:asynchronous A/D conversion
@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
ErrorinvalidloChannel, ErrorinvalidSampleRate, ErrorinvalidAdRange,
ErrorTransferCountToolLarge, ErrorContloNotAllowed, ErrorLastChannelNotZero,
ErrorDiffRangeNotSupport, ErrorChannelNotDescending, ErrorChannelNotAscending

2.2.20 Al_ContScanChannelsToFile

@ Description

This function performs continuous A/D conversions on the specified continuous analog
input channels at a rate as close to the rate you specified and saves the acquired data
in a disk file. The data is written to disk in binary format, with the lower byte first (little
endian). Please refer to Appendix D, Data File Format for the data file structure and
Appendix C, Al Data Format for the format of the data in the data file. This function
takes advantage of the hardware auto-scan functionality to perform multi-channel
analog input.

@ Cards Support
9111, 9112, 9113, 9114, 9116, 9118, 9812/10

@ Syntax
Microsoft C/C++ and Borland C++
116 Al_ContScanChannelsToFile (U16 CardNumber, U16 Channel, U16 AdRange,
U8 *FileName, U32 ReadCount, F64 SampleRate, U16 SyncMode)
Visual Basic
Al_ContScanChannelsToFile (ByVal CardNumber As Integer, ByVal Channel As
Integer, ByVal AdRange As Integer, ByVal FileName As String, ByVal

ReadCount As Long, ByVal SampleRate As Double, ByVal SyncMode As
Integer) As Integer

@ Parameter

CardNumber : The card ID of the card that want to perform this operation.
Channel : The largest channel number of specified continuous analog input
channel. The channel order for acquiring data is as follows:
PCI-9111: number of Channel must be within 0 and 15. The
continuous scan sequence is ascending and the first one
must be zero. For example, 0, 1, 2, 3.
PCI-9112/cPCI-9112: number of Channel must be within 0 and 15.
The continuous scan sequence is descending,
and the first one must be zero. For example, 3,
2,1,0.
PCI-9113: number of Channel must be within 0 and 31. The
continuous scan sequence is ascending and the first one
must be zero. For example, 0, 1, 2, 3.
PCI-9114: number of Channel must be within 0 and 31. The
continuous scan sequence is ascending and the first one
must be zero. For example, 0, 1, 2, 3.

Function Description -

25

AdRange :

FileName :
ReadCount :

SampleRate :

SyncMode :

cPCI-9116: number of Channel must be within 0 and 63. The
continuous scan sequence is ascending and the first one
must be zero. For example, 0, 1, 2, 3.

PCI-9118: number of Channel must be within 0 and 15. The
continuous scan sequence is ascending and the first one
must be zero. For example, 0, 1, 2, 3.

PCI-9812/10: number of Channel must be 0, 1 or 3. The continuous
scan sequence is ascending and the first one must be
zero. For example, 0, 1, 2, 3.

The analog input range the continuous specified channel is setting.
Please refer to the Appendix B for the valid range values.

Name of data file which stores the acquired data

If double-buffered mode is disabled, ReadCount is the number of A/D
conversions (except cPCI9116) or the total number of scans (for
cPCI9116) to be performed. For double-buffered acquisition,
ReadCount is the size (in samples) of the circular buffer (except
cPCIl9116) or the size (in samples) allocated for each channel in the
circular buffer (for cPCI9116) and its value must be a multiple of 4.

Note: if the card is PCI-9111, PCI-9113 or PCI-9114, this function uses
FIFO-Half-Full interrupt transfer mode. So the value of ReadCount
must be the multiple of 512 for non-double-buffer mode, or multiple
of 1024 for double-buffer mode.

The sampling rate you want for analog input in hertz (samples per
second). The maximum rate depends on the card type and your
computer system.

On cPCI9116, this parameter is ignored. Use

Al _9116_Counterlnterval () to set the scan rate.

If you set A/D trigger mode as external trigger by calling

Al _9111 Config(), Al _9112 Config(),

Al _9113 Config(), Al _9114 Config(), Al _9812 Config()
or Al _9118_Confi g(), the sampling rate is determined by an
external trigger source, you have to set this argument as
CLKSRC_EXT_SampRate.

If you set A/D trigger mode as external trigger by calling

Al _9812_Config(), the frequency divider is set as 2 by the driver.
Hence, the sampling rate is:

Frequency of external clock source / 2

Whether this operation is performed synchronously or
asynchronously. If any trigger mode is enabled by calling
Al 9111 Config(), Al _9116_Config(),
Al _9812_Config() or Al_9118_Confi g(), this operation
should be performed asynchronously.
Valid values:
SYNCH_OP: synchronous A/D conversion, that is, the function
does not return until the A/D operation complete.
ASYNCH_OP:asynchronous A/D conversion

26 - Function Description

@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
ErrorinvalidloChannel, ErrorinvalidSampleRate, ErrorinvalidAdRange,
ErrorTransferCountToolLarge, ErrorContloNotAllowed, ErrorLastChannelNotZero,
ErrorDiffRangeNotSupport, ErrorChannelNotDescending, ErrorChannelNotAscending

2.2.21 Al _ContStatus

@ Description

While performing continuous A/D conversions, this function is called to get the A/D
status. Please refer to the manual for your device for the Al status the device might
meet.

@ Cards Support

9111, 9112, 9113, 9114, 9116, 9118, 9812/10
@ Syntax

Microsoft C/C++ and Borland C++
116 Al_ContStatus (U16 CardNumber, U16 *Status)

Visual Basic
Al_ContStatus (ByVal CardNumber As Integer, Status Integer) As Integer

@ Parameter
CardNumber : The card id of the card that want to perform this operation.
Status : The continuous Al status returned. The description of the parameter

Status for various card types is the following:

PCI19111/PCI9113/PCI9114 :
bit 0 : '0" indicates FIFO is empty
bit 1 :'0" indicates FIFO is Half Full
bit 2 : '0" indicates FIFO is Full, the data might have been lost
bit 3 :'0" indicates AD is busy, the A/D data hasrit been latched into FIFO
yet
bit 4 ~ 15 : not used

PCI9112:
bit 0 : '1' indicates A/D conversion is Completed (Ready)
bit 1 : '1" indicates A/D conversion is Over-Run
bit 2 ~ 15 : not used

cPCIl9116:
bit 0 : '1' indicates A/D conversion is Over Speed
bit 1 : '1" indicates A/D conversion is Over-Run
bit 2 : '1' indicates Scan Counter Counts to zero
bit 3 : '1" indicates External Digital Trigger ever happened
bit 4 : '1' indicates A/D FIFO is empty
bit 5 : 1" indicates A/D FIFO is Half Full
bit 6 : '0" indicates A/D FIFO is Full
bit 7 ~ 15 : not used

PCl9118:
bit 0 : '1' indicates A/D conversion is Completed (Ready)
bit 1 : '1" indicates A/D conversion is Over-Run

Function Description -

bit 2 : '1" indicates A/D conversion is Over-Speed

bit 3 : '1" indicates Burst Mode of A/D conversion is Over-Run
bit 4 : '1" indicates External Digital Trigger ever happened

bit 5 : '1" indicates About Trigger of A/D conversion is Completed
bit 6 : '1' indicates A/D FIFO is empty

bit 7 : '1" indicates FIFO is Half Full

bit 8 : '1' indicates FIFO is Full

bit 9 ~ 15 : not used

PCl19812:
bit 0 : '1" indicates FIFO is ready for Input (Not Full)
bit 1 : '1" indicates FIFO is at least Half-Full
bit 2 : '1' indicates FIFO is ready for Output (Not Empty)
bit 3 : '3" indicates the post trigger counter reaches zero
bit 4 ~ 15 : not used

@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered

2.2.22 Al _ContVScale

@ Description

This function converts the values of an array of acquired binary data from an
continuous A/D conversion call to the actual input voltages. The acquires binary data
in the reading array might include the channel information (please refer to continuous
functions, Al_ContReadChannel or Al_ContScanChannels, for the detailed data
format); however, The calculated voltage values in the voltage array returned will not
include the channel message.

@ Cards Support
9111, 9112, 9113, 9114, 9116, 9118, 9812/10

@ Syntax
Microsoft C/C++ and Borland C++
116 Al_ContVScale (U16 CardNumber, U16 AdRange, U16 *readingArray, F64
*voltageArray, 132 count)
Visual Basic
Al_ContVScale (ByVal CardNumber As Integer, ByVal AdRange As Integer,

readingArray As Integer, voltageArray As Double, ByVal count As Long) As
Integer

@ Par ameter

CardNumber : The card id of the card that want to perform this operation.

AdRange : The analog input range the continuous specified channel is setting.
Please refer to the Appendix B for the valid range values.

readingArray : Acquired continuous analog input dataarray

voltageArray : computed voltages array returned

@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
ErrorinvalidAdRange

28 -

Function Description

2.2.23 Al _InitialMemoryAllocated

@ Description

This function returns the available memory size for analog input in the device driver in
argument MemsSize. The continuous analog input transfer size can not exceed this
size.

@ Cards Support
9111, 9112, 9113, 9114, 9116, 9118, 9812/10

@ Syntax

Microsoft C/C++ and Borland C++
116 Al_InitiaIMemoryAllocated (U16 CardNumber, U32 *MemSize)

Visual Basic
Al_InitiaIMemoryAllocated (ByVal CardNumber As Integer, MemSize As Long) As
Integer
@ Par ameter

CardNumber : The card id of the card that want to perform this operation.
MemSize : The available memory size for continuous Al in device driver of this
card. The unit is KB (1024 bytes).

@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered

2.2.24 Al_ReadChannel

@ Description

This function performs a software triggered A/D conversion (analog input) on an
analog input channel and returns the value converted.

@ Cards Support
9111, 9112, 9113, 9114, 9116, 9118

@ Syntax
Microsoft C/C++ and Borland C++
116 Al_ReadChannel (U16 CardNumber, U16 Channel, U16 AdRange, U16 *Value)
Visual Basic
Al_ReadChannel (ByVal CardNumber As Integer, ByVal Channel As Integer, ByVal
AdRange As Integer, Value As Integer) As Integer

@ Par ameter

CardNumber : The card id of the card that want to perform this operation.

Channel : Analog input channel number.
Range: 0 through 15 for PCI-9112/cPCI-9112, PCI-9111, PCI-9118
Range: 0 through 31 for PCI-9113, PCI-9114
Range: 0 through 63 for cPCI-9116

AdRange : The analog input range the specified channel is setting. Please refer
to the Appendix B for the valid range values.

Function Description - 29

Value : The A/D converted value. The data format in value is described as
below:

PCI-9113
16-bit unsigned data:

B15 ...B12 D11 D10 ...D1 DO
where D11, D10, ..., DO : A/D converted data
B15 ~B12: don't care

PCI-9114
16-bit signed data:

D15D14 D1 DO

where D15, D14, ..., DO : A/D converted data

For PCI-9111, PCI-9112/cPCI-9112, cPCI-9116, and PCI-9118,
please refer to the description of Buffer argument of
Al _Cont ReadChannel () for the correct data format.

@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
ErrorinvalidloChannel, ErrorinvalidAdRange

2.2.25 Al_VReadChannel

@ Description

This function performs a software triggered A/D conversion (analog input) on an
analog input channel and returns the value scaled to a voltage in units of volts.

@ Cards Support
9111, 9112, 9113, 9114, 9116, 9118

@ Syntax
Microsoft C/C++ and Borland C++
116 Al_VReadChannel (U16 CardNumber, U16 Channel, U16 AdRange, F64
*voltage)
Visual Basic
Al_ReadChannel (ByVal CardNumber As Integer, ByVal Channel As Integer, ByVal
AdRange As Integer, voltage As Double) As Integer

@ Par ameter

CardNumber : The card id of the card that want to perform this operation.
Channel : Analog input channel number.
Range: 0 through 15 for PCI-9112/cPCI-9112, PCI-9111, PCI-9118
Range: 0 through 31 for PCI-9113, PCI-9114
Range: 0 through 63 for cPCI-9116

AdRange : The analog input range the specified channel is setting. Please refer
to the Appendix B for the valid range values.
voltage : The measured voltage value returned and scaled to units of voltage.
@ Return Code

30-

Function Description

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
ErrorinvalidloChannel, ErrorinvalidAdRange

2.2.26 Al_VoltScale

@ Description

This function converts the result from an Al_ReadChannel call to the actual input
voltage.

@ Cards Support

9111, 9112, 9113, 9114, 9116, 9118

@ Syntax
Microsoft C/C++ and Borland C++
116 Al_VoltScale (U16 CardNumber, U16 AdRange, 116 reading, F64 *voltage)

Visual Basic
Al_VoltScale (ByVal CardNumber As Integer, ByVal AdRange As Integer, ByVal
reading As Integer, voltage As Double) As Integer

@ Parameter
CardNumber : The card id of the card that want to perform this operation.
AdRange : The analog input range the specified channel is setting. Please refer
to the Appendix B for the valid range values.
reading : The result of the AD Conversion.
voltage : Computed voltage value.

@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
ErrorinvalidAdRange

2.2.27 AO_6208A_Config

@ Description
Sets the Voltage to Current Mode of PCI-6208A.

@ Cards Support
6208A

@ Syntax
Microsoft C/C++ and Borland C++

116 AO_6208A_Config (U16 CardNumber, U16 V2AMode)
Visual Basic

AO_6208A_Config (ByVal CardNumber As Integer, ByVal V2AMode As Integer) As
Integer

@ Par ameter

CardNumber : The card id of the card that want to perform this operation.
V2AMode : The voltage to current mode. The valid V2Amode are:
P6208_CURRENT_0_20MA
P6208 CURRENT_5 25MA
P6208_CURRENT_4_20MA

Function Description - 31

@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
ErrorinvalidloChannel

2.2.28 AO_6308A_Config

@ Description
Sets the Voltage to Current Mode of PCI-6308A.

@ Cards Support
6308A

@ Syntax
Microsoft C/C++ and Borland C++
116 AO_6308A_Config (U16 CardNumber, U16 V2AMode)

Visual Basic
AO_6308A_Config (ByVal CardNumber As Integer, ByVal V2AMode As Integer) As
Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.

V2AMode : The voltage to current mode. The valid V2Amode are:
P6308 CURRENT_0O_20MA
P6308_CURRENT_5_25MA
P6308_CURRENT_4_20MA

@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
ErrorinvalidloChannel

2.229 AO_6308V_Config

@ Description

Informs PCIS-DASK library of the polarity (unipolar or bipolar) that the output channel
is configured for the analog output and the reference voltage value selected for an
analog output channel of PCI-6308V. You can configure each channel to use an
internal reference of 10V or an external reference (OV ~ +10V) by setting related
jumpers. You must call this function before calling function to perform voltage output
operation.

@ Cards Support
6308V

@ Syntax
Microsoft C/C++ and Borland C++
116 AO_6308V_Config (U16 wCardNumber, U16 Channel, U16 wOutputPolarity,
F64 refVoltage)
Visual Basic
AO_6308V_Config (ByVal CardNumber As Integer, ByVal Channel As Integer,
ByVal OutputPolarity As Integer, ByVal refVoltage As Double) As Integer

32 - Function Description

@ Parameter
CardNumber : The card id of the card that want to perform this operation.
. The AO channel number configured. The valid values are:
P6308V_AO_CHO_3
P6308V_AO CH4 7
OutputPolarity : The polarity (unipolar or bipolar) of the output channel. The valid
values are:
P6308V_AO_UNIPOLAR
P6308V_AO_BIPOLAR

refVoltage : Voltage reference value.
If the D/A reference voltage source your device use is internal

reference, the valid values for refVoltage is 10.
If the D/A reference voltage source your device use is external
reference, the valid range for refVoltage is 0 to +10.

Channel

Note : If the 10V D/A reference voltage is selected, the D/A output range is OV ~10V.

@ Return Code
NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,

ErrorinvalidDaRefVoltage

2.2.30 AO_9111 Config

@ Description
Informs PCIS-DASK library of the polarity (unipolar or bipolar) that the output channel
is configured for the analog output of PCI9111. You must call this function before

calling function to perform voltage output operation.

@ Cards Support
9111
@ Syntax

Microsoft C/C++ and Borland C++
116 AO_9111 Config (U16 CardNumber, U16 OutputPolarity)

Visual Basic
AO_9111 Config (ByVal CardNumber As Integer, ByVal OutputPolarity As Integer)

As Integer

@ Parameter
CardNumber : The card id of the card that want to perform this operation.

OutputPolarity : The polarity (unipolar or bipolar) of the output channel. The valid

values are:
P9111 AO_UNIPOLAR

P9111_AO_BIPOLAR

@ Return Code
NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport
2231 AO_9112 Config

@ Description

Function Description - 33

Informs PCIS-DASK library of the reference voltage value selected for an analog
output channel of PCI9112. You can configure each channel to use an internal
reference of -5V (default) or —10V or an external reference (-10V ~ +10V) by setting
related jumpers. You must call this function before calling function to perform voltage
output operation.

@ Cards Support
9112

@ Syntax
Microsoft C/C++ and Borland C++
116 AO_9112 Config (U16 CardNumber, U16 Channel, F64 refVoltage)
Visual Basic
AO_9112 Config (ByVal CardNumber As Integer, ByVal Channel As Integer, ByVal
refVoltage As Double) As Integer

@ Parameter
CardNumber : The card id of the card that want to perform this operation.
Channel : The AO channel number configured.

refVoltage : Voltage reference value.
If the D/A reference voltage source your device use is internal
reference, the valid values for refVoltage is -5 and —-10.
If the D/A reference voltage source your device use is external
reference, the valid range for refVoltage is —10 to +10.

Note : If the-10V D/A reference voltageis selected, the D/A output range is OV~10V. On
the other hand, if the +10V is selected, the D/A output rangeis-10V~0V.

@ Return Code
NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
ErrorinvalidDaRefVoltage

2.2.32 AO_SimuVWriteChannel

@ Description
Writes voltage values, scales them to the proper binary values and writes binary
values to the specified analog output channels simultaneously.

@ Cards Support
6308V/08A
@ Syntax

Microsoft C/C++ and Borland C++
116 AO_SimuVWriteChannel (U16 wCardNumber, U16 wGroup, F64 *VBuffer)

Visual Basic
AO_SimuVWriteChannel (ByVal CardNumber As Integer, ByVal wGroup As Integer,

voltageArray As Double) As Intege

@ Parameter
CardNumber : The card id of the card that want to perform this operation.

34 - Function Description

Group : The group number of the analog output channels. The valid value:

P6308V_AO_CHO_3
P6308V_AO_CH4 7
VBuffer : An voltage array to contain the update data. The length (in samples) of
VBuffer must be equal to or greater the number of channels in the specified
group. The range of voltages depends on the type of device, on the output
polarity, and on the voltage reference (external or internal)

@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
ErrorinvalidloChannel

2.2.33 AO_SimuWriteChannel

@ Description
Writes binary values to the specified analog output channels simultaneously.

@ Cards Support
6308V/08A

@ Syntax

Microsoft C/C++ and Borland C++
116 AO_SimuWriteChannel (U16 wCardNumber, U16 wGroup, 116 *Buffer)

Visual Basic
AO_SimuWriteChannel (ByVal CardNumber As Integer, ByVal wGroup As Integer,

valueArray As Integer) As Integer

@ Parameter
CardNumber : The card id of the card that want to perform this operation.

Group : The group number of the analog output channels. The valid value:
P6308V_AO_CHO_3
P6308V_AO_CHA4 7

Value : An integer array to contain the update data. The length (in samples) of Buffer must be equal
to or greater the number of channels in the specified group. The range of value to be written
to the analog output channels:

Range: 0 through 4095 for PCI-6308

@ Return Code
NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
ErrorinvalidloChannel

2.2.34 AO_VoltScale
@ Description
Scales a voltage (or a current value) to a binary value.

@ Cards Support
9111, 9112, 9118, 6208V/16V/08A, 6308V/08A

@ Syntax
Microsoft C/C++ and Borland C++

Function Description - 35

116 AO_VoltScale (U16 CardNumber, U16 Channel, F64 Voltage, 116 *binValue)
Visual Basic
AO_VoltScale (ByVal CardNumber As Integer, ByVal Channel As Integer, ByVal
Voltage As Double, binValue As Integer) As Integer
@ Parameter

CardNumber : The card id of the card that want to perform this operation.
Channel : The analog output channel number.
Range: 0 or 1 for PCI-9112/cPCI-9112
Range: 0 for PCI-9111
Range: 0 or 1 for PCI-9118
Range: 0 through 7 for PCI-6208V/08A and PCI-6308V/08A
Range: 0 through 15 for PCI-6216V
Voltage : Voltage, in volts, to be converted to a binary value
binvalue : the converted binary value returned

@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
ErrorinvalidloChannel. ErrorDaVoltageOutOfRange

2.2.35 AO_VWriteChannel

@ Description

Accepts a voltage value (or a current value), scales it to the proper binary value and
writes a binary value to the specified analog output channel.

@ Cards Support
9111, 9112, 9118, 6208V/16V/08A, 6308V/08A

@ Syntax
Microsoft C/C++ and Borland C++

116 AO_VWriteChannel (U16 CardNumber, U16 Channel, F64 Voltage)
Visual Basic

AO_VWriteChannel (ByVal CardNumber As Integer, ByVal Channel As Integer,
ByVal Voltage As Double) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.
Channel : The analog output channel number.
Range: 0 or 1 for PCI-9112/cPCI-9112
Range: 0 for PCI-9111
Range: 0 or 1 for PCI-9118
Range: 0 through 7 for PCI-6208V/08A and PCI-6308V/08A
Range: 0 through 15 for PCI-6216V
Voltage : The value to be scaled and written to the analog output channel. The
range of voltages depends on the type of device, on the output
polarity, and on the voltage reference (external or internal).

@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
ErrorinvalidloChannel, ErrorDaVoltageOutOfRange

36 - Function Description

2.2.36 AO_WriteChannel

@ Description

Writes a binary value to the specified analog output channel.

@ Cards Support
9111, 9112, 9118, 6208V/16V/08A, 6308V/08A

@ Syntax
Microsoft C/C++ and Borland C++
116 AO_WriteChannel (U16 CardNumber, U16 Channel, U16 Value)
Visual Basic
AO_WriteChannel (ByVal CardNumber As Integer, ByVal Channel As Integer, ByVal
Value As Integer) As Integer
@ Parameter

CardNumber : The card id of the card that want to perform this operation.
Channel : The analog output channel number.
Range: 0 or 1 for PCI-9112/cPCI-9112
Range: 0 for PCI-9111
Range: 0 or 1 for PCI-9118
Range: 0 through 7 for PCI-6208V/08A and PCI-6308V/08A
Range: 0 through 15 for PCI-6216V
Value : The value to be written to the analog output channel.
Range: 0 through 4095 for PCI-9111, PCI-9112/cPCI-9112, PCI-9118
0 though 32767 for PCI-6208A and PCI-6308A
-32768 through 32767 for PCI-6208V/16V and PCI-6308V

@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
ErrorinvalidloChannel

2.2.37 CTR_8554 CK1_Config

@ Description
Selects the source of CK1.

@ Cards Support
8554

@ Syntax

Microsoft C/C++ and Borland C++
116 CTR_8554 CK1_Config (U16 CardNumber, U16 ClockSource)

Visual Basic

CTR_8554 CK1_Config (ByVal CardNumber As Integer, ByVal ClockSource As
Integer) As Integer

@ Par ameter

CardNumber : The card id of the card that want to perform this operation.
ClockSource : The source of CK1. CK1_C8M or CK1_COUT11.

@ Return Code

Function Description - 37

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
InvalidCtrSource

2.2.38 CTR_8554 ClkSrc_Config

@ Description

Selects PCI-8554 counter #1 ~ #10 clock source. (Clock source of counter #11 is
8MHz and clock source of counter #12 is from COUT11, both are fixed.)

@ Cards Support

8554

@ Syntax
Microsoft C/C++ and Borland C++

116 CTR_8554_CIlkSrc_Config (U16 CardNumber, U16 Ctr, U16 ClockSource)
Visual Basic

CTR_8554_CIkSrc_Config (ByVal CardNumber As Integer, ByVal Ctr As Integer,
ByVal ClockSource As Integer) As Integer

@ Parameter
CardNumber : The card id of the card that want to perform this operation.
Ctr : The counter number.

Range: 1~10

ClockSource : The clock source of the specified counter.
ECKN: external clock source
COUTN_1:the cascaded counter output (COUT n-1)
CK1: internal clock source CK1
COUT10: output of the counter 10
@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
InvalidCounter

2.2.39 CTR_8554 Debounce Config

@ Description
Selects debounce clock.

@ Cards Support
8554

@ Syntax

Microsoft C/C++ and Borland C++
116 CTR_8554 Debhounce_Config (U16 CardNumber, U16 DebounceClock)
Visual Basic
CTR_8554 CK1_Config (ByVal CardNumber As Integer, ByVal DebounceClock As
Integer) As Integer

@ Par ameter

CardNumber: The card id of the card that want to perform this operation.
DebounceClock : DBCLK_COUTL11: output of counter 11 DBCLK_2MHZ: 2MHz

38 - Function Description

@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
InvalidCtrSource

2240 CTR_Clear

@ Description
Turns off the specified counter operation and sets the output of the selected counter to
the specified state.

@ Cards Support
9111, 9112, 9113, 9114, 9118, 7248, 7249, 7296, 7396, 8554

@ Syntax
Microsoft C/C++ and Borland C++

116 CTR_Clear (U16 CardNumber, U16 Ctr, U16 State)
Visual Basic

CTR_Clear (ByVal CardNumber As Integer, ByVal Ctr As Integer, ByVal State As
Integer) As Integer

@ Parameter
CardNumber : The card id of the card that want to perform this operation.
Ctr : The counter number.

Range: 0 for PCI-9111, PCI-9112/cPCI-9112, PCI-9113, PCI-9114,
PCI-9118.

0, 1, 2 for PCI-7248/cPCI-7248, cPCI-7249R, PCI-7296,
PCI-7396.
1~12 for PCI-8554
state : The logic state to which the counter is to be reset.
Range: O or 1.

@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
InvalidCounter

2241 CTR_Read

@ Description

Reads the current contents of the selected counter without disturbing the counting
process.

@ Cards Support

9111, 9112, 9113, 9114, 9118, 7248, 7249, 7296, 7396, 8554

@ Syntax
Microsoft C/C++ and Borland C++

116 CTR_Read (U16 CardNumber, U16 Ctr, U32 *Value)
Visual Basic

CTR_Read (ByVal CardNumber As Integer, ByVal Ctr As Integer, Value As Long) As
Integer

Function Description -

39

@ Parameter
CardNumber : The card id of the card that want to perform this operation.

Ctr : The counter number.
Range: 0 for PCI-9111, PCI-9112/cPCI-9112, PCI-9113, PCI-9114,
PCI-9118.
0, 1, 2 for PCI-7248/cPCI-7248, cPCI-7249R, PCI-7296,
PCI-7396.
1~12 for PCI-8554.
Value : Returns the current count of the specified counter.

Range: 0 through 65536 for binary mode (default).
0 through 9999 for BCD counting mode.
@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
InvalidCounter

2242 CTR_Setup

@ Description
Configures the selected counter to operate in the specified mode.

@ Cards Support
9111, 9112, 9113, 9114, 9118, 7248, 7249, 7296, 7396, 8554

@ Syntax
Microsoft C/C++ and Borland C++

116 CTR_Setup (U16 CardNumber, U16 Ctr, U16 Mode, U32 Count, U16 BinBcd)
Visual Basic

CTR_Setup (ByVal CardNumber As Integer, ByVal Ctr As Integer, ByVal Mode As
Integer, ByVal Count As Long, ByVal BinBcd As Integer) As Integer

@ Parameter
CardNumber : The card id of the card that want to perform this operation.
Ctr : The counter number.
Range: 0 for PCI-9111, PCI-9112/cPCI-9112, PCI-9113, PCI-9114,
PCI-9118.
0, 1, 2 for PCI-7248/cPCI-7248, cPCI-7249R, PCI-7296,
PCI-7396.
1~12 for PCI-8554
Mode : The mode in which the counter is to operate.
Valid value:

TOGGLE_OUTPUT
PROG_ONE_SHOT
RATE_GENERATOR
SQ_WAVE_RATE_GENERATOR
SOFT_TRIG

HARD_TRIG

TOGGLE_OUTPUT: Toggle output from low to high on terminal count

40 - Function Description

In this mode, the output goes low after the mode set operation, and
the counter begins to count down while the gate input is high.
When terminal count is reached, the output goes high and remains
high until the selected counter is set to a different mode. The
following diagram shows the TOGGLE_OUTPUT mode timing

diagram.

Clock

WR™ LT
Gate
6 5 4 3 2 1 0
Output (n = 6)
S S
A A+B=n B

PROG_ONE_SHOT:Programmable one-shot

In this mode, the output goes low on the cofollowing the rising
edge of the gate input and goes high on terminal count. The
following diagram shows the

PROG_ONE_SHOT mode timing diagram.

Clock MMM ML
-]
Gate 4 3 2 1 0

Output (=4 [
RATE_GENERATOR:Rate generator

In this mode, the output goes low for one period of the clock input.
count indicates the period from one output pulse to the next. The
following diagram shows the RATE_ GENERATOR mode timing
diagram.

Clock [MM rrrririrerere

Gate 4 3 2 1 04 3 2 1 0(4
OUtpUt (n:4) LI |_|_

SQ_WAVE_RATE_GENERATOR: Square wave rate generator

In this mode, the output stays high for one half of the count clock
pulses and stays low for the other half. The following diagram
shows the SQ_WAVE_RATE_GENERATOR mode timing diagram.

Clock

Gae 4 o 4 2 4 2 4 2 4 2 4 2
Output (n=4)_| | |

5 4 2 5 2 5 4
Output(n=5__ I |]

SOFT_TRIG: Software-triggered strobe

Function Description - 41

In this mode, the output is initially high, and the counter begins to
count down while the gate input is high. On terminal count, the
output goes low for one clock pulse, then goes high again. The
following diagram shows the SOFT_TRIG mode timing diagram.

Clock M LM Mt rirrerri
WR Ln=4]
Gate

Output L

HARD_TRIG: Hardware-triggered strobe

This mode is similar to SOFT_TRIG mode except that the gate
input is used as a trigger to start counting. The following diagram
shows the HARD_TRIG mode timing diagram.

Clock MMM L

Gate
4 3 2 1 0

Output = 4 L

Count: The period from one output pulse to the next.
BinBcd : Whether the counter operates as a 16-bit binary counter or as a 4-
decade binary-coded decimal (BCD) counter.

Valid value:
BIN: 16-bit binary counter.
BCD: 4-decade BCD counter.

@ Return Code
NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
InvalidCounter

2.2.43 DI_7200_Config

@ Description

Informs PCIS-DASK library of the trigger source, and input mode selected for
PCI7200/cPCI7200 with card ID CardNumber. You must call this function before
calling function to perform continuous digital input operation.

@ Cards Support

7200

@ Syntax

Microsoft C/C++ and Borland C++

116 DI_7200_Config (U16 CardNumber, U16 TrigSource, U16 ExtTrigEn, U16
TrigPol, U16 |_REQ_Pol)

Visual Basic

42.

Function Description

DI_7200_Config (ByVal CardNumber As Integer, ByVal TrigSource As Integer,
ByVal ExtTrigEn As Integer, ByVal TrigPol As Integer, ByVal |_REQ_PolAs
Integer) As Integer

@ Par ameter

CardNumber : The card id of the card that want to perform this operation.
TrigSource : The trigger mode for continuous digital input.
Valid values:
TRIG_INT_PACER: on-board Programmable pacer
TRIG_EXT_STROBE: external signal trigger
TRIG_HANDSHAKE: handshaking
ExtTrigEn : External Trigger Enable, the valid values are:
DI_WAITING: digital input sampling waits rising or falling edge of
|_TRG to start DI
DI_NOWAITING: input sampling starts immediately
TrigPol : Trigger Polarity, the valid values are:
DI_TRIG_RISING: |_TRG is rising edge active
DI_TRIG_FALLING: |_TRG is falling edge active
|_REQ_Pol: |_REQ Polarity, the valid values are:
IREQ_RISING: |_REQ is rising edge active
IREQ_FALLING: |_REQ is falling edge active

@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

2.2.44 DI_7300A_Config

@ Description

Informs PCIS-DASK library of the trigger source, port width, etc. selected for
PCI7300A Rev.A/cPCI7300A Rev.A card with card ID CardNumber. You must call this
function before calling function to perform continuous digital input operation.

@ Cards Support
7300A Rev.A

@ Syntax
Microsoft C/C++ and Borland C++
116 DI_7300A_Config (U16 CardNumber, U16 PortWidth, U16 TrigSource, U16
WaitStatus, U16 Terminator, U16 |_REQ_Pol, BOOLEAN ClearFifo,
BOOLEAN DisableDlI)
Visual Basic
DI_7300A_Config (ByVal CardNumber As Integer, ByVal PortWidth As Integer,
ByVal TrigSource As Integer, ByVal WaitStatus As Integer, ByVal
Terminator As Integer, ByVal |_REQ_Pol As Integer, ByVal ClearFifo As
Byte, ByVal DisableDI As Byte) As Integer

@ Par ameter

CardNumber : The card id of the card that want to perform this operation.

Portwidth : The width of digital input port (PORT A). The valid value is 0, 8, 16, or
32.

TrigSource : The trigger mode for continuous digital input.
Valid values:

Function Description -

43

TRIG_INT_PACER: on-board programmable pacer timer0
TRIG_EXT_STROBE: external signal trigger
TRIG_HANDSHAKE: handshaking
TRIG_CLK_10MHz: 10MHz clock
TRIG_CLK_20MHz: 20MHz clock

WaitStatus : DI Wait Trigger Status, the valid values are:
P7300_WAIT_NO:input sampling starts immediately
P7300_WAIT_TRG:digital input sampling waits rising or falling edge

of |_TRG to start DI

Terminator : PortA Terminator On/Off, the valid values are:
P7300_TERM_ON:terminator on
P7300_TERM_OFF:terminator off

|_REQ_Pol: | _REQ Polarity. This function is not implemented on PCI-7300A
Rev.A/cPCI-7300A Rev.A card. You can ignore this argument.
ClearFifo : FALSE: retain the FIFO data
TRUE:clear FIFO data before perform digital input
DisableDlI : FALSE: digital input operation still active after DMA transfer complete.

The input data still put into FIFO
TRUE:disable digital input operation immediately when DMA transfer
complete

@ Return Code
NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

2.2.45 DI_7300B_Config

@ Description

Informs PCIS-DASK library of the trigger source, port width, etc. selected for
PCI7300A Rev.B/cPCI7300A Rev.B card with card ID CardNumber. You must call this
function before calling function to perform continuous digital input operation.

@ Cards Support
7300A Rev.B

@ Syntax
Microsoft C/C++ and Borland C++
116 DI_7300B_Config (U16 CardNumber, U16 PortWidth, U16 TrigSource, U16
WaitStatus, U16 Terminator, U16 |_Cntrl_Pol, BOOLEAN ClearFifo,
BOOLEAN DisableDl)
Visual Basic
DI_7300B_Config (ByVal CardNumber As Integer, ByVal PortWidth As Integer,
ByVal TrigSource As Integer, ByVal WaitStatus As Integer, ByVal
Terminator As Integer, ByVal |_Cntrl_Pol As Integer, ByVal ClearFifo As
Byte, ByVal DisableDI As Byte) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.

Portwidth : The width of digital input port (PORT A). The valid value is 0, 8, 16, or
32.

TrigSource : The trigger mode for continuous digital input.
Valid values:

44 . Function Description

TRIG_INT_PACER: on-board programmable pacer timer0
TRIG_EXT_STROBE: external signal trigger
TRIG_HANDSHAKE: handshaking
TRIG_CLK_10MHz: 10MHz clock
TRIG_CLK_20MHz: 20MHz clock
WaitStatus : DI Wait Trigger Status, the valid values are:
P7300_WAIT_NO:input sampling starts immediately
P7300_WAIT_TRG:digital input sampling waits rising or falling edge
of |_TRG to start DI
Terminator : PortA Terminator On/Off, the valid values are:
P7300_TERM_ON:terminator on
P7300_TERM_OFF:terminator off
I_Cntrl_Pol : The polarity configuration. This argument is an integer expression
formed from one or more of the manifest constants defined in
DASK.H. There are three groups of constants:
(1) DIREQ
P7300_DIREQ_POS: DIREQ signal is rising edge active
P7300_DIREQ_NEG: DIREQ signal is falling edge active
(2) DIACK
P7300_DIACK_POS: DIACK signal is rising edge active
P7300_DIACK_NEG: DIACK signal is falling edge active
(3) DITRIG
P7300_DITRIG_POS: DITRIG signal is rising edge active
P7300_DITRIG_NEG: DITRIG signal is falling edge active

ClearFifo : FALSE: retain the FIFO data
TRUE:clear FIFO data before perform digital input
DisableDlI : FALSE: digital input operation still active after DMA transfer complete.

The input data still put into FIFO
TRUE:disable digital input operation immediately when DMA transfer
complete

@ Return Code
NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

2.2.46 DI_AsyncCheck

@ Description
Check the current status of the asynchronous digital input operation.

@ Cards Support
7200, 7300A

@ Syntax

Microsoft C/C++ and Borland C++
116 DI_AsyncCheck (U16 CardNumber, BOOLEAN *Stopped, U32 *AccessCnt)

Visual Basic
DI_AsyncCheck (ByVal CardNumber As Integer, Stopped As Byte, AccessCnt As
Long) As Integer

@ Parameter

CardNumber : The card id of the card that performs the asynchronous operation.

Function Description - 45

Stopped : Whether the asynchronous analog input operation has completed. If
Stopped = TRUE, the digital input operation has stopped. Either the
number of digital input indicated in the call that initiated the
asynchronous digital input operation has completed or an error has
occurred. If Stopped = FALSE, the operation is not yet complete.
(constants TRUE and FALSE are defined in DASK.H)

AccessCnt: The number of digital input data that has been transferred at the time
the call to DI _AsyncCheck() .

AccessCnt is of no use (always returns 0) in DI_AsyncCheck() and
DI_AsyncClear() with PCI-7300A board because PLX9080 has no
function or register to get the current amount of DMA transfer.

@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

2.2.47 DI_AsyncClear

@ Description
Stop the asynchronous digital input operation.

@ Cards Support
7200, 7300A

@ Syntax
Microsoft C/C++ and Borland C++
116 DI_AsyncClear (U16 CardNumber, U32 *AccessCnt)

Visual Basic
DI_AsyncClear (ByVal CardNumber As Integer, AccessCnt As Long) As Integer

@ Parameter

CardNumber : The card id of the card that performs the asynchronous operation.

AccessCnt: The number of digital input data that has been transferred at the time
the call to DI _AsyncCl ear ().
If double-buffered mode is enabled, AccessCnt returns the next
position after the position the last data is stored in the circular buffer. If
the AccessCnt execeeds the half size of circular buffer, call
"DI_AsyncDblBufferTransfer " twice to get the data.
AccessCnt is of no use (always returns 0) in DI_AsyncCheck() and
DI_AsyncClear() with PCI-7300A board because PLX9080 has no
function or register to get the current amount of DMA transfer.

@ Return Code
NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

2.2.48 DI_AsyncDblBufferHalfReady

@ Description

Checks whether the next half buffer of data in circular buffer is ready for transfer
during an asynchronous double-buffered digital input operation.

@ Cards Support

46 - Function Description

7200
@ Syntax

Microsoft C/C++ and Borland C++
116 DI_AsyncDblBufferHalfReady (U16 CardNumber, BOOLEAN *HalfReady)

Visual Basic
DI_AsyncDblBufferHalfReady(ByVal CardNumber As Integer, HalfReady As Byte)
As Integer
@ Parameter

CardNumber : The card id of the card that performs the asynchronous double-
buffered operation.

HalfReady : Whether the next half buffer of data is available. If HalfReady =
TRUE, you can call DI _AsyncDbl Buf f er Tr ansf er () to copy the
data to your user buffer. (constants TRUE and FALSE are defined in
DASK.H)

@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

2.2.49 DI_AsyncDblBufferMode

@ Description
Enables or disables double-buffered data acquisition mode.

@ Cards Support
7200

@ Syntax
Microsoft C/C++ and Borland C++
116 DI_AsyncDblBufferMode (U16 CardNumber, BOOLEAN Enable)

Visual Basic
DI_AsyncDbIBufferMode (ByVal CardNumber As Integer, ByVal Enable As Byte) As
Integer

@ Parameter

CardNumber : The card id of the card that double-buffered mode to be set.
Enable : Whether the double-buffered mode is enabled or not.
TRUE: double-buffered mode is enabled.
FALSE: double-buffered mode is disabled.
(constants TRUE and FALSE are defined in DASK.H)

@ Return Code
NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

2.250 DI_AsyncDblBuffer Transfer

@ Description
Depending on the continuous DI function selected, half of the data of the circular

buffer will be logged into the user buffer (if continuous DI function is:
DI_ContReadPort) or a disk file (if continuous DI function is: DI_ContReadPortToFile).

Function Description - 47

If the data will be saved in a file, the data is written to disk in binary format, with the
lower byte first (little endian).

You can execute this function repeatedly to return sequential half buffers of the data.

@ Cards Support
7200

@ Syntax
Microsoft C/C++ and Borland C++
116 DI_AsyncDblBufferTransfer (U16 CardNumber, void *Buffer)

Visual Basic
DI_AsyncDblBufferTransfer (ByVal CardNumber As Integer, Buffer As Any) As
Integer

@ Parameter

CardNumber : The card id of the card that performs the asynchronous double-
buffered operation.

Buffer : The user buffer to which the data is to be copied. If the data will be
saved into a disk file, this argument is of no use.

@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
ErrorNotDoubleBufferMode

2.2.51 DI_AsyncMultiBuffer NextReady

@ Description
Checks whether the next buffer of data in circular buffer is ready for transfer during an

asynchronous multi-buffered digital input operation. The returned Bufferld is the index
of the most recently available (newest available) buffer.

@ Cards Support
7300A

@ Syntax
Microsoft C/C++ and Borland C++
116 DI_AsyncMultiBufferNextReady (U16 CardNumber, BOOLEAN *NextReady, U16
*Bufferld)
Visual Basic
DI_AsyncMultiBufferNextReady (ByVal CardNumber As Integer, NextReady As
Byte, Bufferld As Integer) As Integer

@ Parameter

CardNumber : The card id of the card that performs the asynchronous multi-buffered
operation.

NextReady : Whether the next buffer of data is available. If NextReady = TRUE,
you can handle the data in the buffer. (constants TRUE and FALSE
are defined in DASK.H)

Bufferld : Returns the index of the ready buffer.

@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

48 - Function Description

2.2.52 DI_ContMultiBuffer Setup

@ Description

This function set up the buffer for multi-buffered digital input. The function has to be
called repeatedly to setup all of the data buffers (at most 8 buffers).

@ Cards Support

7300A

@ Syntax
Microsoft C/C++ and Borland C++
116 DI_ContMultiBufferSetup (U16 CardNumber, void *Buffer, U32 ReadCount, U16
*Bufferld)
Visual Basic

DI_ContMultiBufferSetup (ByVal CardNumber As Integer, Buffer As Any, ByVal
ReadCount As Long, Bufferld As Integer) As Integer

@ Par ameter

CardNumber : The card id of the card that want to perform this operation.
Buffer : The starting address of the memory to contain the input data.
ReadCount : The size (in samples) of the buffer and its value must be even.
Bufferld : Returns the index of the buffer currently set up.

@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
ErrorTransferCountToolLarge , ErrorContloNotAllowed

2.2.53 DI_ContMultiBuffer Start

@ Description

This function starts multi-buffered continuous digital input on the specified digital input
port at a rate as close to the rate you specified.

@ Cards Support
7300A

@ Syntax
Microsoft C/C++ and Borland C++
116 DI_ContMultiBufferStart (U16 CardNumber, U16 Port, F64 SampleRate)
Visual Basic
DI_ContMultiBufferStart (ByVal CardNumber As Integer, ByVal Port As Integer,
ByVal SampleRate As Double) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.

Port : Digital input port number. For PCI-7300A/cPCI-7300A, this argument
must be set to 0.

SampleRate : The sampling rate you want for digital input in hertz (samples per
second). Your maximum rate depends on the card type and your
computer system. This argument is only useful if the DI trigger mode

Function Description -

49

was set as internal programmable pacer (TRIG_INT_PACER) by
calling DI _7300A_Confi g() or DI _7300B_Confi g().
@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
ErrorinvalidloChannel, ErrorContloNotAllowed

2.2.54 DI_ContReadPort

@ Description
This function performs continuous digital input on the specified digital input port at a
rate as close to the rate you specified.

@ Cards Support
7200, 7300A

@ Syntax
Microsoft C/C++ and Borland C++
116 DI_ContReadPort (U16 CardNumber, U16 Port, void *Buffer, U32 ReadCount,
F64 SampleRate, U16 SyncMode)
Visual Basic
DI_ContReadPort (ByVal CardNumber As Integer, ByVal Port As Integer, Buffer As
Any, ByVal ReadCount As Long, ByVal SampleRate As Double, ByVal
SyncMode As Integer) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.

Port : Digital input port number. For PCI-7200/cPCI-7200 and PCI-
7300A/cPCI-7300A, this argument must be set to 0.

Buffer : The starting address of the memory to contain the input data. This

memory must have been allocated for enough space to store input
data. If double-buffered mode is enabled, this buffer is of no use, you
can ignore this argument.

ReadCount : If double-buffered mode is disabled, ReadCount is the number of input
operation to be performed. For double-buffered acquisition,
ReadCount is the size (in samples) of the circular buffer and its value
must be even.

SampleRate : The sampling rate you want for digital input in hertz (samples per
second). Your maximum rate depends on the card type and your
computer system. This argument is only useful if the DI trigger mode
was set as internal programmable pacer (TRIG_INT_PACER) by
calling DI _7200_Confi g() or DI _7300_Confi g() . For the other
settings, you have to set this argument as CLKSRC_EXT_SampRate.

SyncMode : Whether this operation is performed synchronously or
asynchronously.

Valid values:
SYNCH_OP: synchronous digital input, that is, the function does
not return until the digital input operation complete.
ASYNCH_OP:asynchronous digital input operation

@ Return Code

50 -

Function Description

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
ErrorinvalidloChannel, ErrorTransferCountTooLarge , ErrorContloNotAllowed

2.2.55 DI_ContReadPortToFile

@ Description

This function performs continuous digital input on the specified digital input port at a
rate as close to the rate you specified and saves the acquired data in a disk file. The
data is written to disk in binary format, with the lower byte first (little endian). Please
refer to Appendix D, Data File Format for the data file structure.

@ Cards Support
7200, 7300A

@ Syntax
Microsoft C/C++ and Borland C++
116 DI_ContReadPortToFile (U16 CardNumber, U16 Port, U8 *FileName, U32
ReadCount, F64 SampleRate, U16 SyncMode)

Visual Basic
DI_ContReadPortToFile (ByVal CardNumber As Integer, ByVal Port As Integer,
ByVal FileName As String, ByVal ReadCount As Long, ByVal SampleRate
As Double, ByVal SyncMode As Integer) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.

Port : Digital input port number. For PCI-7200/cPCI-7200 and PCI-
7300A/cPCI-7300A, this argument must be set to 0.

FileName : Name of data file which stores the acquired data

ReadCount : If double-buffered mode is disabled, ReadCount is the number of input
operation to be performed. For double-buffered acquisition,
ReadCount is the size (in samples) of the circular buffer and its value
must be even.

SampleRate : The sampling rate you want for digital input in hertz (samples per
second). Your maximum rate depends on the card type and your
computer system. This argument is only useful if the DI trigger mode
was set as internal programmable pacer (TRIG_INT_PACER) by
calling DI _7200_Confi g() or DI _7300_Confi g() . For the other
settings, you have to set this argument as CLKSRC_EXT_SampRate.

SyncMode : Whether this operation is performed synchronously or
asynchronously.

Valid values:
SYNCH_OP: synchronous digital input, that is, the function does
not return until the digital input operation complete.
ASYNCH_OP:asynchronous digital input operation

@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
ErrorinvalidloChannel, ErrorinvalidSampleRate, ErrorTransferCountToolLarge ,
ErrorContloNotAllowed

2.2.56 DI _ContStatus

Function Description -

51

@ Description

While performing continuous DI conversions, this function is called to get the DI
status. Please refer to the manual for your device for the DI status the device might
meet.

@ Cards Support
7200, 7300A

@ Syntax
Microsoft C/C++ and Borland C++
116 DI_ContStatus (U16 CardNumber, U16 *Status)
Visual Basic
DI_ContStatus (ByVal CardNumber As Integer, Status Integer) As Integer

@ Par ameter

CardNumber : The card id of the card that want to perform this operation.
Status : The continuous DI status returned. The description of the parameter
Status for various card types is the following:
PCI7200:
bit 0 : 1" indicates D/I FIFO is Full (Over-Run)
bit 1 : '1' indicates D/O FIFO is Empty (Under-Run)
bit 2 ~ 15 : not used
PCI7300A_RevA:
bit 0 : '1" indicates DI FIFO is full during input sampling and some data
were lost. Writes' 1' to clear this bit
bit 1 : '1" indicates DI FIFO is full
bit 2 : '1" indicates DI FIFO is empty
bit 3 ~ 15 : not used
PCI7300A_RevB:

bit 0 : '1" indicates DI FIFO is full during input sampling and some data
were lost. Writes' 1' to clear this bit

bit 1 : 1" indicates DI FIFO is full

bit 2 : '1" indicates DI FIFO is empty

bit 3 ~ 15 : not used

@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered

2.2.57 DI _InitialMemoryAllocated

@ Description

This function returns the available memory size for digital input in the device driver of
this card. The continuous digital input transfer size can not exceed this size.

@ Cards Support

7200, 7300A

@ Syntax

Microsoft C/C++ and Borland C++
116 DI_InitiaIMemoryAllocated (U16 CardNumber, U32 *MemSize)

52 .

Function Description

Visual Basic
DI_InitiaIMemoryAllocated (ByVal CardNumber As Integer, MemSize As Long) As

Integer
@ Parameter
CardNumber : The card id of the card that want to perform this operation.
MemSize : The available memory size for continuous DI in device driver of this
card.

The unit is KB (1024 bytes).

@ Return Code
NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered

2.258 DI_ReadLine

@ Description
Read the digital logic state of the specified digital line in the specified port.

@ Cards Support

6208V/16V/08A, 6308V/08A, 7200, 7230, 7233, 7248, 7249, 7250/51, 7252, 7256,
7258, 7296, 7300A, 7396, 7432, 7433, 8554, 9111, 9112, 9114, 9116, 9118

@ Syntax
Microsoft C/C++ and Borland C++
116 DI_ReadLine (U16 CardNumber, U16 Port, U16 Line, U16 *State)
Visual Basic
DI_ReadLine (ByVal CardNumber As Integer, ByVal Port As Integer, ByVal Line As
Integer, State As Integer) As Integer

@ Parameter
CardNumber : The card id of the card that want to perform this operation.
Port : Digital input port number. The valid value:

PCI-6208V/16V/08A: 0
PCI-6308V/08A: 0

PCI-7200: 0

cPCI-7200: 0, 1 (auxiliary input port)
PCI-7230/cPCI-7230: 0

Channel_P1CH,
Channel_P1BE,
Channel_P2A,
Channel_P2C,

Channel_P2CH,

PCI-7233: 0

PCI-7248/cPCI-7248:
Channel_P1A, Channel_P1B,
Channel_P1C, Channel P1CL,
Channel_P1CH, Channel_P2A,
Channel_P2B, Channel_P2C,
Channel_P2CL, Channel_P2CH

cPCI-7249R:
Channel_P1A, Channel_P1B,
Channel_P1C, Channel P1CL,

Channel_P1AE,
Channel_P1CE,
Channel_P2B,

Channel_P2CL,
Channel_P2AE,

Function Description - 53

Line :

Channel_P2BE, Channel_P2CE,
PCI-7250/51: 0 through 3

cPCI-7252: 0

PCI-7256: 0

PCI-7258: 0

PCI-7296:
Channel_P1A, Channel_P1B,
Channel_P1C, Channel P1CL,
Channel_P1CH, Channel_P2A,
Channel_P2B, Channel_P2C,
Channel_P2CL, Channel_P2CH,
Channel_P3A, Channel _P3B,
Channel_P3C, Channel P3CL,
Channel_P3CH, Channel_P4A,
Channel_P4B, Channel_P4C,
Channel_P4CL, Channel_P4CH

PCI-7396:
Channel_P1A, Channel_P1B,
Channel_P1C,
Channel_P2A, Channel_P2B,
Channel_P2C,
Channel_P3A, Channel_P3B,
Channel_P3C,
Channel_P4A, Channel_P4B,
Channel_P4C

PCI-7300A/cPCI-7300A: 1 (auxiliary input port)
PCI-7432/cPCI-7432: 0
cPCI-7432R: 0
PCI-7433/cPCI-7433: PORT_DI_LOW, PORT_DI_HIGH
cPCI-7433R: PORT_DI_LOW, PORT_DI_HIGH
PCI-8554: 0
PCI-9111: P9111_CHANNEL_DI, P9111 CHANNEL_EDI
PCI-9112/cPCI-9112: 0
PCI-9114: 0
cPCI-9116: 0
PCI-9118: 0
The digital line to be read. The valid value:
PCI-6208V/16V/08A: 0 through 3
PCI-6308V/08A: 0 through 3
PCI-7200/cPCI-7200: 0 through 31 (for port 0)
0 through 3 (for auxiliary input port of cPCI17200)
PCI-7230/cPCI-7230: 0 through 15
PCI-7233: 0 through 31
PCI-7248/cPCI-7248: 0 through 7
cPCI-7249R: 0 through 7
PCI-7250/51: O through 7
cPCI-7252: 0 through 15
PCI-7256: 0 through 15
PCI-7258: 0 through 1
PCI-7296: 0 through 7
PCI-7300A/cPCI-7300A: 0 through 3

54 . Function Description

PCI-7396: 0 through 7
PCI-7432/cPCI-7432/cPCI-7432R: 0 through 31
PCI-7433/cPCI-7433/cPCI-7433R: 0 through 31
PCI-8554: 0 through 7
PCI1-9111: 0 through 15
PCI-9112/cPCI-9112: 0 through 15
PCI-9114: 0 through 15
cPCI-9116: 0 through 7
PCI-9118: 0 through 3

State : Returns the digital logic state, 0 or 1, of the specified line.

@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
ErrorinvalidloChannel

2.2.59 DI_ReadPort

@ Description
Read digital data from the specified digital input port.

@ Cards Support

6208V/16V/08A, 6308V/08A, 7200, 7230, 7233, 7248, 7249, 7250/51, 7252, 7256,
7258, 7296, 7300A, 7396, 7432, 7433, 7434, 8554, 9111, 9112, 9114, 9116, 9118

@ Syntax

Microsoft C/C++ and Borland C++
116 DI_ReadPort (116 CardNumber, U16 Port, U32 *Value)

Visual Basic
DI_ReadPort (ByVal CardNumber As Integer, ByVal Port As Integer, Value As Long)
As Integer

@ Par ameter

CardNumber : The card id of the card that want to perform this operation.
Port : Digital input port number. The valid value:
PCI-6208V/16V/08A: 0
PCI-6308V/08A: 0
PCI-7200/cPCI-7200: 0
cPCI-7200: 0, 1 (auxiliary digital input port)
PCI-7230/cPCI-7230: 0
PCI-7233: 0
PCI-7248/cPCI-7248:
Channel_P1A, Channel_P1B,
Channel_P1C, Channel P1CL,
Channel_P1CH, Channel_P2A,
Channel_P2B, Channel_P2C,
Channel_P2CL, Channel_P2CH
cPCI-7249R:
Channel_P1A, Channel_P1B,
Channel_P1C, Channel P1CL,
Channel_P1CH, Channel_P1AE,
Channel_P1BE, Channel_P1CE,

Function Description - 55

Channel_P2A, Channel_P2B,
Channel_P2C, Channel P2CL,
Channel_P2CH, Channel_P2AE,
Channel_P2BE, Channel_P2CE
PCI-7250/51: 0 through 3

cPCI-7252: 0

PCI-7256: 0

PCI-7258: 0

PCI-7296:
Channel_P1A, Channel_P1B,
Channel_P1C, Channel P1CL,
Channel_P1CH, Channel_P2A,
Channel_P2B, Channel_P2C,
Channel_P2CL, Channel _P2CH,
Channel_P3A, Channel_P3B,
Channel_P3C, Channel P3CL,
Channel_P3CH, Channel P4A,
Channel_P4B, Channel_P4C,

Channel_P4cCL,

Channel_P4CH

PCI-7300A/cPCI-7300A: 1 (auxiliary digital input port)

PCI-7396:
Channel_P1A, Channel_P1B,
Channel_P1C, Channel_P1,
Channel_P2A, Channel_P2B,
Channel_P2C, Channel_P2
Channel_P3A, Channel P3B,
Channel_P3C, Channel_P3,
Channel_P4A, Channel_P4B,
Channel_P4C, Channel_P4

PCI-7432/cPCI-7432: 0

cPCI-7432R: 0, P7432R_DI_SLOT

PCI-7433/cPCI-7433: PORT_DI_LOW, PORT_DI_HIGH
cPCI-7433R: PORT_DI_LOW, PORT_DI_HIGH, P7433R_DI_SLOT
cPCI-7434R: P7434R_DI_SLOT

PCI-8554: 0

PCI-9111: P9111 CHANNEL_DI, P9111 CHANNEL_EDI
PCI-9112/cPCI-9112: 0

PCI-9114: 0

cPCI-9116: 0

PCI-9118: 0

Note: The value, Channel_Pn, for argument Port is defined as all of the ports
(Port A, B and C) in channel n.

Value : Returns the digital data read from the specified port.
PCI-6208V/16V/08A: 4-bit data
PCI-6308V/08A: 4-hit data
PCI-7200/cPCI-7200: 32-bit data

4-bit data (for auxiliary input port of cPCI-7200)
PCI-7230/cPCI-7230: 16-bit data

PCI-7233: 32-bit data

56 - Function Description

PCI-7248/cPCI-7248: 8-bit data

cPCI-7249R: 8-bit data

PCI-7250/51: 8-bit data

cPCI-7252: 16-bit data

PCI-7256: 16-bit data

PCI-7258: 2-bit data

PCI-7296: 8-bit data

PCI-7300A/cPCI-7300A: 4-bit data

PCI-7396: 24-bit data (for Channel_Pn, where n is the channel number) or
8-bit data (for Channel_PnA, Channel_PnB, Channel_PnC , where n is

the channel number)

PCI-7432/cPCI-7432/cPCI-7433R: 32-bhit data

PCI-7433/cPCI-7433/cPCI-7434: 32-bit data

PCI-8554: 8-bit data

PCI-9111: 16-bit data (for P9111_CHANNEL_DI) or
8-bit data (for P9111_CHANNEL_EDI)

PCI-9112/cPCI-9112: 16-bit data

PCI-9114: 16-bit data

cPCI-9116: 8-bit data

PCI-9118: 4-bit data

Note: The data format for Channel_Phisasfollows:

Don'tcare | PORT C PORT B | PORTA

Bit 31-24 23-16 15-8 7-0

@ Return Code

NoError, CardNotRegistered, ErrorinvalidCardNumber, ErrorCardNotRegistered,
ErrorFuncNotSupport

2.2.60 DIO_7300Set!nterrupt

@ Description

This function controls the interrupt sources (AuxDIO and Timer 2) of local interrupt
system of PCI-7300A/cPCI7300A and returns the two interrupt events. If an interrupt is
generated, the corresponding interrupt event will be signaled. The application can use
Win32 wait functions, such as WaitForSingleObject or WaitForMultipleObjects to
check the interrupt event status.

@ Cards Support
7300A

@ Syntax
Microsoft C/C++ and Borland C++
116 DIO_7300Setinterrupt (U16 CardNumber, 116 AuxDIEn, 116 T2En, HANDLE
*hEvent)

Visual Basic
DIO_7300SetInterrupt (ByVal CardNumber As Integer, ByVal AuxDIEn As Integer,
ByVal T2En As Integer, hEvent As Long) As Integer

Function Description -

@ Par ameter

CardNumber : The card id of the card that want to be performed this operation.
AuxDIEn : The control value for AUXDI interrupt.
The valid values:
0: disabled
1: enabled
T2En : The control value for Timer2 interrupt.
The valid values:
0: disabled
1: enabled
hEvent : The local interrupt event handles returned. The status of the interrupt
event indicates that an interrupt is generated or not.

@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered
ErrorFuncNotSupport

2.2.61 DIO_AUXDI_EventM essage

@ Description

Controls the AUXDI interrupt and notifies the user s application when an interrupt
event occurs. The notification is performed through a user-specified callback function
or the Windows PostMessage API.

@ Cards Support

7300A

@ Syntax

Microsoft C/C++ and Borland C++
116 DIO_AUXDI_EventMessage (U16 CardNumber, 116 AuxDIEn, HANDLE
windowHandle, U32 message, void *callbackAddr())
Visual Basic 5
DIO_ AUXDI _EventMessage (ByVal CardNumber As Integer, ByVal AuxDIEn As
Integer, ByVal windowHandle As Long, ByVal message As Long, ByVal
callbackAddr As Long) As Integer

@ Parameter
CardNumber : The card id of the card that want to be performed this operation.
AuxDIEn . The control value for AUXDI interrupt.

The valid values:

0: disabled

1: enabled

windowHandle : The handle to the window you want to receive a Windows message
in when the specified AUXDI event happens. If windowHandle is O,
no Windows messages are sent.

message : a message you define. When the specified AUXDI event happens,
PCIS-DASK passes message back to you. message can be any
value.

In Windows, you can set message to a value including any
Windows predefined messages (such as WM_PAINT). However, to
define your own message, you can use any value ranging from
WM_USER (0x400) to 0x7fff. This range is reserved by Microsoft

58 -

Function Description

for messages you define.
callbackAddr : address of the user callback function. PCIS-DASK calls this

function when the specified AUXDI event occurs. If you do not want
to use a callback function, set callbackAddr to O.

@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered
ErrorFuncNotSupport

2.2.62 DIO_GetCOSLatchData

@ Description

Gets the DI data that latched in the the COS Latch register while the Change-of-State(COS)
interrupt occurred.

@ Cards Support

7256

@ Syntax

Microsoft C/C++ and Borland C++
116 DIO_GetCOSLatchData(U16 wCardNumber, U16 *CosLData)
Visual Basic
DIO_GetCOSLatchData (ByVal CardNumber As Integer, Value As Long) As Integer

@ Par ameter

CardNumber : The card id of the card that want to perform this operation.

Value : Returns the DI data that latched in the the COS Latch register while the
Change-of-State(COS) interrupt occurred.
PCI-7256: 16-bit data

@ Return Code

NoError, CardNotRegistered, ErrorinvalidCardNumber, ErrorCardNotRegistered,
ErrorFuncNotSupport

2.2.63 DIO_INT1 EventMessage

@ Description

Controls the interrupt sources of INT1 of Dual Interrupt system and notifies the user s
application when an interrupt event occurs. The notification is performed through a
user-specified callback function or the Windows PostMessage API.

@ Cards Support
7230, 7233, 7248, 7249, 7256, 7258, 7296, 7396, 7432, 7433, 8554

@ Syntax
Microsoft C/C++ and Borland C++
116 DIO_INT1_EventMessage (U16 CardNumber, 116 IntlMode, HANDLE
windowHandle, U32 message, void *callbackAddr())
Visual Basic 5
DIO_INT1_EventMessage (ByVal CardNumber As Integer, ByVal IntlMode As
Integer, ByVal windowHandle As Long, ByVal message As Long, ByVal
callbackAddr As Long) As Integer

@ Par ameter

Function Description - 59

CardNumber :
Int1Mode :

The card id of the card that want to be performed this operation.
The interrupt mode of INT1. The valid values:
PCI-7248/cPCI-7248/cPCI-7249R/7296:
INT1_DISABLE : INT1 Disabled
INT1_FP1CO : INT1 by Falling edge of P1CO
INT1_RP1CO_FP1C3: INT1 by P1CO Rising or P1C3 Falling
INT1_EVENT_COUNTER: INT1 by Event Counter down to zero
INT1_ EXT_SIGNAL: INT1 by External Signal
PCI-7230/cPCI-7230/7233/7432/7433:

INT1_DISABLE : INT1 Disabled

INT1_ EXT_SIGNAL: INT1 by External Signal
PCI-7256:

INT1_DISABLE : INT1 Disabled

INT1_COS : INT1 by COS

INT1_CHO . INT1 by CHO
PCI-7258:

INT1_DISABLE : INT1 Disabled

INT1_ EXT_SIGNAL: INT1 by External Signal
PCI-8554:

INT1_DISABLE : INT1 Disabled

INT1_COUT12 : INT1 by Counter #12
INT1_ EXT_SIGNAL: INT1 by External Signal

PCI-7396:
INT1_DISABLE : INT1 Disabled
INT1_COS : INT1 by COS
INT1_FP1CO : INT1 by Falling edge of P1CO

INT1_RP1CO_FP1C3: INT1 by P1CO Rising or P1C3 Falling
INT1_EVENT_COUNTER: INT1 by Event Counter down to zero
INT1_ EXT_SIGNAL: INT1 by External Signal

windowHandle : The handle to the window you want to receive a Windows message

message :

callbackAddr :

@ Return Code

in when the specified INT1 event happens. If windowHandle is O,
no Windows messages are sent.

a message you define. When the specified INT1 event happens,
PCIS-DASK passes message back to you. message can be any
value.

In Windows, you can set message to a value including any
Windows predefined messages (such as WM_PAINT). However, to
define your own message, you can use any value ranging from
WM_USER (0x400) to 0x7fff. This range is reserved by Microsoft
for messages you define.

address of the user callback function. PCIS-DASK calls this
function when the specified INT1 event occurs. If you do not want
to use a callback function, set callbackAddr to O.

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered
ErrorFuncNotSupport

2.2.64 DIO_INT2_EventM essage

@ Description

60 - Function Description

Controls the interrupt sources of INT2 of Dual Interrupt system and notifies the user s
application when an interrupt event occurs. The notification is performed through a
user-specified callback function or the Windows PostMessage API.

@ Cards Support

7230, 7233, 7248, 7249, 7256, 7258, 7296, 7396, 7432, 7433, 8554

@ Syntax
Microsoft C/C++ and Borland C++
116 DIO_INT2_EventMessage (U16 CardNumber, 116 Int2Mode, HANDLE
windowHandle, U32 message, void *callbackAddr())
Visual Basic 5
DIO_INT2_EventMessage (ByVal CardNumber As Integer, ByVal Int2Mode As
Integer, ByVal windowHandle As Long, ByVal message As Long, ByVal
callbackAddr As Long) As Integer

@ Parameter
CardNumber : The card id of the card that want to be performed this operation.
Int2Mode : The interrupt mode of INT2.The valid values:
PCI-7248/cPCI-7248/cPCI-7249R/7296:
INT2_DISABLE : INT2 Disabled
INT2_FP2CO : INT2 by Falling edge of P2CO

INT2_RP2CO_FP2C3: INT2 by P2CO0 Rising or P2C3 Falling

INT2_TIMER_COUNTER: INT2 by Timer Counter down to zero

INT2_ EXT_SIGNAL: INT2 by External Signal
PCI-7230/cPCI-7230/7233/7432/7433/8554:

INT2_DISABLE : INT2 Disabled

INT2_ EXT_SIGNAL: INT2 by External Signal
PCI-7256:

INT2_DISABLE : INT2 Disabled

INT2_CH1 : INT2 by CH1
PCI-7258:

INT2_DISABLE : INT2 Disabled

INT2_ EXT_SIGNAL: INT2 by External Signal
PCI-7396:

INT2_DISABLE : INT2 Disabled

INT2_COS : INT2 by COS

INT2_FP2CO : INT2 by Falling edge of P2C0O

INT2_RP2CO_FP2C3: INT2 by P2CO0 Rising or P2C3 Falling
INT2_TIMER_COUNTER: INT2 by Timer Counter down to zero
INT2_ EXT_SIGNAL: INT2 by External Signal

windowHandle : The handle to the window you want to receive a Windows message
in when the specified INT2 event happens. If windowHandle is O,
no Windows messages are sent.

message : a message you define. When the specified INT2 event happens,
PCIS-DASK passes message back to you. message can be any
value.

In Windows, you can set message to a value including any
Windows predefined messages (such as WM_PAINT). However, to
define your own message, you can use any value ranging from
WM_USER (0x400) to O0x7fff. This range is reserved by Microsoft
for messages you define.

Function Description - 61

callbackAddr : address of the user callback function. PCIS-DASK calls this

function when the specified INT2 event occurs. If you do not want
to use a callback function, set callbackAddr to O..

@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered

ErrorFuncNotSupport

2.2.65 DIO_PortConfig

@ Description

Informs PCIS-DASK library of the port selected and the direction (Input or output)

setting of the selected port.

@ Cards Support

7248, 7249, 7296, 7396

@ Syntax

Microsoft C/C++ and Borland C++
116 DIO_PortConfig (U16 CardNumber, U16 Port, U16 Direction)

Visual Basic

DIO_PortConfig (ByVal CardNumber As Integer, ByVal Port As Integer, ByVal

Direction As Integer) As Integer

@ Par ameter

CardNumber : The card id of the card that want to perform this operation.

Port : The port selected. The valid value:
PCI-7248/cPCI-7248:

Channel_P1A, Channel_P1B,
Channel_P1C, Channel P1CL
Channel_P1CH, Channel_P2A,
Channel_P2B, Channel_P2C,
Channel_P2CL, Channel P2CH
cPCI-7249R:
Channel_P1A, Channel_P1B,
Channel_P1C, Channel P1CL
Channel_P1CH, Channel_P2A,
Channel_P2B, Channel_P2C,
Channel_P2CL, Channel_P2CH
PCI-7296:
Channel_P1A, Channel_P1B,
Channel_P1C, Channel P1CL,
Channel_P1CH, Channel_P2A,
Channel_P2B, Channel_P2C,
Channel_P2CL, Channel_P2CH,
Channel_P3A, Channel_P3B,
Channel_P3C, Channel P3CL,
Channel_P3CH, Channel P4A,
Channel_P4B, Channel_P4C,
Channel_P4CL, Channel_P4CH
PCI-7396:
Channel_P1A, Channel_P1B,
Channel_P1C, Channel_P1,

62 - Function Description

Direction :

@ Return Code

Channel_P1E,

Channel_P2A, Channel_P2B,
Channel_P2C, Channel_P2,
Channel_P2E,

Channel_P3A, Channel_P3B,
Channel_P3C, Channel_P3,
Channel_P3E,

Channel_P4A, Channel_P4B,
Channel_P4C, Channel_P4,
Channel_P4E

Note: 1. The value, Channel_Pn, for argument Port is defined as all of the

ports (Port A, B and C) in channel n.

2. If the port argument of DIO_PortConfigis set to Channel_PnE, the
channel n will be configured as INPUT_PORT (the argument
Directionis of no use here) and the digital input of channel nis
controlled by external clock.

The port direction of PIO port. The valid value:

INPUT_PORT
OUTPUT_PORT

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
ErrorinvalidloChannel

2.2.66 DIO_SetCOSInterrupt

@ Description

This functions enable/disables the COS (Change Of State) interrupt detection
capability of the specified ports.

@ Cards Support

7396, 7256
@ Syntax

Microsoft C/C++ and Borland C++
116 DIO_SetCOSiInterrupt (U16 CardNumber, U16 Channel_no, U16 ctlA, U16 ctIB,
U16 ctIC)

Visual Basic

DIO_SetCOSiInterrupt (ByVal wCardNumber As Integer, ByVal Channel_no As
Integer, ByVal ctlA As Integer, ByVal ctIB As Integer, ByVal ctIC As
Integer) As Integer

@ Parameter

CardNumber : The card id of the card that want to be performed this operation.

Channel_no :

The channel number to be enabled or disabled COS detection
capability. The valid port numbers are:

PCI-7396:

Channel_P1:
Channel_P2:
Channel_P3:
Channel_P4:

PCI-7256: 0

Port 1
Port 2
Port 3
Port 4

Function Description -

63

CctlA : The control value for Port A of the channel defined by argument
Channel_no or the control value for the port defined by Channel_no.
The valid values:
PCI-7396:
0: disabled
1: enabled

PCI-7256:

Each bit of the value of ctrlA controls one DI channel. The '0' value
of the bit value enable the COS function of the corresponding
channel, and the '1' value of the bit value disable the COS function
of the corresponding channel. The valid values for ctrlA :
0 through 65535
ctiB : The control value for Port B of the channel defined by argument

Channel_no.

The valid values:

PCI-7396:
0: disabled
1: enabled

PCI-7256: Not Needed

ctiC : The control value for Port C of the channel defined by argument
Channel_no.
The valid values:
PCI-7396:
0: disabled
1: enabled

PCI-7256: Not Needed

@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered
ErrorFuncNotSupport

2.2.67 DIO_SetDuallnterrupt

@ Description

This function informs PCIS-DASK library of the interrupt mode of two interrupt sources
of dual-interrupt system and returns dual interrupt events. If an interrupt is generated,
the corresponding interrupt event will be signaled. The application can use Win32 wait
functions, such as WaitForSingleObject or WaitForMultipleObjects to check the
interrupt event status.

@ Cards Support
7230, 7233, 7248, 7249, 7256, 7258, 7296, 7396, 7432, 7433, 8554

@ Syntax
Microsoft C/C++ and Borland C++
116 DIO_SetDuallnterrupt (U16 CardNumber, 116 Int1Mode, 116 Int2Mode, HANDLE
*hEvent)
Visual Basic
DIO_SetDuallnterrupt (ByVal CardNumber As Integer, ByVal IntIMode As Integer,
ByVal Int2Mode As Integer, hEvent As Long) As Integer

- Function Description

@ Par ameter

CardNumber : The card id of the card that want to be performed this operation.
IntlMode : The interrupt mode of INT1. The valid values:
PCI-7248/cPCI-7248/cPCI7249R//7296:
INT1_DISABLE : INT1 Disabled
INT1_FP1CO : INT1 by Falling edge of P1CO
INT1_RP1CO_FP1C3: INT1 by P1CO Rising or P1C3 Falling
INTL_EVENT_COUNTER: INT1 by Event Counter down to zero
PCI-7230/cPCI-7230/7233/7432/7433:

INT1_DISABLE : INT1 Disabled

INT1_ EXT_SIGNAL: INT1 by External Signal
PCI-7256:

INT1_DISABLE : INT1 Disabled

INT1_COS : INT1 by COS

INT1_CHO : INT1 by CHO
PCI-7258:

INT1_DISABLE : INT1 Disabled

INT1_ EXT_SIGNAL: INT1 by External Signal
PCI-8554:

INT1_DISABLE : INT1 Disabled

INT1_ EXT_SIGNAL: INT1 by External Signal
INT1_COUT12 : INT1 by Counter #12

PCI-7396:
INT1_DISABLE : INT1 Disabled
INT1_COS : INT1 by COS
INT1_FP1CO : INT1 by Falling edge of P1CO

INT1_RP1CO_FP1C3: INT1 by P1CO Rising or P1C3 Falling
INT1_EVENT_COUNTER: INT1 by Event Counter down to zero
Int2Mode : The interrupt mode of INT2.The valid values:

PCI-7248/cPCI-7248/cPCI-7249R/7296:

INT2_DISABLE : INT2 Disabled

INT2_FP2CO : INT2 by Falling edge of P2C0O

INT2_RP2CO_FP2C3: INT2 by P2CO0 Rising or P2C3 Falling

INT2_TIMER_COUNTER: INT2 by Timer Counter down to zero
PCI-7230/cPCI-7230/7233/7432/7433/8554:

INT2_DISABLE : INT2 Disabled

INT2_ EXT_SIGNAL: INT2 by External Signal
PCI-7256:

INT2_DISABLE : INT2 Disabled

INT2_CH1 : INT2 by CH1
PCI-7258:

INT2_DISABLE : INT2 Disabled

INT2_ EXT_SIGNAL: INT2 by External Signal
PCI-7396:

INT2_DISABLE : INT2 Disabled

INT2_COS : INT2 by COS

INT2_FP2CO : INT2 by Falling edge of P2CO

INT2_RP2CO0_FP2C3 : INT2 by P2C0 Rising or P2C3 Falling
INT2_TIMER_COUNTER: INT2 by Timer Counter down to zero
hEvent : dual interrupt event handles returned. The status of a dual interrupt
event indicates that an interrupt is generated or not for the cards

Function Description - 65

comprising dual interrupts system (PCI-7230/cPCI-7230, PCI-7233,
PCI-7248/cPCI-7248, cPCI-7249R, PCI-7256, PCI-7258, PCI-7296,
PCI-7396, PCI-7432/cPCI-7432/cPCI7432R, and PCI-7433/cPCI-
7433/cPCI7433R).

@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered
ErrorFuncNotSupport

2.2.68 DIO_T2 EventMessage

@ Description

Controls the Timer2 interrupt and notifies the user s application when an interrupt
event occurs. The naotification is performed through a user-specified callback function
or the Windows PostMessage API.

@ Cards Support
7300A

@ Syntax
Microsoft C/C++ and Borland C++
116 DIO_T2_EventMessage (U16 CardNumber, 116 T2En, HANDLE windowHandle,
U32 message, void *callbackAddr())
Visual Basic 5
DIO_ AUXDI _EventMessage (ByVal CardNumber As Integer, ByVal T2En As

Integer, ByVal windowHandle As Long, ByVal message As Long, ByVal
callbackAddr As Long) As Integer

@ Parameter
CardNumber : The card id of the card that want to be performed this operation.
T2En : The control value for Timer2 interrupt.

The valid values:

0: disabled

1: enabled

windowHandle : The handle to the window you want to receive a Windows message
in when the specified Timer2 event happens. If windowHandle is O,
no Windows messages are sent.

message : a message you define. When the specified Timer2 event happens,
PCIS-DASK passes message back to you. message can be any
value.

In Windows, you can set message to a value including any
Windows predefined messages (such as WM_PAINT). However, to
define your own message, you can use any value ranging from
WM_USER (0x400) to Ox7fff. This range is reserved by Microsoft
for messages you define.
callbackAddr : address of the user callback function. PCIS-DASK calls this
function when the specified Timer2 event occurs. If you do not want
to use a callback function, set callbackAddr to O.

@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered

66 -

Function Description

ErrorFuncNotSupport

2.2.69 DO_7200_Config

@ Description
Informs PCIS-DASK library of the trigger source and output mode selected for

PCI7200/cPCI17200 with card ID CardNumber. You must call this function before
calling function to perform continuous digital output operation.

@ Cards Support
7200

@ Syntax
Microsoft C/C++ and Borland C++

116 DO_7200_Config (U16 CardNumber, U16 TrigSource, U16 OutReqEn, U16
OutTrigSig)

Visual Basic
DO_7200_Config (ByVal CardNumber As Integer, ByVal TrigSource As Integer,
ByVal OutRegEn As Integer, ByVal OutTrigSig As Integer) As Integer
@ Parameter

CardNumber : The card id of the card that want to perform this operation.

TrigSource : The trigger source for continuous digital input.
Valid values:

TRIG_INT_PACER: on-board Programmable pacer

TRIG_HANDSHAKE: handshaking
Output REQ Enable :

OREQ_ENABLE: output REQ is enabled, an O_REQ strobe is

generated after output data is strobe
OREQ_DISABLE: output REQ is disable
Output Trigger Signal :

OTRIG_HIGH: O_TRIG signal goes high
OTRIG_LOW: O_TRIG signal goes low

@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

2.2.70 DO_7300A_Config

@ Description

Informs PCIS-DASK library of the trigger source, port width, etc. selected for
PCI7300A Rev.A/cPCI7300A Rev.A card with card ID CardNumber. You must call this
function before calling function to perform continuous digital output operation.

@ Cards Support

7300A Rev.A

@ Syntax

Microsoft C/C++ and Borland C++

116 DO_7300A_Config (U16 CardNumber, U16 PortWidth, U16 TrigSource, U16
WaitStatus, U16 Terminator, U16 O_REQ_Pol)

Function Description -

67

Visual Basic
DO_7300A_Config (ByVal CardNumber As Integer, ByVal PortWidth As Integer,
ByVal TrigSource As Integer, ByVal WaitStatus As Integer, ByVal
Terminator As Integer, ByVal O_REQ_Pol As Integer) As Integer

@ Par ameter

CardNumber : The card id of the card that want to perform this operation.
Portwidth : The width of digital output port (PORT B). The valid value is 0, 8, 16,
or 32.
TrigSource : The trigger mode for continuous digital output.
Valid values:
TRIG_INT_PACER: on-board programmable pacer timerl
TRIG_CLK_10MHz: 10MHz clock
TRIG_CLK_20MHz: 20MHz clock
TRIG_HANDSHAKE: handshaking mode
WaitStatus : DO Wait Status, the valid values are:
P7300_WAIT_NO:digital output starts immediately
P7300_WAIT_TRG:digital output waits rising or falling edge of
O_TRG to start
P7300_WAIT_FIFO:delay output data until FIFO is not almost empty
P7300_WAIT_BOTH:delay output data until O_TRG active and
FIFO is not almost empty
Terminator : PortB Terminator On/Off, the valid values are:
P7300_TERM_ON:terminator on
P7300_TERM_OFF:terminator off
O_REQ_Pol : O_REQ Polarity. This function is not implemented on PCI-7300A
Rev.A/cPCI-7300A Rev.A card. You can ignore this argument.

@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

2.2.71 DO_7300B_Config

@ Description

Informs PCIS-DASK library of the trigger source, port width, etc. selected for
PCI7300A Rev.B/cPCI7300A Rev.B card with card ID CardNumber. You must call this
function before calling function to perform continuous digital output operation.

@ Cards Support
7300A Rev.B

@ Syntax
Microsoft C/C++ and Borland C++
116 DO_7300B_Config (U16 CardNumber, U16 PortWidth, U16 TrigSource, U16
WaitStatus, U16 Terminator, U16 O_Cntrl_Pol, U32 FifoThreshold)
Visual Basic
DO_7300B_Config (ByVal CardNumber As Integer, ByVal PortWidth As Integer,
ByVal TrigSource As Integer, ByVal WaitStatus As Integer, ByVal
Terminator As Integer, ByVal O_Cntrl_Pol As Integer, ByVal FifoThreshold
As Long) As Integer

@ Parameter

68 - Function Description

CardNumber : The card id of the card that want to perform this operation.
Portwidth : The width of digital output port (PORT B). The valid value is 0, 8, 16,
or 32.
TrigSource : The trigger mode for continuous digital output.
Valid values:
TRIG_INT_PACER: on-board programmable pacer timerl
TRIG_CLK_10MHz: 10MHz clock
TRIG_CLK_20MHz: 20MHz clock
TRIG_HANDSHAKE: handshaking mode
TRIG_DO_CLK_TIMER_ACK: burst handshaking mode by using
timerl output as output clock
TRIG_DO_CLK_10M_ACK: burst handshaking mode by using
10MHz clock as output clock
TRIG_DO_CLK_20M_ACK: burst handshaking mode by using
20MHz clock as output clock
WaitStatus : DO Wait Status, the valid values are:
P7300_WAIT_NO:digital output starts immediately
P7300_WAIT_TRG:digital output waits rising or falling edge of
O_TRG to start
P7300_WAIT_FIFO:delay output data until FIFO is not almost empty
P7300_WAIT_BOTH:delay output data until O_TRG active and
FIFO is not almost empty
Terminator : PortB Terminator On/Off, the valid values are:
P7300_TERM_ON:terminator on
P7300_TERM_OFF:terminator off
O_Cntrl_Pol : The polarity configuration. This argument is an integer expression
formed from one or more of the manifest constants defined in
DASK.H. There are three groups of constants:
(1) DOREQ
P7300_DOREQ_POS: DOREQ signal is rising edge active
P7300_DOREQ_NEG: DOREQ signal is falling edge active
(2) DOACK
P7300_DOACK_POS: DOACK signal is rising edge active
P7300_DOACK_NEG: DOACK signal is falling edge active
(3) DOTRIG
P7300_DOTRIG_POS: DOTRIG signal is rising edge active
P7300_DOTRIG_NEG: DOTRIG signal is falling edge active
FifoThreshold :programmable almost empty threshold of both PORTB FIFO and
PORTA FIFO (if output port width is 32).

@ Return Code
NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

2.2.72 DO_AsyncCheck
@ Description
Check the current status of the asynchronous digital output operation.

@ Cards Support
7200, 7300A

Function Description -

69

@ Syntax
Microsoft C/C++ and Borland C++
116 DO_AsyncCheck (U16 CardNumber, BOOLEAN *Stopped, U32 *AccessCnt)
Visual Basic
DO_AsyncCheck (ByVal CardNumber As Integer, Stopped As Byte, AccessCnt As
Long) As Integer
@ Parameter

CardNumber : The card id of the card that performs the asynchronous operation.

Stopped : Whether the asynchronous digital output operation has completed. If
Stopped = TRUE, the digital output operation has stopped. Either the
number of digital output indicated in the call that initiated the
asynchronous digital output operation has completed or an error has
occurred. If Stopped = FALSE, the operation is not yet complete.
(constants TRUE and FALSE are defined in DASK.H)

AccessCnt: The number of digital output data that has been written at the time the
call to DO_AsyncCheck().

@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

2.2.73 DO_AsyncClear

@ Description
Stop the asynchronous digital output operation.

@ Cards Support
7200, 7300A

@ Syntax

Microsoft C/C++ and Borland C++
116 DO_AsyncClear (U16 CardNumber, U32 *AccessCnt)

Visual Basic
DO_AsyncClear (ByVal CardNumber As Integer, AccessCnt As Long) As Integer

@ Parameter

CardNumber : The card id of the card that performs the asynchronous operation.

AccessCnt: The number of digital output data that has been transferred at the time
the call to DO_AsyncCl ear ().

@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered,
ErrorFuncNotSupport

2.2.74 DO_AsyncMultiBuffer NextReady

@ Description

Checks whether the next buffer is ready for new data during an asynchronous multi-
buffered digital output operation. The returned Bufferld is the index of the most
recently available (newest available) buffer.

70 - Function Description

@ Cards Support
7300A

@ Syntax
Microsoft C/C++ and Borland C++
116 DO_AsyncMultiBufferNextReady (U16 CardNumber, BOOLEAN *bNextReady,
U16 *wBufferld)
Visual Basic
DO_AsyncMultiBufferNextReady (ByVal CardNumber As Integer, NextReady As
Byte, Bufferld As Integer) As Integer

@ Parameter

CardNumber : The card id of the card that performs the asynchronous multi-buffered
operation.

NextReady : Whether the next buffer is ready for new data.

Bufferld : Returns the index of the ready buffer.

@ Return Code
NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

2.2.75 DO_ContMultiBuffer Setup

@ Description

This function set up the buffer for multi-buffered digital output. The function has to be
called repeatedly to setup all of the data buffers (at most 8 buffers).

@ Cards Support
7300A

@ Syntax
Microsoft C/C++ and Borland C++
116 DO_ContMultiBufferSetup (U16 CardNumber, void *pwBuffer, U32
dwWriteCount, U16 *Bufferld)

Visual Basic
DO_ContMultiBufferSetup (ByVal CardNumber As Integer, Buffer As Any, ByVal
WriteCount As Long, Bufferld As Integer) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.
Buffer : The starting address of the memory to contain the output data.
WriteCount : The size (in samples) of the buffer and its value must be even.
Bufferld : Returns the index of the buffer currently set up.

@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
ErrorTransferCountToolLarge , ErrorContloNotAllowed

2.2.76 DO_ContMultiBuffer Start

@ Description

Function Description -

71

This function starts multi-buffered continuous digital output on the specified digital
output port at a rate as close to the rate you specified.

@ Cards Support

7300A Rev.B

@ Syntax

Microsoft C/C++ and Borland C++
116 DO_ContMultiBufferStart (U16 CardNumber, U16 Port, F64 SampleRate)
Visual Basic

DO_ContMultiBufferStart (ByVal CardNumber As Integer, ByVal Port As Integer,
ByVal SampleRate As Double) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.

Port : Digital output port number. For PCI-7300A/cPCI-7300A, this argument
must be set to 0.

SampleRate : The sampling rate you want for digital output in hertz (samples per

second). Your maximum rate depends on the card type and your
computer system. This argument is only useful if the DO trigger mode

was set as internal programmable pacer (TRIG_INT_PACER) by
calling DO_7300B_Confi g().

@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
ErrorinvalidloChannel, ErrorContloNotAllowed

2.2.77 DO_ContStatus

@ Description

While performing continuous DO conversions, this function is called to get the DO

status. Please refer to the manual for your device for the DO status the device might
meet.

@ Cards Support
7200, 7300A

@ Syntax

Microsoft C/C++ and Borland C++

116 DO_ContStatus (U16 CardNumber, U16 *Status)
Visual Basic

DO_ContStatus (ByVal CardNumber As Integer, Status Integer) As Integer
@ Parameter

CardNumber : The card id of the card that want to perform this operation.

Status : The continuous DO status returned. The description of the parameter
Status for various card types is the following:

PCI7200 :

bit 0 : '1' indicates D/l FIFO is Full (Over-Run)

bit 1 : 1" indicates D/O FIFO is Empty (Under-Run)
bit 2 ~ 15 : not used

PCI7300A_RevA:

- Function Description

bit 0 : '1" indicates DO FIFO is empty during data output and some output
data were written twice. Writes‘ 1' to clear this bit

bit 1 : '1" indicates DO FIFO is full

bit 2 : '1' indicates DO FIFO is empty

bit 3 ~ 15 : not used

PCI7300A_RevB:
bit 0 : '1"indicates DO FIFO is empty during data output and some output
data were written twice. Writes' 1' to clear this bit
bit 1 : '1" indicates DO FIFO is full
bit 2 : '1' indicates DO FIFO is empty
bit 3 ~ 15 : not used

@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered

2.2.78 DO_ContWritePort

@ Description

This function performs continuous digital output on the specified digital output port at a
rate as close to the rate you specified.

@ Cards Support

7200, 7300A

@ Syntax
Microsoft C/C++ and Borland C++
116 DO_ContWritePort (U16 CardNumber, U16 Port, void *Buffer, U32 WriteCount,
U16 Iterations, F32 SampleRate, U16 SyncMode)
Visual Basic
DO_ContWritePort (ByVal CardNumber As Integer, ByVal Port As Integer, Buffer As
Any, ByVal WriteCount As Long, ByVal Iterations As Integer, ByVal
SampleRate As Single, ByVal SyncMode As Integer) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.

Port : Digital output port number. For PCI-7200/cPCI-7200 and PCI-
7300A/cPCI-7300A, this argument must be set to 0.

Buffer : The starting address of the memory containing the output data. This
memory must have been allocated for enough space to store output
data.

WriteCount : the number of output operation to be performed.

Iterations : the number of times the data in Buffer to output to the Port. A value of

0 means that digital output operation proceeds indefinitely. If the
digital output operation is performed synchronously, this argument
must be set as 1.

SampleRate : The sampling rate you want for digital output in hertz (samples per
second). Your maximum rate depends on the card type and your
computer system. This argument is only useful if the DO trigger mode
was set as internal programmable pacer (TRIG_INT_PACER and
TRIG_DO_CLK_TIMER_ACK) by calling DO_7200_Confi g() or

Function Description -

73

DO _7300_Confi g() . For the other settings, you have to set this
argument as CLKSRC_EXT_SampRate.
SyncMode : Whether this operation is performed synchronously or
asynchronously.
Valid values:
SYNCH_OP: synchronous digital input, that is, the function does
not return until the digital input operation complete.
ASYNCH_OP:asynchronous digital input operation

@ Return Code
NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
ErrorinvalidloChannel, ErrorTransferCountTooLarge , ErrorContloNotAllowed

2.2.79 DO_InitialMemoryAllocated

@ Description

This function returns the available memory size for continuous digital output in the
device driver of this card. The continuous digital output transfer size can not exceed
this size.

@ Cards Support
7200, 7300A
@ Syntax

Microsoft C/C++ and Borland C++
116 DO_InitialMemoryAllocated (U16 CardNumber, U32 *MemSize)

Visual Basic
DO_InitiaIMemoryAllocated (ByVal CardNumber As Integer, MemSize As Long) As

Integer
@ Parameter
CardNumber : The card id of the card that want to perform this operation.
MemSize : The available memory size in device driver of this card.

The unit is KB (1024 bytes).

@ Return Code
NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered

2.2.80 DO_PGStart

@ Description
This function performs pattern generation for digital output with the data stored in
Buffer at a rate as close to the rate you specified.
@ Cards Support
7300A
@ Syntax

Microsoft C/C++ and Borland C++
116 DO_PGStart (U16 CardNumber, void *Buffer, U32 WriteCount, F64 SampleRate)

Visual Basic

74 - Function Description

DO_PGstart (ByVal CardNumber As Integer, Buffer As Any, ByVal WriteCount As
Long, ByVal SampleRate As Double) As Integer
@ Parameter

CardNumber : The card id of the card that want to perform this operation.

Buffer : The starting address of the memory containing the output data of
pattern generation. This memory must have been allocated for
enough space to store output data.

WriteCount : the number of pattern generation output samples.

SampleRate : The sampling rate you want for digital output in hertz (samples per
second). Your maximum rate depends on the card type and your
computer system. This argument is only useful if the DO trigger mode

was set as internal programmable pacer (TRIG_INT_PACER) by
calling DO_7300_Confi g() .

@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
ErrorTransferCountTooLarge

2.281 DO_PGStop

@ Description

This function stops pattern generation for digital output operation.
@ Cards Support

7300A

@ Syntax

Microsoft C/C++ and Borland C++
116 DO_PGStop (U16 CardNumber)

Visual Basic
DO_PGStop (ByVal CardNumber As Integer) As Integer

@ Parameter
CardNumber : The card id of the card that want to perform this operation.
@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

2.2.82 DO _ReadLine

@ Description

Read back the digital logic state of the specified digital output line in the specified port.
@ Cards Support

6208, 6308, 7200, 7248, c7249R, 7296, 7300A, 7396, 7250/51, 7252, 7256, 7258,
9116, 9118

@ Syntax
Microsoft C/C++ and Borland C++
116 DO_ReadLine (U16 CardNumber, U16 Port, U16 Line, U16 *State)

Visual Basic

Function Description -

75

DO_ReadLine (ByVal CardNumber As Integer, ByVal Port As Integer, ByVal Line As
Integer, State As Integer) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.
Port : Digital output port number. The valid value:
PCI-6208V/16V/08A: 0
PCI-6308V/08A: 0
PCI-7200: 0
cPCI-7200: 0, 1 (auxiliary output port)
PCI-7250/51: 0 through 3
cPCI-7252: 0
PCI-7256: 0
PCI-7258: 0, 1
cPCI-9116: 0
PCI-9118DG/HG/HR: 0
PCI-7300A/cPCI-7300A: 1 (auxiliary output port)
PCI-7248/96, cPCI-7249R, PCI-7396: refer to the function
DI_ReadLine section.
Line : The digital line to be accessed. The valid value:
PCI-6208V/16V/08A: 0 through 3
PCI-6308V/08A: 0 through 3
PCI-7200/cPCI-7200: 0 through 31 (for port 0)
0 through 3 (auxiliary output port of cPCI-7200)
PCI-7250/51: 0 through 7
cPCI-7252: 0 through 7
PCI-7256: 0 through 15
PCI-7258: 0 through 15
PCI-7300A/cPCI-7300A: 0 through 3
cPCI-9116: 0 through 7
PCI-9118DG/HG/HR: 0 through 3
PCI-7248/96, cPCI-7249R, PCI-7396: refer to the function
DI_ReadLine section.
State : Returns the digital logic state, 0 or 1, of the specified line.

@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
ErrorinvalidloChannel

2.2.83 DO_ReadPort

@ Description

Read back the output digital data from the specified digital output port.

@ Cards Support

6208, 6308, 7200, 7248, c7249R, 7296, 7300A, 7396, 7250/51, 7252, 7256, 7258,
9116, 9118

@ Syntax
Microsoft C/C++ and Borland C++
116 DO_ReadPort (U16 CardNumber, U16 Port, U32 *Value)

76 - Function Description

Visual Basic
DI_ReadPort (ByVal CardNumber As Integer, ByVal Port As Integer, Value As Long)
As Integer

@ Par ameter

CardNumber : The card id of the card that want to perform this operation.
Port : Digital output port number. The valid value:
PCI-6208V/16V/08A: 0
PCI-6308V/08A: 0
PCI-7200: 0
cPCI-7200: 0, 1 (auxiliary output port)
PCI-7250/51: 0 through 3
cPCI-7252: 0
PCI-7256: 0
PCI-7258: 0, 1
PCI-9118DG/HG/HR: 0
cPCI-9116: O
PCI-7300A/cPCI-7300A: 1 (auxiliary output port)
PCI-7248/96, cPCI-7249R, PCI-7396: refer to the function
DI_ReadPort section.
Value : Returns the digital data read from the specified output port.
PCI-6208V/16V/08A: 4-bit data
PCI-6308V/08A: 4-bit data
PCI-7200/cPCI-7200: 32-bit data (for port 0)
4-bit data (for auxiliary output port of cPCI-7200)
PCI-7250/51: 8-bit data
cPCI-7252: 8-bit data
PCI-7256: 16-bit data
PCI-7258: 16-bit data
PCI-7300A/cPCI-7300A: 4-bit data
cPCI-9116: 8-bit data
PCI-9118DG/HG/HR: 4-bit data
PCI-7248/96, cPCI-7249R, PCI-7396: refer to the function
DI_ReadPort section.

@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
ErrorinvalidloChannel

2.2.84 DO_WriteExtTrigLine

@ Description

Sets the digital output trigger line to the specified state. This function is only available
for PCI-7200.

@ Cards Support

7200

@ Syntax
Microsoft C/C++ and Borland C++

116 DO_WriteExtTrigLine (U16 CardNumber, U16 Value)
Visual Basic

Function Description - 77

DO_WriteExtTrigLine(ByVal CardNumber As Integer, ByVal Value As Integer) As
Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.
Value : The new digital logic state, 0 or 1.

@ Return Code
NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

2.2.85 DO_WriteLine

@ Description

Sets the specified digital output line in the specified digital port to the specified state.
This function is only available for these cards that support digital output read-back
functionality.

@ Cards Support

6208, 6308, 7200, 7248, c7249R, 7296, 7300A, 7396, 7250/51, 7252, 7256, 7258,
9116, 9118

@ Syntax
Microsoft C/C++ and Borland C++
116 DO_WriteLine (U16 CardNumber, U16 Port, U16 Line, U16 State)
Visual Basic
DO_WriteLine(ByVal CardNumber As Integer, ByVal Port As Integer, ByVal DoLine
As Integer, ByVal State As Integer) As Integer

@ Par ameter

CardNumber : The card id of the card that want to perform this operation.
Port : Digital output port number. The valid value:
PCI-6208V/16V/08A: 0
PCI-6308V/08A: 0
PCI-7200: 0
cPCI-7200: 0, 1 (auxiliary output port)
PCI-7250/51: 0 through 3
cPCI-7252: 0
PCI-7256: 0
PCI-7258: 0, 1
PCI-9118DG/HG/HR: 0
cPCI-9116: 0
PCI-7300A/cPCI-7300A: 1 (auxiliary output port)
PCI-7248/96, cPCI-7249R, PCI-7396: refer to the function
DI_ReadLine section.
Line : The digital line to write to. The valid value:
PCI-6208V/16V/08A: 0 through 3
PCI-6308V/08A: 0 through 3
PCI-7200/cPCI-7200: 0 through 31(for port 0)
: 0 through 3 (auxiliary output port of cPCI-7200)
PCI-7250/51: O through 7
cPCI-7252: 0 through 7
PCI-7256: 0 through 15

78 -

Function Description

PCI-7258: 0 through 15
PCI-7300A/cPCI-7300A: 0 through 3
PCI-9118DG/HG/HR: 0 through 3
cPCI-9116: 0 through 7
PCI-7248/96, cPCI-7249R, PCI-7396: refer to the function
DI_ReadLine section.

State : The new digital logic state, 0 or 1.

@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
ErrorinvalidloChannel

2.2.86 DO_WritePort

@ Description
Writes digital data to the specified digital output port.

@ Cards Support

6208V/16V/08A, 6308V/08A, 7200, 7230, 7234, 7248, 7249, 7250/51, 7252, 7256,
7258, 7296, 7300A, 7349, 7432, 7433, 7434, 8554, 9111, 9112, 9116, 9118

@ Syntax

Microsoft C/C++ and Borland C++
116 DO_WritePort (U16 CardNumber, U16 Port, U32 Value)

Visual Basic
DO_WritePort (ByVal CardNumber As Integer, ByVal Port As Integer, ByVal Value
As Long) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.
Port : Digital output port number. The cards that support this function and

their corresponding valid value are as follows:

PCI-6208V/16V/08A: 0

PCI-6308V/08A: 0

PCI-7200: 0

cPCI-7200: 0, 1 (auxiliary digital output port)

PCI-7230/cPCI-7230: 0

PCI-7234: 0

PCI-7248/cPCl-7248:
Channel_P1A, Channel_P1B,
Channel_P1C, Channel_P1CL,
Channel_P1CH, Channel_P2A,
Channel_P2B, Channel_P2C,
Channel_P2CL, Channel P2CH

cPCI-7249R:
Channel_P1A, Channel_P1B,
Channel_P1C, Channel _P1CL,
Channel_P1CH, Channel_P2A,
Channel_P2B, Channel_P2C,
Channel_P2CL, Channel_P2CH

PCI-7250/51: 0 through 3

Function Description - 79

Value :

cPCIl-7252: 0

PCI-7256: 0

PCI-7258: 0, 1

PCI-7296:
Channel_P1A, Channel_P1B,
Channel_P1C, Channel_P1CL,
Channel_P1CH, Channel_P2A,
Channel_P2B, Channel_P2C,
Channel_P2CL, Channel_P2CH,
Channel_P3A, Channel_P3B,
Channel_P3C, Channel_P3CL,
Channel_P3CH, Channel_P4A,
Channel_P4B, Channel_P4C,

Channel_P4CL,

Channel_P4CH

PCI-7300A/cPCI-7300A: 1 (auxiliary digital output port)
PCI-7396:

Channel_P1A, Channel_P1B,
Channel_P1C, Channel _P1,
Channel_P2A, Channel _P2B,
Channel_P2C, Channel_P2
Channel_P3A, Channel_P3B,
Channel_P3C, Channel _P3,
Channel_P4A, Channel_P4B,
Channel_P4C, Channel_P4

PCI-7432/cPCI-7432: 0

cPCI-7432R: 0, P7432R_DO_LED

cPCI-7433R: P7433R_DO_LED

PCI-7434/cPCI-7434: PORT_DO_LOW, PORT_DO_HIGH
cPCI-7434R: PORT_DO_LOW, PORT_DO_HIGH, P7434R_DO_LED
PCI-8554: 0

PCI-9111: P9111 CHANNEL_DO, P9111 CHANNEL_EDO
PCI-9112/cPCI-9112: 0

cPCI-9116: 0

PCI-9118: 0

PCI-9114: 0

Note: The value, Channel_Ph, for argument Port is defined as all of the ports
(Port A, B and C) in channel n.

Digital data that is written to the specified port.

PCI-6208V/16V/08A: 4-bit data

PCI-6308V/08A: 4-bit data

PCI-7200/cPCI-7200: 32-bit data (for port 0)
4-bit data (for auxiliary output port of cPCI-7200)

PCI-7230/cPCI-7230: 16-bit data

PCI-7234: 32-bit data

PCI-7248/cPCI-7248: 8-bit data

cPCI-7249R: 8-bit data

PCI-7250/51: 8-bit data

cPCI-7252: 8-bit data

PCI-7256: 16-bit data

80 - Function Description

PCI-7258: 16-bit data

PCI-7296: 8-bit data

PCI-7300A/cPCI-7300A: 4-bit data

PCI-7396: 24-bit data (for Channel_PnT, where n is the channel number) or
8-bit data (for Channel_PnA, Channel_PB, Channel_PnC , where n is

the channel number)

PCI-7432/cPCI-7432/cPCI-7432R: 32-bit data

cPCI-7433R: 32-bit data

PCI-7434/cPCI-7434/cPCI-7434R: 32-bit data

PCI-8554: 8-bit data

PCI-9111: 16-bit data (for P9111_CHANNEL_DO) or
4-bit data (for P9111_CHANNEL_EDO)

PCI-9112/cPCI-9112: 16-bit data

PCI-9114: 16-bit data

cPCI-9116: 8-bit data

PCI-9118: 4-bit data

@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered
ErrorFuncNotSupport, ErrorinvalidioChannel

2.2.87 EDO_9111 Config

@ Description

Informs PCIS-DASK library of the mode of EDO channels for the PCI-9111 card with
card ID CardNumber.

@ Cards Support
9111

@ Syntax
Microsoft C/C++ and Borland C++
116 EDO_9111 Config (U16 CardNumber, U16 EDO_Fun)
Visual Basic
EDO_9111 Config (ByVal CardNumber As Integer, ByVal EDO_Fun As Integer) As
Integer

@ Par ameter

CardNumber : The card id of the card that want to perform this operation.
EDO_Fun: The mode of EDO ports. The valid modes are:
P9111 EDO_INPUT: EDO channels are used as input channels
P9111 EDO_OUT_EDO: EDO channels are used as output
channels
P9111 EDO_OUT_CHN: EDO channels are used as channel
number output

@ Return Code
NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

2.2.88 GCTR_Read

Function Description - 81

@ Description

Reads the counter value of the general-purpose counter without disturbing the
counting process.

@ Cards Support

9116

@ Syntax
Microsoft C/C++ and Borland C++

116 GCTR_Read (U16 CardNumber, U16 GCtr, U32 *Value)
Visual Basic

GCTR_Read (ByVal CardNumber As Integer, ByVal GCtr As Integer, Value As
Long) As Integer

@ Par ameter
CardNumber : The card id of the card that want to perform this operation.
GCtr: The counter number.
Range: 0 for PCI-9116
Value : Returns the counter value of the specified general-purpose

timer/counter.
Range: 0 through 65536

@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
InvalidCounter

2.2.89 GCTR_Clear

@ Description

Turns off the specified general-purpose timer/counter operation and reset the counter
value to zero.

@ Cards Support
9116
@ Syntax
Microsoft C/C++ and Borland C++
116 GCTR_Clear (U16 CardNumber, U16 GCitr)
Visual Basic
GCTR_Clear (ByVal CardNumber As Integer, ByVal GCtr As Integer) As Integer
@ Par ameter

CardNumber : The card id of the card that want to perform this operation.
GCtr: The counter number.
Range: 0 for PCI-9116

@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
InvalidCounter

2290 GCTR_Setup

82 - Function Description

@ Description

Controls the operation of the selected counter/timer.

@ Cards Support
9116

@ Syntax

Microsoft C/C++ and Borland C++
116 GCTR_Setup (U16 CardNumber, U16 GCtr, U16 GCtrCtrl, U32 Count)

Visual Basic

GCTR_Setup (ByVal CardNumber As Integer, ByVal GCtr As Integer, ByVal
GCtrCtrl As Integer, ByVal Count As Long) As Integer

@ Par ameter

CardNumber : The card id of the card that want to perform this operation.
GCtr: The counter number.
Range: 0 for cPCI-9116.

GCtrCtrl : The setting for general-purpose timer/counter control. This argument
is an integer expression formed from one or more of the manifest
constants defined in DASK.H. There are four groups of constants:
(1) Timer/Counter Mode

General_Counter: General counter
Pulse_Generation: Generation of pulse
(2) Timer/Counter Source
GPTC_CLKSRC_INT: internal time base
GPTC_CLKSRC_EXT : external time base from GP_TC_CLK pin
(3) Timer/Counter Gate Source
GPTC_GATESRC_INT: gate is controlled by software
GPTC_GATESRC_EXT: gate is controlled by GP_TC_GATE pin
(4) Timer/Counter UpDown Source
GPTC_UPDOWN_SELECT_SOFT: Up/Down controlled by
software
GPTC_UPDOWN_SELECT_EXT : Up/Down controlled by
GP_TC_UPDN pin
(5) Timer/Counter UpDown Control
GPTC_DOWN_CTR: counting direction is down
GPTC_UP_CTR: counting direction is up
(6) Timer/Counter Enable
GPTC_ENABLE: general-purpose counter/timer enabled
GPTC_DISABLE: general-purpose counter/timer disabled
When two or more constants are used to form the GCtrCtrl argument,
the constants are combined with the bitwise-OR operator(]).
Count: The counter value of general-purpose timer/counter

@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
InvalidCounter

2.291 GetActualRate

@ Description

Function Description -

83

Gets the actual sampling rate the hardware will perform according to the board type
and the rate you want.

@ Cards Support
7200, 7300A, 9111, 9112, 9113, 9114, 9118, 9812/10

@ Syntax
Microsoft C/C++ and Borland C++

116 GetActualRate (U16 CardNumber, F64 SampleRate, F64 *ActualRate)
Visual Basic

GetActualRate (ByVal CardNumber As Integer, ByVal SampleRate As Double,
ActualRate As Double) As Integer

@ Parameter

CardNumber : The card id of the card that wants to perform this operation.

SampleRate: The desired sampling rate.

ActualRate: Returns the actual acquisition rate performed. The value depends on
the card type and the desired sampling rate.

@ Return Code

NoError, ErrorinvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

2.2.92 Register_Card

@ Description

Initializes the hardware and software states of a NUDAQ PCI-bus data acquisition
card, and then returns a numeric card ID that corresponds to the card initialized.
Register_Card must be called before any other PCIS-DASK library functions can be
called for that card. The function initializes the card and variables internal to PCIS-
DASK library. Because NuDAQ PCI-bus data acquisition cards meets the plug-and-

play design, the base address (pass-through address) and IRQ level are assigned by
system BIOS directly.

@ Cards Support

6208V/6216V, 6208A, 6308V, 6308A, 7200, 7230, 7233, 7234, 7248, 7249, 7250,
7252, 7256, 7258, 7296, 7300A, 7396, 7432, 7433, 7434, 8554, 9111, 9112, 9113,
9114, 9116, 9118, 9812/10

@ Syntax
Microsoft C/C++ and Borland C++
116 Register_Card (U16 CardType, U16 card_num)
Visual Basic
Register_Card (ByVal CardType As Integer, ByVal card_num As Integer) As Integer

@ Par ameter

CardType : The type of card to be initialized. ADLink will periodically upgrades
PCIS-DASK to add support for new NuDAQ PCI-bus data acquisition
cards and NulPC CompactPCI cards. Please refer to Release Notes
for the card types that the current release of PCIS-DASK actually
supports. Following are the constants defined in DASK.H that
represent the NUDAQ PCI-bus data acquisition cards that DASK
supports currently or in the near future:

84 - Function Description

PCI_6208V (for PCI-6208V/6216V)

PCI_6208A

PCI_6308V

PCI_6308A

PCI_7200 (for PCI-7200/cPCI-7200)

PCI_7230 (for PCI-7230/cPCI-7230)

PCI_7233 (for PCI-7233/PCI-7233H)

PCI_7234

PCIl_7248 (for PCI-7248/cPCI-7248)

PCI_7249 (for cPCI-7249R)

PCI_7250

PCI_7252 (for cPCI-7252)

PCI_7256

PCI_7258

PCI_7296

PCI_7300A_ReVA (for PCI_7300A_RevA/

cPCI_7300A_RevA)
PCI_7300A_RevB (for PCI_7300A_RevB/
cPCIl_7300A_RevB)

PCI_7396

PCI_7432 (for PCI-7432/cPCI-7432/cPCI-7432R)

PCI_7433 (for PCI-7433/cPCI-7433/cPCI-7433R)

PCI_7434 (for PCI-7434/cPCI-7434/cPCI-7434R)

PCI_8554

PCI_9111DG

PCI_9111HR

PCI_9112 (for PCI-9112/cPCI-9112)

PCI_9113

PCI1_9114DG

PCIl_9114HG

PCI_9116 (for cPCI-9116)

PCI_9118DG

PCI_9118HG

PCI_9118HR

PCI_9810 (for PCI-9810)

PCI_9812 (for PCI-9812)

card_num : The sequence number of the card with the same card type (as

defined in argument CardType) or belonging to the same card type
series (Except PCI-7300A_RevA and PCI-7300A_RevB) plugged in
the PCI slot. The card sequence number setting is according to the
PCI slot sequence in the mainboard. The first card (in the most prior
slot) is with card_num=0. For example, if there are one PCI-9111DG
card (in the first PCI slot) and one PCI-9111HR card and two PCI-
9112 cards plugged on your PC, the PCI-9111DG card should be
registered with card_num=0, and the PCI-9111HR card with
card_num=1. The PCI-9112 card in the prior slot should be registered
with card_num=0, and the other one with card_num=1.
The following table categories the NuDAQ PCI devices by card type
series.

Function Description - 85

@ Return Code

Card Type Series

Device Type

PCI-6208 Series

PCI-6208V, PCI-6216V, PCI-6208A

PCI-6308 Series

PCI-6308V, PCI_6308A

PCI-7200/cPCI-7200

PCI-7200/cPCI-7200

PCI-7230/cPCI-7230

PCI-7230/cPCI-7230

PCI-7233

PCI-7233, PCI-7233H

PCI-7234

PCI-7234

PCI-7248/cPCI-7248

PCI-7248/cPCI-7248

PCI-7249 cPCI-7249R
PCI-7250 PCI-7250
PCI-7252 cPCI-7252
PCI-7256 PCI-7256
PCI-7258 PCI-7258
PCI-7296 PCI-7296

PCI_7300A_ReVvA/ cPCI-7300A_RevA

PCI-7300A_RevA/cPCI-7300A_RevA

PCI_7300A_RevB/ cPCI-7300A_RevB

PCI-7300A_RevB/cPCI-7300A_RevB

PCI-7396

PCI-7396

PCI-7432/cPCI-7432 series

PCI-7432/cPCI-7432/cPCI-7432R

PCI-7433/cPCI-7433 series

PCI-7433/cPCI-7433/cPCI-7433R

PCI-7434/cPCI-7434 series

PCI-7434/cPCI-7434/cPCI-7434R

PCI-8554

PCI-8554

PCI-9111 Series

PCI-9111DG, PCI-9111HR

PCI-9112/cPCI-9112

PCI-9112/cPCI-9112

PCI-9113

PCI-9113

PCI-9114 Series

PCI-9114DG, PCI-9114HG

PCI-9116

cPCI-9116

PCI-9118 Series

PCI-9118DG, PCI-9118HG, PCI-9118HR

PCI-9812 Series

PCI-9812, PCI-9810

This function returns a numeric card id for the card initialized. The range of card id is
between 0 and 31. If there is any error occurs, it will return negative error code, the

possible error codes are listed below:
ErrorTooManyCardRegistered, ErrorUnknownCardType, ErrorOpenDriverFailed,
ErrorOpenEventFailed

2.2.93 Release Card

@ Description

86 - Function Description

There are at most 32 cards that can be registered simultaneously. This function is
used to tell PCIS-DASK library that this registered card is not used currently and can
be released. This would make room for new card to register. Also by the end of a
program, you need to use this function to release all cards that were registered.

@ Cards Support

6208V/6216V, 6208A, 6308V, 6308A, 7200, 7230, 7233, 7234, 7248, 7249, 7250/51,
7252, 7256, 7258, 7296, 7300A, 7396, 7432, 7433, 7434, 8554, 9111, 9112, 9113,
9114, 9116, 9118, 9812/10

@ Syntax

Microsoft C/C++ and Borland C++
116 Release_Card (U16 CardNumber)

Visual Basic
Release_Card (ByVal CardNumber As Integer) As Integer

@ Par ameter
CardNumber : The card id of the card that want to be released.

@ Return Code
NoError

Function Description - 87

Appendix A Status Codes

This appendix lists the status codes returned by PCIS-DASK, including the name and
description.

Each PCIS-DASK function returns a status code that indicates whether the function was
performed successfully. When a PCIS-DASK function returns a negative number, it

means that an error occurred while executing the function.

S(t;it;j Status Name Description
0 NoError No error occurred

-1 ErrorUnknownCardType The CardType argument isnot valid

-2 ErrorlnvalidCardNumber The CardNumber argument is out of
range (larger than 31).

-3 ErrorTooManyCardRegistered | There have been 32 cards that were
registered.

-4 |ErrorCardNotRegistered No card registered as id CardNumber.

-5 ErrorFuncNotSupport The function called is not supported by
this type of card..

-6 ErrorlnvalidloChannel The specified Channel or Port
argument is out of range..

-7 ErrorinvalidAdRange The specified analog input range is
invalid.

-8 |ErrorContloNotAllowed The specified continuous 10 operation
is not supported by this type of card.

-9 ErrorDiffRangeNotSupport All the analog input ranges must be
the same for multi-channel analog
input.

-10 |ErrorLastChannelNotZero The channels for multi-channel analog
input must be ended with or started
from zero.

-11 |ErrorChannelNotDescending The channels for multi-channel analog
input must be contiguous and in
descending order.

-12 [ErrorChannelNotAscending The channels for multi-channel analog
input must be contiguous and in
ascending order.

-13 |ErrorOpenDriverFailed Failed to open the device driver.

-14 |ErrorOpenEventFailed Open event failed in device driver.

-15 |ErrorTransferCountTooLarge | The size of transfer is larger than the
size of Initially allocated memory in
driver.

-16 |ErrorNotDoubleBufferMode Double buffer mode is disabled.

-17 |ErrorinvalidSampleRate The specified sampling rate is out of
range.

-18 |ErrorinvaidCounterMode The value of the Mode argument is
invalid.

-19 |ErrorinvalidCounter The value of the Ctr argument is out of
range.

-20 |ErrorinvalidCounterState The value of the State argument is out
of range.

88 - Appendix

-21 |ErrorinvalidBinBcdParam The value of the BinBcd argument is
invalid.

-22 |ErrorBadCardType The value of Card Type argument is
invalid

-23 |ErrorinvalidDaRefVoltage The value of DA reference voltage
argument is invalid

-24 |ErrorAdTimeOut Time out for AD operation

-25 |ErrorNoAsyncAl Continuous Analog Input is not set as
Asynchronous mode

-26 |ErrorNoAsyncAO Continuous Analog Output is not sef]
as Asynchronous mode

-27 |ErrorNoAsyncDI Continuous Digital Input is not set as
Asynchronous mode

-28 |ErrorNoAsyncDO Continuous Digital Output is not set as
Asynchronous mode

-29 |ErrorNotlnputPort The value of Al/DI port argument is
invalid

-30 [ErrorNotOutputPort The value of AO/DO argument is
invalid

-31 |ErrorInvalidDioPort The value of DI/O port argument is
invalid

-32 |ErrorinvalidDioLine The value of DI/O line argument is
invalid

-33 |ErrorContloActive Continuous 10 operation is not active

-34 |ErrorDblBufModeNotAllowed | Double Buffer mode is not allowed

-35 |ErrorConfigFailed The specified function configuration is
failed

-36 |ErrorinvalidPortDirection The value of DIO port direction
argument is invalid

-37 |ErrorBeginThreadError Failed to create thread

-38 |ErrorInvalidPortWidth The port width setting for PCI-
7300A/cPCI-7300A is not allowed

-39 [ErrorInvalidCtrSource The clock source setting is invalid

-40 |ErrorOpenFile Failed to Open file

-41 |ErrorAllocateMemory The memory allocation is failed

-42 |ErrorDaV oltageOutOf Range The value of DA voltage argument is
out of range

-201 |ErrorConfigloctl The configuration APl is failed

-202 |ErrorAsyncSetloctl The async. mode API is failed

-203 |ErrorDBSetloctl The double-buffer setting APl is failed

-204 |ErrorDBHalfReadyloctl The half-ready API is failed

-205 |ErrorContOPIloctl The continuous data acquisition APl is
failed

-206 |ErrorContStatusloctl The continuous data acquisition status
API setting is failed

-207 |ErrorPIOloctl The polling data APl is failed

-208 |ErrorDIntSetloctl The dual interrupt setting APl is failed

-209 |ErrorWaitEvtloctl The wait event APl is failed

-210 |ErrorOpenEvtloctl The open event API is failed

-211 |ErrorCOSIntSetloctl The cos interrupt setting AP is failed

-212 |ErrorMemMaploctl The memory mapping APl is failed

-213 |ErrorMemUM apSetloctl The memory Unmapping APl is failed

-214 |ErrorCTRIoctl The counter API is failed

Appendix - 89

Appendix B Al Range Codes

The Analog Input Range of NuDAQ PCI-bus Cards

AD B 10 V Bipolar -10V to +10V

AD B 5V Bipolar -5V to +5V

AD B 25V Bipolar -2.5V to +2.5V

AD B 1 25V Bipolar -1.25V to +1.25V
AD B 0 625 V Bipolar -0.625V to +0.625V
AD B 0 3125 V Bipolar -0.3125V to +0.3125V
AD B 05V Bipolar -0.5V to +0.5V

AD B 0 05 V Bipolar -0.05V to +0.05V
AD B 0 005 V Bipolar -0.005V to +0.005V
AD B 1V Bipolar -1V to +1V

AD BO1V Bipolar -0.1V to +0.1V

AD B 0 01 V Bipolar -0.01V to +0.01V
AD B 0 001 V Bipolar -0.01V to +0.001V
AD U 20 V Unipolar 0 to +20V

AD U 10 V Unipolar 0 to +10V

AD U5V Unipolar 0 to +5V

AD U 25V Unipolar 0 to +2.5V

AD U 1 25 V Unipolar 0 to +1.25V

AD U 1V Unipolar 0 to +1V

AD UO1V Unipolar 0 to +0.1V

AD U 0OO01V Unipolar 0 to +0.01V

AD U 0 001 V Unipolar 0 to +0.001V

Valid values for each card:

PCI-9111 DG/HR

PCI-9112/cPCI-9112

PCI-9113

PCI-9114 HG

PCI-9114 DG

cPCI-9116

PCI-9118 DG/HR

.);

:AD_B_10_V,AD B_5_V,

AD B 2 5V,AD B 1 25V,
AD_B_0_625 V

AD_B_2 !

>

>> > > > >
UUlUUU O 00O
|

:AD_B_10_V,AD_B_1_V,

AD B 0 1 V,AD B 0 01V

:AD_B 10 V, AD B 5V,

AD B 2 5 V,AD B 1 25V

90 - Appendix

PCI-9118 HG

PCI-9812/10

AD_U_10_V,AD_U 5_V,

AD U 25 V,ADUT125V

Appendix - 91

Appendix C Al DATA FORMAT

This appendix lists the Al data format for the cards performing analog input operation,
as well as the calculation methods to retrieve the A/D converted data and the channel
where the data read from.

Card Type Data Format Al type Value calculation
* channel no. (CH#)
* A/D converted data (ND)
* Value returned from Al
function (OD)
PCI-9111DG | Every 16-bit signed integer data: One-Shot Al CH# = OD & OxOF
D11 D10D9coeveeee. D1D0OC3C2C1CO Continuous Al | ND =0D >>4 or
ND = OD/16
where D11, D10, ..., DO : A/D converted data
C3, C2, C1, CO: converted channel no.
PCI-9111HR [Every 16-bit signed integer data: One-Shot Al ND = OD
D15D14 D13 D1 DO Continuous Al
where D15, D14, ..., DO : A/D converted data
PCI- Every 16-bit unsigned integer data: One-Shot Al CH# = OD & OxOF

9112/cPCI9112

D11D10D9 ...cccceeeeenns D1D0OC3C2C1CO0

where D11, D10, ..., DO : A/D converted data
C3, C2, C1, CO : converted channel no.

Continuous Al

ND = OD >>4 or
ND = OD/16

PCI-9113

Every 16-bit unsigned integer data (including 12-
bit unsigned A/D data):

B15 ..B12 D11 D10 ... D1 DO

where D11, D10, ..., DO : A/D converted data
B15 ~ B12: don' tcare

One-Shot Al

ND = OD & OxOFFF

PCI-9113

Every 32-bit unsigned integer data (including 12-
bit unsigned A/D data):

B31...B21 C4C3C2C1C0O B15 ..B12 D11
D10 ... D1 DO

where D11, D10, ..., DO : A/D converted data
C3, C2, C1, CO : converted channel no.
B31 ~B21 & B15 ~B12: don't care

Continuous Al

CH# = (OD >>16) & Ox1F
ND = OD & OxOFFF

PCI-9114

Every 16-bit signed integer data:
D15D14...D1 DO
where D15, D14, ..., DO : A/D converted data

One-Shot Al

ND = OD

PCI-9114

Every 32-bit unsigned integer data (including 16-
bit signed A/D data):

B31 ..B21C4C3C2C1C0D15D14 ... D1 DO

where D15, D14, ..., DO : A/D converted data
C3, C2, C1, CO: converted channel no.
B31 ~ B21: don't care

Continuous Al

CH# = (OD >>16) & Ox1F
ND = OD & OxFFFF

cPCI-9116

Every 16-bit signed integer data:

One-Shot Al

ND = OD

92 - Appendix

D15D14 D13ccvvvvvnenn. D1 DO
where D15, D14, ..., DO : A/D converted data

Continuous Al

PCI-9118HR

Every 16-bit signed integer data:
D15D14 D13ccceevnennne D1 DO
where D15, D14, ..., DO : A/D converted data

One-Shot Al

Continuous Al

ND = OD

PCI- Every 16-bit unsigned integer data: One-Shot Al CH# = OD & OxOF
OL18DGMG | 11 D10DY oo D1D0C3C2C1C0 Continuous Al | ND = 0D >>4 or
ND = OD/16
where D11, D10, ..., DO : A/D converted data
C3, C2, C1, CO : converted channel no.
PCI-9812 Every 16-bit signed integer data: Continuous Al | ND=0D >>4 or
ND = OD/16
D11 D10D9.....cccvvnens D1 D0 b3 b2 bl b0
where D11, D10, ..., DO : A/D converted data
b2, b1, b0 : Digital Input data.
b3: trigger detection flag
PCI- Every 16-bit signed integer data: Continuous Al | ND = OD >>6 or
9810/cPCI9810 ND = OD/64

D9 D8 D7ccee. .. D1 DO b5b4 b3 b2bl b0

where D9, D8, ..., DO : A/D converted data
b2, b1, b0 : Digital Input data.
b3: trigger detection flag

Appendix - 93

Appendix D DATA File FORMAT

This appendix describes the file format of the data files generated by the functions
performing continuous data acquisition followed by storing the data to disk.

The data file includes three parts, Header, ChannelRange (optional) and Data block.
The file structure is as the figure below:

Header

ChannelRange (Optional)

DAQ data

Header

The header part records the information related to the stored data and its total length is

60 bytes. The data structure of the file header is as follows:

Header Total Length: 60 bytes
Elements Type Size Comments
(bytes)
ID char 10 |file ID

ex. ADLinkDAQ1

card_type short 2 card Type
ex. Pci7250, Pci9112

num_of_channel short 2 number of scanned channels

ex. 1,2

channel_no unsigned 1 channel number where the data read

char from (only available as the
num_of _channel is 1)
ex. 0,1
num_of_scan long 4 the number of scan for each channel

(total count / num_of_channel)

data_width short 2 the data width
0: 8 bits, 1: 16 bits, 2: 32 bits

channel_order short 2 the channel scanned sequence

0: normal (ex. 0-1-2-3)
1: reverse (ex. 3-2-1-0)
2: custom* (ex. 0, 1, 3)

ad_range short 2 the Al range code
Please refer to Appexdix B

94 . Appendix

ex. 0 (AD_B_5V)

scan_rate double 8 The scanning rate of each channel

(total sampling rate / num_of_channel)
num_of_channel_range| short 2 The number of ChannelRange* structure

start_date char 8 The starting date of data acquisition
ex. 12/31/99

start_time char 8 The starting time of data acquisition
ex. 18:30:25

start_millisec char 3 The starting millisecond of data

acquisition
ex. 360

reserved char 6 not used

* |f the num_of_channel_range is 0, the ChannelRange block wori t be included in the

data file.

* The channel_order is set to “custom” only when the card supports variant channel

scanning order.

ChannelRange

The ChannelRange part records the channel number and data range information
related to the stored data. This part consists of several channel & range units. The
length of each unit is 2 bytes. The total length depends on the value of

num_of _channel_range (one element of the file header) and is calculated as the

following formula:

Total Length = 2 *num_of_channel_range bytes

The data structure of each ChannelRange unit is as follows:

ChannelRange Unit
Length: 2 bytes
Elements Type Size Comments
(bytes)
channel char 1 scanned channel number
ex. 0,1
range char 1 the Al range code of channel
Please refer to Appexdix B
ex. 0 (AD_B_5V)
Data Block

The last part is the data block. The data is written to file in 16-bit binary format, with the
lower byte first (little endian). For example, the value 0x1234 is written to disk with 34
first followed by 12. The total length of the data block depends on the data width and

the total data count.

The file is written in Binary format and can’t be read in normal text editor. You can use
any binary file editor to view it or the functions used for reading files, e.g. fread, to get

Appendix - 95

the file information and data value. PCIS-DASK provides a useful utility DAQCvt for
you to convert the binary file. The DAQCvt main window is as the figure below:

& ADLink DAC) File Conwert THility

— Input File
File Path: [\pdaskwdm'Samplesd 1 12791 130b{File'9113d dat | Erowse I

Card Type: PCI 9112 AT Range: +-5¥
Channel number: 4 Sran rate(Hz): 500.000
Humber of scan: 250 Start date: 10/14/89
Data wid th: 16 bitz Start time: 10:19:47 277
Channel opder; 3-2-1-0 CheammelRange: 0 View
I Esad |
~ Oytput File

File Path: |I:\pdaskwdm\$amples\9 112v20112DbFile'0112d.evt | Browss |

Fomat: —Scaled data 1o text file =]
Text File
Separator: 0% Space " Tab o, ¥ Title/Head
Digital: = Decimall {01 Hexad eodinal

Start Convert About | Exit

DAQCUt first translates the information stored in the header part and the
ChannelRange part and then displays the corresponding information in the “ Input File”
frame of DAQCvt main window. After setting the properties (File Path, Format, ..etc)
of the converted file and push “ Start Convert” button in the “ Output File” frame,
DAQCuvt gets rid of header and ChannelRange parts and converts the data in data
block according to the card type and the data width. Finally, DAQCvt writes the
converted data to disk. You thus can use any text editor or Excel to view or analyze the
accessed data.

96 - Appendix

Appendix E Function Support

This appendix shows which data acquisition hardware each PCIS-DASK function

supports.

Function

>mONO—— (T

<ORPNO~—<OONO——(OT

>ooOwo——(0OT

<omoOwo——(OT

coN~N—T—OT

CCUNN"OWNN"T—TOT

WWNNT—TOT

AWN~N—T—OT

NONN"FRPUONN"OUONNT—TOTDT

ODUINN"TTOT

ODONN"TORANN"TORANN"T—TOTDT

ODOW~N—TT0NOT

><OTW POOWN—T—QOT

W<®xPm P>OOWN——QOT

NWAN—T—TOT

WWwh~N——0OT

BWBAN—T—(OT

NOOOO——(OT

RPRRO——NOT

NRRO——0OT

WRrRrRO——OT
ARrRrO——0OT
oORrRO——OT
ORrRO——OT

OFRP 0O~ NPFPOCO——0NOT

Al_9111 Config

Al_9112 Config

Al_9113 Config

Al_9114 Config

Al_9116_Config

Al_9116_CounterInterval

Al_9118 Config

Al_9812_Config

Al_AsyncCheck

Al_AsyncClear

Al_AsyncDbIBufferHalfReady

Al_AsyncDblBufferMode

Al_AsyncDblBufferTransfer

Al_ContReadChannel

Al_ContReadMultiChannels

Al_ContScanChannels

Al_ContReadChannel ToFile

Al_ContReadMultiChannelsToFile

Al_ContScanChannelsToFile

Al_ContStatus

Al_ContVScade

Al_InitialMemoryAllocated

Al_ReadChannel

Al_VReadChannel

Al_VScae

AO_6208A_Config

AO_6308A_Config

AO_6308V_Config

AO 9111 Config

AO 9112 Config

AO_VScde

AO_VWriteChannel

AO_WriteChannel

CTR_8554_CK1_Config

CTR_8554_CIKSrc_Config

CTR_8554 Debounce_Config

CTR_Read

Appendix - 97

Function

>OONO—— (OT

<ORNO~—<OONO——(OT

OO WoO—— (T

<OmOoOwWwo——(OT

OCONN—TTOT

CUOINN"OWNN"T—TNOT

WWN~N——(OT

RWNN—T—TOT

NONN " FRPUONN"OUONNTTOT

CUNN—T—TOT

COWN—T—TOT

><OPY POOWN—T—OT

W<O®OmPmW P>POOWN—T—OT

NWhANT—T0OT

WWAN——OT

PrWANT—T0OT

rOOO—— OT

PRPPO™—™—T0OT

NP RPO—— 0T

WkRr PO NOT

AR PRPO——NOT

oORrPFRPO—T—TNOT

ORRPRO—— OT

OFRPWWO~"NFPOWO——NT

CTR Reset

CTR Saup

DI_7200_Config

DI_7300A_Config

DI_7300B_Config

DI_AsyncCheck

DI_AsyncClear

DI_AsyncDblBufferHafReady

DI_AsyncDblBufferMode

DI_AsyncDbIBufferTransfer

DI_AsyncMultiBufferNextReady

DI_ContMultiBufferSetup

DI_ContMultiBufferStart

DI_ContReadPort

DI_ContReadPortToFile

DI_ContStatus

DI_InitialMemoryAllocated

DI_ReadLine

DI_ReadPort

DIO_7300SetI nterrupt

DIO_AUXDI_EventMessage

DIO_GetCOSL atchData

DIO_INT1_EventMessage

DIO_INT2_EventMessage

DIO_PortConfig

DIO_SetCOSInterrupt

DIO_SetDud I nterrupt

DIO_T2_EventMessage

DO_7200_Config

DO _7300A_Config

DO_7300B_Config

DO_ContStatus

DO_ContWritePort

DO_AsyncCheck

DO_AsyncClear

DO_InitialMemoryAllocated

DO_PGSat

DO_PGStop

DO_ReadLine

DO_ReadPort

DO_WriteLine

DO_WiritePort

EDO_9111 Config

GCTR Read

GCTR Resat

98 -

Appendix

DO __00AN_-O 0O [2K 2K J
OO _-—_—_oddm [2K 2K J
0LO__o-dd© [[2K J
0O - _oddx [2K 2K J
DO __od-dm [2K 2K J
OO - _oddN [2K 2K J
DO - _ooddd [2K 2K J
0O - _owi< o0
DO __~< o< [2K J
OO -~ oOm [2K J
DO __~ oA [2K J
OO _-_~moo< Xos>m [2K 2K J
LO__~moo< Xo>< [2K 2K J
OO __~MmoO© [2K J
DO MNNSTO - MNANTO - N~NOO [2K J
0O _-_N~NNWO [2K J
DO _MNNWOWO - M~ANWAH - N~NNLWON [2K J
OO _~NOS [2K J
DO __~NOMm [2K J
DO _NNMO-~ANL® [2K J
O __~NOO [2K 2K J
0O - _omown> LA
DO __omow< [2K J
DO__ONO®O> - ©ON—H© > o0
DO __oNO®I [2K J
s|sl8 B[R
- %dC_C_
(&) R_m Mm

MT%.I
(§) 3 o
w |00 ¥ |x

Appendix - 99

