
PCIS-DASK ver. 3.25

for PC Compatibles

Function Reference Manual

@Copyright 1997-2002 ADLink Technology Inc.
All Rights Reserved.

Manual Rev 3.25: Sep. 06, 2002

The information in this document is subject to change without prior notice in order to improve reliability,
design and function and does not represent a commitment on the part of the manufacturer.

In no event will the manufacturer be liable for direct, indirect, special, incidental, or consequential damages
arising out of the use or inability to use the product or documentation, even if advised of the possibility of
such damages.

This document contains proprietary information protected by copyright. All rights are reserved. No part of
this manual may be reproduced by any mechanical, electronic, or other means in any form without prior
written permission of the manufacturer.

Trademarks
IBM PC is a registered trademark of International Business Machines Corporation. Intel is a registered
trademark of Intel Corporation. Other product names mentioned herein are used for identification purposes
only and may be trademarks and/or registered trademarks of their respective companies.

Contents • i

CONTENTS

How to Use This Manual...v

Using PCIS-DASK Functions .. 1

1.1 The Fundamentals of Building Windows 2000/NT/98 Application

with PCIS-DASK .. 1

1.1.1 Creating a Windows 2000/NT/98 PCIS-DASK Application Using Microsoft

Visual C/C++ .. 1

1.1.2 Creating a Windows 2000/NT/98 PCIS-DASK Application Using Microsoft

Visual Basic.. 1

1.2 PCIS-DASK Functions Overview... 3

Function Description 5

2.1 Data Types 5

2.2 Function Reference .. 6

2.2.1 AI_9111_Config .. 6

2.2.2 AI_9112_Config .. 6

2.2.3 AI_9113_Config .. 7

2.2.4 AI_9114_Config .. 7

2.2.5 AI_9114_PreTrigConfig .. 8

2.2.6 AI_9116_Config .. 8

2.2.7 AI_9116_CounterInterval..10

2.2.8 AI_9118_Config ..10

2.2.9 AI_9812_Config ..12

2.2.10 AI_AsyncCheck ..13

2.2.11 AI_AsyncClear...14

2.2.12 AI_AsyncDblBufferHalfReady...15

2.2.13 AI_AsyncDblBufferMode ...15

2.2.14 AI_AsyncDblBufferTransfer...16

2.2.15 AI_ContReadChannel...16

2.2.16 AI_ContReadChannelToFile...18

2.2.17 AI_ContReadMultiChannels ...19

2.2.18 AI_ContReadMultiChannelsToFile ...21

2.2.19 AI_ContScanChannels..23

2.2.20 AI_ContScanChannelsToFile..25

2.2.21 AI_ContStatus..27

ii • Contents

2.2.22 AI_ContVScale...28

2.2.23 AI_InitialMemoryAllocated ...29

2.2.24 AI_ReadChannel ...29

2.2.25 AI_VReadChannel...30

2.2.26 AI_VoltScale...31

2.2.27 AO_6208A_Config..31

2.2.28 AO_6308A_Config..32

2.2.29 AO_6308V_Config..32

2.2.30 AO_9111_Config...33

2.2.31 AO_9112_Config...33

2.2.32 AO_SimuVWriteChannel ...34

2.2.33 AO_SimuWriteChannel ..35

2.2.34 AO_VoltScale...35

2.2.35 AO_VWriteChannel ..36

2.2.36 AO_WriteChannel ...37

2.2.37 CTR_8554_CK1_Config..37

2.2.38 CTR_8554_ClkSrc_Config..38

2.2.39 CTR_8554_Debounce_Config ..38

2.2.40 CTR_Clear..39

2.2.41 CTR_Read...39

2.2.42 CTR_Setup..40

2.2.43 DI_7200_Config..42

2.2.44 DI_7300A_Config ...43

2.2.45 DI_7300B_Config ...44

2.2.46 DI_AsyncCheck ...45

2.2.47 DI_AsyncClear...46

2.2.48 DI_AsyncDblBufferHalfReady..46

2.2.49 DI_AsyncDblBufferMode...47

2.2.50 DI_AsyncDblBufferTransfer..47

2.2.51 DI_AsyncMultiBufferNextReady...48

2.2.52 DI_ContMultiBufferSetup..49

2.2.53 DI_ContMultiBufferStart ...49

2.2.54 DI_ContReadPort ...50

2.2.55 DI_ContReadPortToFile..51

2.2.56 DI_ContStatus..51

2.2.57 DI_InitialMemoryAllocated ..52

2.2.58 DI_ReadLine ..53

2.2.59 DI_ReadPort ..55

2.2.60 DIO_7300SetInterrupt ...57

Contents • iii

2.2.61 DIO_AUXDI_EventMessage...58

2.2.62 DIO_GetCOSLatchData ..59

2.2.63 DIO_INT1_EventMessage...59

2.2.64 DIO_INT2_EventMessage...60

2.2.65 DIO_PortConfig..62

2.2.66 DIO_SetCOSInterrupt..63

2.2.67 DIO_SetDualInterrupt ...64

2.2.68 DIO_T2_EventMessage ...66

2.2.69 DO_7200_Config..67

2.2.70 DO_7300A_Config ...67

2.2.71 DO_7300B_Config ...68

2.2.72 DO_AsyncCheck..69

2.2.73 DO_AsyncClear...70

2.2.74 DO_AsyncMultiBufferNextReady...70

2.2.75 DO_ContMultiBufferSetup..71

2.2.76 DO_ContMultiBufferStart ...71

2.2.77 DO_ContStatus..72

2.2.78 DO_ContWritePort ...73

2.2.79 DO_InitialMemoryAllocated...74

2.2.80 DO_PGStart ...74

2.2.81 DO_PGStop..75

2.2.82 DO_ReadLine...75

2.2.83 DO_ReadPort...76

2.2.84 DO_WriteExtTrigLine ..77

2.2.85 DO_WriteLine..78

2.2.86 DO_WritePort..79

2.2.87 EDO_9111_Config ...81

2.2.88 GCTR_Read..81

2.2.89 GCTR_Clear...82

2.2.90 GCTR_Setup...82

2.2.91 GetActualRate..83

2.2.92 Register_Card..84

2.2.93 Release_Card...86

Appendix A Status Codes ... 88

Appendix B AI Range Codes... 90

Appendix C AI DATA FORMAT .. 92

iv • Contents

Appendix D DATA File FORMAT.. 94

Appendix E Function Support... 97

How to use this manual v

How to Use This Manual

This manual is designed to help you use the PCIS-DASK software driver for NuDAQ

PCI-bus data acquisition cards. The manual describes how to install and use the
software library to meet your requirements and help you program your own software
applications. It is organized as follows:

l Chapter 1, "Using PCIS-DASK Functions" gives the important information about
how to apply the function descriptions in this manual to your programming

language and environment.

l Chapter 2, "Function Description" gives the detailed description of each function
call PCIS-DASK provided.

l Appendix A, "Status Codes" lists the status codes returned by PCIS-DASK
functions, as well as their meanings.

l Appendix B, "AI Range Codes " lists all the valid AI range codes for each card.

l Appendix C, "AI Data Format" lists the AI data format for the cards performing
analog input operation, as well as the calculation methods to retrieve the A/D
converted data and the channel where the data read from.

l Appendix D, "Function Support" shows which data acquisition hardware each
PCIS-DASK function supports.

Using PCIS-DASK Functions • 1

1

Using PCIS-DASK Functions

PCIS-DASK is a software driver for NuDAQ PCI-bus data acquisition cards. It is a high
performance data acquisition driver for developing custom applications under Windows
NT environment.

Using PCIS-DASK also lets you take advantage of the power and features of Microsoft
Windows NT for your data acquisition applications. These include running multiple

applications and using extended memory. Also, using PCIS-DASK under Visual Basic
environment makes it easy to create custom user interfaces and graphics.

1.1 The Fundamentals of Building Windows 2000/NT/98

Application with PCIS-DASK

1.1.1 Creating a Windows 2000/NT/98 PCIS-DASK Application Using Microsoft Visual
C/C++

To create a data acquisition application using PCIS-DASK and Microsoft Visual C/C++,
follow these steps after entering Visual C/C++:

step 1. Open the project in which you want to use PCIS-DASK. This can be a new or
existing project

step 2. Include header file DASK.H in the C/C++ source files that call PCIS-DASK
functions. DASK.H contains all the function declarations and constants that you
can use to develop your data acquisition application. Incorporate the following

statement in your code to include the header file.

 #include “DASK.H”

step 3. Build your application.

Setting the appropriate compile and link options, then build your application by

selecting the Build command from Build menu (Visual C/C++ 4.0). Remember
to link PCIS-DASK’s import library PCI-DASK.LIB.

1.1.2 Creating a Windows 2000/NT/98 PCIS-DASK Application Using Microsoft Visual
Basic

2 • Using PCIS-DASK Functions

To create a data acquisition application using PCIS-DASK and Visual Basic, follow
these steps after entering Visual Basic:

step 1. Open the project in which you want to use PCIS-DASK. This can be a new or
existing project

Open a new project by selecting the New Project command from the File menu.
If it is an existing project, open it by selecting the Open Project command from
the File menu. Then the Open Project dialog box appears.

Changed directory to the place the project file located. Double-click the project
file name in the File Name list to load the project.

step 2. Add file DASK.BAS into the project if this file is not included in the project. This

file contains all the procedure declarations and constants that you can use to
develop your data acquisition application.

From the File menu, select the Add File command. The Add File window appears,
displaying a list of files in the current directory.

Select DASK.BAS from the Files list by double-clicking on it. If you can't find this file

in the list, make sure the list is displaying files from the correct directory. By default,
DASK.BAS is installed in C:\ADLink\PCI-DASK\INCLUDE.

Using PCIS-DASK Functions • 3

step 3. Design the interface for the application.

To design the interface, you place the desired elements, such as command button,

list box, text box, etc., on the Visual Basic form. These are standard controls from
the Visual Basic Toolbox. To place a control on a form, you just move pointer to
Toolbox, select the desired control and draw it on the form. Or you can double-click

the control icon in the Toolbox to place it on the form.

step 4. Set properties for the controls.

To view the property list, click the desired control and then choose the Properties
command from the View menu or press F4, or you can also click the Properties

button on the toolbar.

step 5. Write the event code.

The event code defines the action you want to perform when an event occurs. To
write the event code, double-click the desired control or form to view the code
module and then add code you want. You can call the functions that declared in the

file DASK.BAS to perform data acquisition operations.

step 6. Run your application.

To run the application, choose Start from the Run menu, or click the Start icon

on the toolbar (you can also press F5).

step 7. Distribute your application.

Once you have finished a project, you can save the application as an executable

(.EXE) file by using the Make EXE File command on the File menu. And once you
have saved your application as an executable file, you've ready to distribute it.
When you distribute your application, remember also to include the PCIS-DASK’s

DLL and driver files. These files should be copied to their appropriate directory as
section 1.4.1 described.

1.2 PCIS-DASK Functions Overview

PCIS-DASK functions are grouped to the following classes:

• General Configuration Function Group

• Actual Sampling Rate Function Group

• Analog Input Function Group

 - Analog Input Configuration functions
 - One-Shot Analog Input functions

 - Continuous Analog Input functions
 - Asynchronous Analog Input Monitoring functions

• Analog Output Function Group

4 • Using PCIS-DASK Functions

• Digital Input Function Group

 - Digital Input Configuration functions

 - One-Shot Digital Input functions
 - Continuous Digital Input functions
 - Asynchronous Digital Input Monitoring functions

• Digital Output Function Group

 - Digital Output Configuration functions
 - One-Shot Digital Output functions

 - Continuous Digital Output functions
 - Asynchronous Digital Output Monitoring functions

• Timer/Counter Function Group

 - Timer/Counter functions
 - The General-Purpose Timer/Counter functions

• DIO Function Group

 - Digital Input/Output Configuration function
 - Dual-Interrupt System Setting functions

Function Description • 5

2

Function Description

This chapter contains the detailed description of PCIS-DASK functions, including the
PCIS-DASK data types and function reference. The functions are arranged
alphabetically in 3.2 Function Reference.

2.1 Data Types

We defined some data types in DASK.H. These data types are used by PCIS-DASK
library. We suggest you to use these data types in your application programs. The

following table shows the data type names, their ranges and the corresponding data
types in C/C++, Visual Basic and Delphi (We didn’t define these data types in
DASK.BAS and DASK.PAS. Here they are just listed for reference)

TypeType Name Description Range

C/C++

(for 32-
bit

compiler)

Visual Basic Pascal (Delphi)

U8 8-bit ASCII
character

0 to 255 unsigned
char

Byte Byte

I16 16-bit signed
integer

-32768 to 32767 short Integer SmallInt

U16 16-bit unsigned
integer

0 to 65535 unsigned
short

Not supported
by BASIC, use
the signed
integer (I16)
instead

Word

I32 32-bit signed
integer

-2147483648 to

2147483647

long Long LongInt

U32 32-bit unsigned
integer

0 to 4294967295 unsigned
long

Not supported
by BASIC, use
the signed long
integer (I32)
instead

Cardinal

F32 32-bit single-
precision

floating-point

-3.402823E38 to

3.402823E38

float Single Single

F64 64-bit double-
precision

floating-point

-1.797683134862315E308
to

1.797683134862315E309

double Double Double

6 • Function Description

2.2 Function Reference

2.2.1 AI_9111_Config

@ Description

Informs PCIS-DASK library of the trigger source and trigger mode selected for the

PCI-9111 card with card ID CardNumber. You must call this function before calling
function to perform continuous analog input operation.

@ Cards Support

9111

@ Syntax

Microsoft C/C++ and Borland C++
I16 AI_9111_Config (U16 CardNumber, U16 TrigSource, U16 PreTrgEn, U16

TraceCnt)

Visual Basic
AI_9111_Config (ByVal CardNumber As Integer, ByVal TrigSource As Integer,

ByVal PreTrgEn As Integer, ByVal TraceCnt As Integer) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.
TrigSource : The continuous A/D conversion trigger source.

Valid values:

TRIG_INT_PACER: on-board Programmable pacer
TRIG_EXT_STROBE: external signal trigger

PreTrgEn: Enable or Disable Pre-Trigger mode.

TRUE: Enable Pre-Trigger mode
FALSE: Disable Pre-Trigger mode

TraceCnt: The number of data will be accessed after a specific trigger event.

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

2.2.2 AI_9112_Config

@ Description

Informs PCIS-DASK library of the trigger source selected for the PCI-9112/cPCI-9112
with card ID CardNumber. You must call this function before calling function to

perform continuous analog input operation.

@ Cards Support

9112

@ Syntax

Microsoft C/C++ and Borland C++
I16 AI_9112_Config (U16 CardNumber, U16 TrigSource)

Visual Basic
AI_9112_Config (ByVal CardNumber As Integer, ByVal TrigSource As Integer) As

Integer

Function Description • 7

@ Parameter

CardNumber : The card id of the card that want to perform this operation.

TrigSource : The continuous A/D conversion trigger source.
Valid values:

TRIG_INT_PACER: on-board Programmable pacer

TRIG_EXT_STROBE: external signal trigger

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

2.2.3 AI_9113_Config

@ Description

Informs PCIS-DASK library of the trigger source selected for the PCI-9113 with card

ID CardNumber. You must call this function before calling function to perform
continuous analog input operation.

@ Cards Support

9113

@ Syntax

Microsoft C/C++ and Borland C++
I16 AI_9113_Config (U16 CardNumber, U16 TrigSource)

Visual Basic
AI_9113_Config (ByVal CardNumber As Integer, ByVal TrigSource As Integer) As

Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.

TrigSource : The continuous A/D conversion trigger source.
Valid values:

TRIG_INT_PACER: on-board Programmable pacer

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

2.2.4 AI_9114_Config

@ Description

Informs PCIS-DASK library of the trigger source selected for the PCI-9114 with card
ID CardNumber. You must call this function before calling function to perform

continuous analog input operation.

@ Cards Support

9114

@ Syntax

Microsoft C/C++ and Borland C++
I16 AI_9114_Config (U16 CardNumber, U16 TrigSource)

Visual Basic

8 • Function Description

AI_9114_Config (ByVal CardNumber As Integer, ByVal TrigSource As Integer) As
Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.
TrigSource : The continuous A/D conversion trigger source.

Valid values:
TRIG_INT_PACER: on-board Programmable pacer
TRIG_EXT_STROBE: external signal trigger

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

2.2.5 AI_9114_PreTrigConfig

@ Description

Informs PCIS-DASK library of the trigger source and trigger mode selected for the
PCI-911 with card ID CardNumber. You must call this function before calling function

to perform continuous analog input operation.

@ Cards Support

9114

@ Syntax

Microsoft C/C++ and Borland C++
I16 AI_9114_PreTrigConfig (U16 CardNumber, U16 PreTrgEn, U16 TraceCnt)

Visual Basic
AI_9114_PreTrigConfig (ByVal CardNumber As Integer, ByVal PreTrgEn As Integer,

ByVal TraceCnt As Integer) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.
PreTrgEn: Enable or Disable Pre-Trigger mode.

TRUE: Enable Pre-Trigger mode
FALSE: Disable Pre-Trigger mode

TraceCnt: The number of data will be accessed after a specific trigger event.

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

2.2.6 AI_9116_Config

@ Description

Informs PCIS-DASK library of the trigger source, trigger mode and trigger properties
selected for the PCI-9116 with card ID CardNumber. You must call this function before

calling function to perform continuous analog input operation.

@ Cards Support

9116

@ Syntax

Microsoft C/C++ and Borland C++

Function Description • 9

I16 AI_9116_Config (U16 CardNumber, U16 ConfigCtrl, U16 TrigCtrl, U16 PostCnt,
U16 MCnt, U16 ReTrgCnt)

Visual Basic
AI_9116_Config (ByVal CardNumber As Integer, ByVal ConfigCtrl As Integer, ByVal

TrigCtrl As Integer, ByVal PostCnt As Integer, ByVal MCnt As Integer,

ByVal ReTrgCnt As Integer) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.

ConfigCtrl : The setting for A/D mode control. This argument is an integer
expression formed from one or more of the manifest constants defined
in DASK.H. There are three groups of constants:

(1) A/D Polarity Control
P9116_AI_BiPolar
P9116_AI_UniPolar

(2) A/D Channel Input Mode
P9116_AI_SingEnded
P9116_AI_Differential

(3) Common Mode Selection
P9116_AI_LocalGND: Local Ground of cPCI-9116
P9116_AI_UserCMMD: User defined Common Mode

When two or more constants are used to form the ConfigCtrl
argument, the constants are combined with the bitwise-OR
operator(|).

TrigCtrl : The setting for A/D Trigger control. This argument is an integer
expression formed from one or more of the manifest constants defined
in DASK.H. There are seven groups of constants:

(1) Trigger Mode Selection
P9116_TRGMOD_SOFT : Software Trigger (no trigger)
P9116_TRGMOD_POST : Post Trigger

P9116_TRGMOD_DELAY: Delay Trigger
P9116_TRGMOD_PRE : Pre-Trigger Mode
P9116_TRGMOD_MIDL : Middle Trigger

(2) Trigger Polarity
P9116_AI_TrgNegative: Trigger negative edge active
P9116_AI_TrgPositive: Trigger positive edge active

(3) Time Base Selection
P9116_AI_IntTimeBase: Internal time Base (24 MHz)
P9116_AI_ExtTimeBase: External time base

(4) Delay Source Selection
P9116_AI_DlyInSamples: delay in samples
P9116_AI_DlyInTimebase: delay in time base

(5) Re-Trigger Mode Enable
P9116_AI_ReTrigEn: Re-trigger in an acquisition is enabled

(6) MCounter Enable
P9116_AI_MCounterEn: Mcounter is enabled and then the trigger

signal is ignore before M terminal count is reached.
(7) AD Conversion Mode Selection

P9116_AI_SoftPolling: Software Polling
P9116_AI_INT: Interrupt mode of continuous AI
P9116_AI_DMA: DMA mode of continuous AI

10 • Function Description

When two or more constants are used to form the TrigCtrl argument,
the constants are combined with the bitwise-OR operator(|).

PostCnt : The number of data will be accessed after a specific trigger event.
This argument is only valid for Middle trigger and Delay trigger mode.

MCnt : The counter value of MCounter . This argument is only valid for Pre-

trigger and Middle trigger mode.
ReTrgCnt : The accepted trigger times in an acquisition. This argument is only

valid for Delay trigger and Post trigger mode.

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

2.2.7 AI_9116_CounterInterval

@ Description

Informs PCIS-DASK library of the scan interval value and sample interval value

selected for the analog input operation of PCI9116. You must call this function before
calling function to perform continuous analog input operation of PCI9116.

@ Cards Support

9116

@ Syntax

Microsoft C/C++ and Borland C++
I16 AI_9116_CounterInterval (U16 wCardNumber, U32 ScanIntrv, U32 SampIntrv)

Visual Basic
AI_9116_CounterInterval (ByVal CardNumber As Integer, ByVal ScanIntrv As Long,

ByVal SampIntrv As Long) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.

ScanIntrv : The length of the scan interval (that is, the counter value between the
initiation of each scan sequence).
Range: 96 through 16777215

SampIntrv :The length of the sample interval (that is, the counter value between
each A/D conversion within a scan sequence).
Range: 96 through 65535

Note: the value of ScanIntrv must be greater than or equal to the sum of the total sample
interval (that is, the number of channels in a scan sequence * SampIntrv).

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

2.2.8 AI_9118_Config

@ Description

Function Description • 11

Informs PCIS-DASK library of the trigger source, trigger mode and trigger properties
selected for the PCI-9118 with card ID CardNumber. You must call this function before

calling function to perform continuous analog input operation.

@ Cards Support

9118

@ Syntax

Microsoft C/C++ and Borland C++
I16 AI_9118_Config (U16 CardNumber, U16 ModeCtrl, U16 FunCtrl, U16 BurstCnt,

U16 PostCnt)

Visual Basic
AI_9118_Config (ByVal CardNumber As Integer, ByVal ModeCtrl As Integer, ByVal

FunCtrl As Integer, ByVal BurstCnt As Integer, ByVal PostCnt As Integer)
As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.
ModeCtrl : The setting for A/D mode control. This argument is an integer

expression formed from one or more of the manifest constants defined

in DASK.H. There are four groups of constants:
(1) A/D Polarity Control

P9118_AI_BiPolar

P9118_AI_UniPolar
(2) A/D Channel Input Mode

P9118_AI_SingEnded

P9118_AI_Differential
(3) External Gate Enable

P9118_AI_ExtG: 8254 counter is controlled by TGIN pin

(4) External Trigger Enable
P9118_AI_ExtTrig: External Hardware Trigger Mode enabled

When two or more constants are used to form the ModeCtrl argument,

the constants are combined with the bitwise-OR operator(|).
FunCtrl : The setting for A/D Function. This argument is an integer expression

formed from one or more of the manifest constants defined in

DASK.H. There are four groups of constants:
(1) Digital Trigger Polarity

P9118_AI_DtrgNegative: Digital trigger negative active

P9118_AI_DtrgPositive: Digital trigger positive active
(2) External Trigger Polarity

P9118_AI_EtrgNegative: External trigger negative active

P9118_AI_EtrgPositive: External trigger positive active
(3) Burst Mode Enable

P9118_AI_BurstModeEn: Burst Mode is enabled

(4) Burst Mode with Sample and Hold Mode Enable
P9118_AI_SampleHold: Burst mode with sample and hold is

enabled

(5) Trigger Mode Enable
P9118_AI_PostTrgEn: Post trigger mode is enabled
P9118_AI_AboutTrgEn: About trigger mode or Pre-trigger mode is

enabled

12 • Function Description

When two or more constants are used to form the ModeCtrl argument,
the constants are combined with the bitwise-OR operator(|).

BurstCnt : The burst number
PostCnt : The number of data will be accessed after a specific trigger event

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

2.2.9 AI_9812_Config

@ Description

Informs PCIS-DASK library of the trigger source, trigger mode, and trigger properties
selected for the PCI-9812 card with card ID CardNumber. You must call this function
before calling function to perform analog input operation.

@ Cards Support

9812/10

@ Syntax

Microsoft C/C++ and Borland C++
I16 AI_9812_Config (U16 CardNumber, U16 TrgMode, U16 TrgSrc, U16 TrgPol,

U16 ClkSel, U16 TrgLevel, U16 PostCnt)

Visual Basic
AI_9812_Config (ByVal CardNumber As Integer, ByVal TrgMode As Integer, ByVal

TrgSrc As Integer, ByVal TrgPol As Integer, ByVal ClkSel As Integer, ByVal

TrgLevel As Integer, ByVal PostCnt As Integer) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.

TrgMode : The setting for A/D trigger mode. The valid trigger modes are as
follows:

P9812_TRGMOD_SOFT : Software Trigger (no trigger)

P9812_TRGMOD_POST : Post Trigger
P9812_TRGMOD_PRE : Pre-Triger Mode
P9812_TRGMOD_DELAY: Delay Trigger

P9812_TRGMOD_MIDL : Middle Triger
TrgSrc : The setting for A/D Trigger Source. The valid trigger sources are as

follows:

P9812_TRGSRC_CH0 : Channel 0
P9812_TRGSRC_CH1 : Channel 1
P9812_TRGSRC_CH2 : Channel 2

P9812_TRGSRC_CH3 : Channel 3
P9812_TRGSRC_EXT_DIG : External Digital Trigger

TrgPol : The setting of Trigger polarity. The valid values are:

P9812_TRGSLP_POS : Positive slope Trigger
P9812_TRGSLP_NEG : Negative slope Trigger

ClkSel : The setting of A/D clock source. This argument is an integer

expression formed from one or more of the manifest constants defined
in DASK.H. There are two groups of constants:
(1) A/D Clock Frequency

Function Description • 13

P9812_AD2_GT_PCI : Freq. of A/D clock is higher than PCI
clock freq.

P9812_AD2_LT_PCI : Freq. of A/D clock is lower than PCI
clock freq.

(2) The ADC clock source
P9812_CLKSRC_INT : Internal clock
P9812_CLKSRC_EXT_SIN :External sin wave clock
P9812_CLKSRC_EXT_DIG :External square wave clock

When two constants are used to form the ClkSel argument, the
constants are combined with the bitwise-OR operator(|).

Note: if the ADC clock source is P9812_CLKSRC_EXT_DIG or
P9812_CLKSRC_EXT_SIN, the clock divider is a constant, 2.
Hence, the sampling rate is the half of the frequency of the source
clock.

TrgLevel : The setting of Trigger level. The relationship between the value of
TrgLevel and trigger voltage is listed in the following table:

TrgLevel trigger
voltage(

trigger
voltage(0xFF 0.992V 4.96V

0xFE 0.984V 4.92V
--- --- ---

0x81 0.008V 0.04V
0x80 0.000V 0.00V
0x7F -0.008V -0.04V
--- --- ---

0x01 -0.992V -4.96V
0x00 -1.000V -5.00V

PostCnt: The post count value setting for Middle Trigger mode or Delay Trigger
mode. This argument is expressed as:
For Middle Trigger mode: the number of data accessed for each

selected channel after a specific trigger event
For Delay Trigger mode: the counter value for deferring to access

data after a specific trigger event

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

2.2.10 AI_AsyncCheck

@ Description

Check the current status of the asynchronous analog input operation.

@ Cards Support

9111, 9112, 9113, 9114, 9116, 9118, 9812/10

@ Syntax

Microsoft C/C++ and Borland C++
I16 AI_AsyncCheck (U16 CardNumber, BOOLEAN *Stopped, U32 *AccessCnt)

Visual Basic

14 • Function Description

AI_AsyncCheck (ByVal CardNumber As Integer, Stopped As Byte, AccessCnt As
Long) As Integer

@ Parameter

CardNumber : The card id of the card that performs the asynchronous operation.
Stopped : Whether the asynchronous analog input operation has completed. If

Stopped = TRUE, the analog input operation has stopped. Either the
number of A/D conversions indicated in the call that initiated the
asynchronous analog input operation has completed or an error has

occurred. If Stopped = FALSE, the operation is not yet complete.
(constants TRUE and FALSE are defined in DASK.H)

AccessCnt : In the condition that the trigger acquisition mode is not used,
AccessCnt returns the number of A/D data that has been transferred
at the time calling AI_AsyncCheck().
If any trigger mode is enabled by calling AI_9111_Config(),
AI_9812_Config(), or AI_9118_Config(), and double-
buffered mode is enabled, AccessCnt returns the next position after

the position the last A/D data is stored in the circular buffer at the time
calling AI_AsyncCheck().

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered
ErrorFuncNotSupport

2.2.11 AI_AsyncClear

@ Description

Stop the asynchronous analog input operation.

@ Cards Support

9111, 9112, 9113, 9114, 9116, 9118, 9812/10

@ Syntax

Microsoft C/C++ and Borland C++
I16 AI_AsyncClear (U16 CardNumber, U32 *AccessCnt)

Visual Basic
AI_AsyncClear (ByVal CardNumber As Integer, AccessCnt As Long) As Integer

@ Parameter

CardNumber : The card id of the card that performs the asynchronous operation.

AccessCnt : In the condition that the trigger acquisition mode is not used,

AccessCnt returns the number of A/D data that has been transferred
at the time calling AI_AsyncClear().
If double-buffered mode is enabled, AccessCnt returns the next
position after the position the last A/D data is stored in the circular
buffer. If the AccessCnt execeeds the half size of circular buffer, call

"AI_AsyncDblBufferTransfer " twice to get the data.

@ Return Code

Function Description • 15

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

2.2.12 AI_AsyncDblBufferHalfReady

@ Description

Checks whether the next half buffer of data in circular buffer is ready for transfer
during an asynchronous double-buffered analog input operation.

@ Cards Support

9111, 9112, 9113, 9114, 9116, 9118, 9812/10

@ Syntax

Microsoft C/C++ and Borland C++
I16 AI_AsyncDblBufferHalfReady (U16 CardNumber, BOOLEAN *HalfReady,

BOOLEAN *StopFlag)

Visual Basic
AI_AsyncDblBufferHalfReady(ByVal CardNumber As Integer, HalfReady As Byte,

StopFlag As Byte) As Integer

@ Parameter

CardNumber : The card id of the card that performs the asynchronous double-
buffered operation.

HalfReady : Whether the next half buffer of data is available. If HalfReady =
TRUE, you can call AI_AsyncDblBufferTransfer() to copy the
data to your user buffer. (constants TRUE and FALSE are defined in

DASK.H)
StopFlag : Whether the asynchronous analog input operation has completed. If

StopFlag = TRUE, the analog input operation has stopped. If StopFlag
= FALSE, the operation is not yet complete. (constants TRUE and
FALSE are defined in DASK.H)

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

2.2.13 AI_AsyncDblBufferMode

@ Description

Enables or disables double-buffered data acquisition mode.

@ Cards Support

9111, 9112, 9113, 9114, 9116, 9118, 9812/10

@ Syntax

Microsoft C/C++ and Borland C++
I16 AI_AsyncDblBufferMode (U16 CardNumber, BOOLEAN Enable)

Visual Basic
AI_AsyncDblBufferMode (ByVal CardNumber As Integer, ByVal Enable As Byte) As

Integer

@ Parameter

16 • Function Description

CardNumber : The card id of the card that double-buffered mode to be set.
Enable : Whether the double-buffered mode is enabled or not.

TRUE: double-buffered mode is enabled.
FALSE: double-buffered mode is disabled.
(constants TRUE and FALSE are defined in DASK.H)

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

2.2.14 AI_AsyncDblBufferTransfer

@ Description

Depending on the continuous AI function selected, half of the data of the circular
buffer will be logged into the user buffer (if continuous AI function is:

AI_Cont ReadChannel, AI_ContReadMultiChannels and AI_ContScanChannels) or a
disk file (if continuous AI function is: AI_Cont ReadChannelToFile,
AI_ContReadMultiChannelsToFile and AI_ContScanChannelsToFile).

You can execute this function repeatedly to return sequential half buffers of the data.

@ Cards Support

9111, 9112, 9113, 9114, 9116, 9118, 9812/10

@ Syntax

Microsoft C/C++ and Borland C++
I16 AI_AsyncDblBufferTransfer (U16 CardNumber, U16 *Buffer)

Visual Basic
AI_AsyncDblBufferTransfer (ByVal CardNumber As Integer, Buffer As Integer) As

Integer

@ Parameter

CardNumber : The card id of the card that performs the asynchronous double-
buffered operation.

Buffer : The user buffer. An integer array to which the data is to be copied. If
the data will be saved into a disk file, this argument is of no use.
Please refer to Appendix C, AI Data Format for the data format in

Buffer or the data file.

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered,

ErrorFuncNotSupport, ErrorNotDoubleBufferMode,
ErrorInvalidSampleRate

2.2.15 AI_ContReadChannel

@ Description

This function performs continuous A/D conversions on the specified analog input
channel at a rate as close to the rate you specified.

@ Cards Support

9111, 9112, 9113, 9114, 9116, 9118, 9812/10

@ Syntax

Function Description • 17

Microsoft C/C++ and Borland C++
I16 AI_ContReadChannel (U16 CardNumber, U16 Channel, U16 AdRange, U16

*Buffer, U32 ReadCount, F32 SampleRate, U16 SyncMode)

Visual Basic
AI_ContReadChannel (ByVal CardNumber As Integer, ByVal Channel As Integer,

ByVal AdRange As Integer, Buffer As Integer, ByVal ReadCount As Long,
ByVal SampleRate As Single, ByVal SyncMode As Integer) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.
Channel : Analog input channel number

Range: 0 through 15 for PCI-9111

Range: 0 through 15 for PCI-9112/cPCI-9112
Range: 0 through 31 for PCI-9113
Range: 0 through 31 for PCI-9114

Range: 0 through 63 for cPCI-9116
Range: 0 through 15 for PCI-9118
Range: 0 for PCI-9812/10

AdRange : The analog input range the specified channel is setting. We define
some constants to represent various A/D input ranges in DASK.H.
Please refer to the Appendix B, AI Range Codes, for the valid range

values.
Buffer : An integer array to contain the acquired data. Buffer must has a

length equal to or greater than the value of parameter ReadCount. If
double-buffered mode is enabled, this buffer is of no use, you can
ignore this argument. Please refer to Appendix C, AI Data Format for
the data format in Buffer.

ReadCount : If double-buffered mode is disabled, ReadCount is the total number of
A/D conversions (except cPCI9116) or the total number of scans (for
cPCI9116) to be performed. For double-buffered acquisition,

ReadCount is the size (in samples) of the circular buffer (except
cPCI9116) or the size (in samples) allocated for each channel in the
circular buffer (for cPCI9116) and its value must be a multiple of 4.

Note: if the card is PCI-9111, PCI-9113 or PCI-9114, this function uses
FIFO-Half-Full interrupt transfer mode. So the value of ReadCount

must be the multiple of 512 for non-double-buffer mode, or multiple
of 1024 for double-buffer mode.

SampleRate : The sampling rate you want for analog input in hertz (samples per
second). Your maximum rate depends on the card type and your

computer system.
On cPCI9116, this parameter is ignored. Use
AI_9116_CounterInterval() to set the scan rate.

If you set A/D trigger mode as external trigger by calling
AI_9111_Config(), AI_9112_Config(),
AI_9113_Config(),AI_9114_Config(), AI_9812_Config()
or AI_9118_Config(), the sampling rate is determined by an
external trigger source, you have to set this argument as
CLKSRC_EXT_SampRate.

18 • Function Description

If you set A/D trigger mode as external trigger by calling
AI_9812_Config(), the frequency divider is set as 2 by the driver.

Hence, the sampling rate is:
Frequency of external clock source / 2

SyncMode : Whether this operation is performed synchronously or
asynchronously. If any trigger mode is enabled by calling
AI_9111_Config(), AI_9812_Config(),
AI_9116_Config(), or AI_9118_Config(), this operation
should be performed asynchronously.
Valid values:

SYNCH_OP: synchronous A/D conversion, that is, the function
does not return until the A/D operation complete.

ASYNCH_OP:asynchronous A/D conversion

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
ErrorInvalidIoChannel, ErrorInvalidAdRange, ErrorTransferCountTooLarge,

ErrorContIoNotAllowed, ErrorInvalidSampleRate

2.2.16 AI_ContReadChannelToFile

@ Description

This function performs continuous A/D conversions on the specified analog input
channel at a rate as close to the rate you specified and saves the acquired data in a
disk file. The data is written to disk in binary format, with the lower byte first (little

endian). Please refer to Appendix D, Data File Format for the data file structure and
Appendix C, AI Data Format for the format of the data in the data file.

@ Cards Support

9111, 9112, 9113, 9114, 9116, 9118, 9812/10

@ Syntax

Microsoft C/C++ and Borland C++
I16 AI_ContReadChannelToFile (U16 CardNumber, U16 Channel, U16 AdRange,

U8 *FileName, U32 ReadCount, F64 SampleRate, U16 SyncMode);

Visual Basic
AI_ContReadChannelToFile (ByVal CardNumber As Integer, ByVal Channel As

Integer, ByVal AdRange As Integer, ByVal FileName As String, ByVal
ReadCount As Long, ByVal SampleRate As Double, ByVal SyncMode As

Integer) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.

Channel : Analog input channel number
Range: 0 through 15 for PCI-9111
Range: 0 through 15 for PCI-9112/cPCI-9112

Range: 0 through 31 for PCI-9113
Range: 0 through 31 for PCI-9114
Range: 0 through 63 for cPCI-9116

Range: 0 through 15 for PCI-9118

Function Description • 19

Range: 0 for PCI-9812/10
AdRange : The analog input range the specified channel is setting. We define

some constants to represent various A/D input ranges in DASK.H.
Please refer to the Appendix B, AI Range Codes, for the valid range
values.

FileName : Name of data file which stores the acquired data
ReadCount : If double-buffered mode is disabled, ReadCount is the number of A/D

conversions (except cPCI9116) or the total number of scans (for

cPCI9116) to be performed. For double-buffered acquisition,
ReadCount is the size (in samples) of the circular buffer (except
cPCI9116) or the size (in samples) allocated for each channel in the

circular buffer (for cPCI9116) and its value must be a multiple of 4.

Note: if the card is PCI-9111, PCI-9113 or PCI-9114, this function uses
FIFO-Half-Full interrupt transfer mode. So the value of ReadCount

must be the multiple of 512 for non-double-buffer mode, or multiple
of 1024 for double-buffer mode.

SampleRate : The sampling rate you want for analog input in hertz (samples per
second). Your maximum rate depends on the card type and your

computer system.
On cPCI9116, this parameter is ignored. Use
AI_9116_CounterInterval() to set the scan rate.

If you set A/D trigger mode as external trigger by calling
AI_9111_Config(), AI_9112_Config(),
AI_9113_Config(),AI_9114_Config(), AI_9812_Config()
or AI_9118_Config(), the sampling rate is determined by an
external trigger source, you have to set this argument as
CLKSRC_EXT_SampRate.

If you set A/D trigger mode as external trigger by calling
AI_9812_Config(), the frequency divider is set as 2 by the driver.
Hence, the sampling rate is:

Frequency of external clock source / 2

SyncMode : Whether this operation is performed synchronously or

asynchronously. If any trigger mode is enabled by calling
AI_9111_Config(), AI_9116_Config(),
AI_9812_Config(), or AI_9118_Config(), this operation

should be performed asynchronously.
Valid values:

SYNCH_OP: synchronous A/D conversion, that is, the function

does not return until the A/D operation complete.
ASYNCH_OP:asynchronous A/D conversion

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
ErrorInvalidIoChannel, ErrorInvalidAdRange, ErrorTransferCountTooLarge,
ErrorContIoNotAllowed, ErrorInvalidSampleRate, ErrorOpenFile

2.2.17 AI_ContReadMultiChannels

20 • Function Description

@ Description

This function performs continuous A/D conversions on the specified analog input

channels at a rate as close to the rate you specified. This function takes advantage of
the PCI-9118 and PCI-9116 auto-scan and channel-gain queue functionality to
perform multi-channel analog input.

@ Cards Support

9116, 9118

@ Syntax

Microsoft C/C++ and Borland C++
I16 AI_ContReadMultiChannels (U16 CardNumber, U16 numChans, U16 *Chans,

U16 *AdRanges, U16 *Buffer, U32 ReadCount, F32 SampleRate, U16

SyncMode)

Visual Basic
AI_ContReadMultiChannels (ByVal CardNumber As Integer, ByVal numChans As

Integer, Chans As Integer, AdRanges As Integer, Buffer As Integer, ByVal
ReadCount As Long, ByVal SampleRate As Single, ByVal SyncMode As
Integer) As Integer

@ Parameter

CardNumber : The card ID of the card that want to perform this operation.
numChans : The number of analog input channels in the array Chans. The valid

value:
cPCI-9116: 1 through 511
PCI-9118: 1 through 255

Chans : Array of analog input channel numbers. The channel order for
acquiring data is the same as the order you set in Chans.
cPCI-9116: numbers in Chans must be within 0 and 63. Since there is

no restriction of channel order setting, you can set the
channel order as you wish.

PCI-9118: numbers in Chans must be within 0 and 15. Since there is

no restriction of channel order setting, you can set the
channel order as you wish.

AdRanges : An integer array of length numChans that contains the analog input
range for every channel in array Chans.
PCI-9118/cPCI9116:

Please refer to the Appendix B for the valid range values. Since
PCI-9118/cPCI-9116 supports different ranges, the range values
in AdRanges can be any of the valid range values of PCI-

9118/cPCI-9116.
Buffer : An integer array to contain the acquired data. The length of Buffer

must be equal to or greater than the value of parameter ReadCount.
The acquired data is stored in interleaved sequence. For example, if
the value of numChans is 3, and the numbers in Chans are 3, 8, and
0. Then this function input data from channel 3, then channel 8, then

channel 0, then channel 3, then channel 8, ... The data acquired is put
to Buffer by order. So the data read from channel 3 is stored in
Buffer[0], Buffer[3], Buffer[6], ... The data from channel 8 is stored in

Buffer[1], Buffer[4], Buffer[7], ... The data from channel 0 is stored in

Function Description • 21

Buffer[2], Buffer[5], Buffer[8], ... If double-buffered mode is enabled,
this buffer is of no use, you can ignore this argument. Please refer to

Appendix C, AI Data Format for the data format in Buffer.
ReadCount : If double-buffered mode is disabled, ReadCount is the number of A/D

conversions (for PCI9118) or the total number of scans (for cPCI9116)

to be performed. For double-buffered acquisition, ReadCount is the
size (in samples) of the circular buffer (for PCI9118) or the size (in
samples) allocated for each channel in the circular buffer (for

cPCI9116) and its value must be a multiple of 4.
SampleRate : The sampling rate you want for analog input in hertz (samples per

second). The maximum rate depends on the card type and your

computer system.
On cPCI9116, this parameter is ignored. Use
AI_9116_CounterInterval() to set the scan rate.

If you set A/D trigger source as external trigger by calling
AI_9118_Config(), the sampling rate is determined by an external
trigger source, you have to set this argument as

CLKSRC_EXT_SampRate.
SyncMode : Whether this operation is performed synchronously or

asynchronously. If any trigger mode is enabled by calling
AI_9118_Config() or AI_9116_Config(),this operation should
be performed asynchronously.
Valid values:

SYNCH_OP: synchronous A/D conversion, that is, the function
does not return until the A/D operation complete.

ASYNCH_OP:asynchronous A/D conversion

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
ErrorInvalidIoChannel, ErrorInvalidSampleRate, ErrorInvalidAdRange,

ErrorTransferCountTooLarge, ErrorContIoNotAllowed

2.2.18 AI_ContReadMultiChannelsToFile

@ Description

This function performs continuous A/D conversions on the specified analog input

channels at a rate as close to the rate you specified and saves the acquired data in a
disk file. The data is written to disk in binary format, with the lower byte first (little
endian). Please refer to Appendix D, Data File Format for the data file structure and

Appendix C, AI Data Format for the format of the data in the data file. This function
takes advantage of the PCI-9118 auto-scan and channel-gain queue functionality to
perform multi-channel analog input.

@ Cards Support

9116, 9118

@ Syntax

Microsoft C/C++ and Borland C++
I16 AI_ContReadMultiChannelsToFile (U16 CardNumber, U16 NumChans, U16

*Chans, U16 *AdRanges, U8 *FileName, U32 ReadCount, F64

SampleRate, U16 SyncMode)

Visual Basic

22 • Function Description

AI_ContReadMultiChannelsToFile (ByVal CardNumber As Integer, ByVal numChans
As Integer, Chans As Integer, AdRanges As Integer, ByVal FileName As

String, ByVal ReadCount As Long, ByVal SampleRate As Double, ByVal
SyncMode As Integer) As Integer

@ Parameter

CardNumber : The card ID of the card that want to perform this operation.
numChans : The number of analog input channels in the array Chans. The valid

value:

cPCI-9116: 1 through 511
PCI-9118: 1 through 255

Chans : Array of analog input channel numbers. The channel order for

acquiring data is the same as the order you set in Chans.
cPCI-9116: numbers in Chans must be within 0 and 63. Since there is

no restriction of channel order setting, you can set the

channel order as you wish.
PCI-9118: numbers in Chans must be within 0 and 15. Since there is

no restriction of channel order setting, you can set the

channel order as you wish.
AdRanges : An integer array of length numChans that contains the analog input

range for every channel in array Chans.

CPCI-9116/PCI-9118:
Please refer to the Appendix B for the valid range values.
Since PCI-9118 supports different ranges, the range values

in AdRanges can be any of the valid range values of PCI-
9118/cPCI-9116.

FileName : Name of data file which stores the acquired data

ReadCount : If double-buffered mode is disabled, ReadCount is the number of A/D
conversions (for PCI9118) or the total number of scans (for cPCI9116)
to be performed. For double-buffered acquisition, ReadCount is the

size (in samples) of the circular buffer (for PCI9118) or the size (in
samples) allocated for each channel in the circular buffer (for
cPCI9116) and its value must be a multiple of 4.

SampleRate : The sampling rate you want for analog input in hertz (samples per
second). The maximum rate depends on the card type and your
computer system.

On cPCI9116, this parameter is ignored. Use
AI_9116_CounterInterval() to set the scan rate.
If you set A/D trigger source as external trigger by calling
AI_9118_Config(), the sampling rate is determined by an external
trigger source, you have to set this argument as
CLKSRC_EXT_SampRate.

SyncMode : Whether this operation is performed synchronously or
asynchronously. If any trigger mode is enabled by calling
AI_9118_Config(),this operation should be performed

asynchronously.
Valid values:

SYNCH_OP: synchronous A/D conversion, that is, the function

does not return until the A/D operation complete.
ASYNCH_OP:asynchronous A/D conversion

Function Description • 23

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,

ErrorInvalidIoChannel, ErrorInvalidSampleRate, ErrorInvalidAdRange,
ErrorTransferCountTooLarge, ErrorContIoNotAllowed, ErrorOpenFile

2.2.19 AI_ContScanChannels

@ Description

This function performs continuous A/D conversions on the specified continuous analog
input channels at a rate as close to the rate you specified. This function takes

advantage of the hardware auto-scan functionality to perform multi-channel analog
input.

@ Cards Support

9111, 9112, 9113, 9114, 9116, 9118, 9812/10

@ Syntax

Microsoft C/C++ and Borland C++
I16 AI_ContScanChannels (U16 CardNumber, U16 Channel, U16 AdRange, U16

*Buffer, U32 ReadCount, F64 SampleRate, U16 SyncMode)

Visual Basic
AI_ContScanChannels (ByVal CardNumber As Integer, ByVal Channel As Integer,

ByVal AdRange As Integer, Buffer As Integer, ByVal ReadCount As Long,
ByVal SampleRate As Double, ByVal SyncMode As Integer) As Integer

@ Parameter

CardNumber : The card ID of the card that want to perform this operation.
Channel : The largest channel number of specified continuous analog input

channel. The channel order for acquiring data is as follows:
PCI-9111: number of Channel must be within 0 and 15. The

continuous scan sequence is ascending and the first one

must be zero. For example, 0, 1, 2, 3.
PCI-9112/cPCI-9112: number of Channel must be within 0 and 15.

The continuous scan sequence is descending,

and the first one must be zero. For example, 3,
2, 1, 0.

PCI-9113: number of Channel must be within 0 and 31. The

continuous scan sequence is ascending and the first one
must be zero. For example, 0, 1, 2, 3.

PCI-9114: number of Channel must be within 0 and 31. The

continuous scan sequence is ascending and the first one
must be zero. For example, 0, 1, 2, 3.

cPCI-9116: number of Channel must be within 0 and 63. The

continuous scan sequence is ascending and the first one
must be zero. For example, 0, 1, 2, 3.

PCI-9118: number of Channel must be within 0 and 15. The

continuous scan sequence is ascending and the first one
must be zero. For example, 0, 1, 2, 3.

PCI-9812/10: number of Channel must be 0, 1 or 3. The continuous

scan sequence is ascending and the first one must be
zero. For example, 0, 1, 2, 3.

24 • Function Description

AdRange : The analog input range the continuous specified channel is setting.
Please refer to the Appendix B for the valid range values.

Buffer : An integer array to contain the acquired data. The length of Buffer
must be equal to or greater than the value of parameter ReadCount.
The acquired data is stored in interleaved sequence. For example, if

the value of Channel is 3, and the scanned channel numbers is
descending (e.g. PCI-9112/cPCI-9112), then this function input data
from channel 2, then channel 1, then channel 0, then channel 2, then

channel 1, ... The data acquired is put to Buffer by order. So the data
read from channel 2 is stored in Buffer[0], Buffer[3], Buffer[6], ... The
data from channel 1 is stored in Buffer[1], Buffer[4], Buffer[7], ... The

data from channel 0 is stored in Buffer[2], Buffer[5], Buffer[8], ... If
double-buffered mode is enabled, this buffer is of no use, you can
ignore this argument. Please refer to Appendix C, AI Data Format for

the data format in Buffer.
ReadCount : If double-buffered mode is disabled, ReadCount is the number of A/D

conversions (except cPCI9116) or the total number of scans (for

cPCI9116) to be performed. For double-buffered acquisition,
ReadCount is the size (in samples) of the circular buffer (except
cPCI9116) or the size (in samples) allocated for each channel in the

circular buffer (for cPCI9116) and its value must be a multiple of 4.

Note: if the card is PCI-9111, PCI-9113 or PCI-9114, this function uses
FIFO-Half-Full interrupt transfer mode. So the value of ReadCount

must be the multiple of 512 for non-double-buffer mode, or multiple
of 1024 for double-buffer mode.

SampleRate : The sampling rate you want for analog input in hertz (samples per
second). The maximum rate depends on the card type and your

computer system.
On cPCI9116, this parameter is ignored. Use
AI_9116_CounterInterval() to set the scan rate.

If you set A/D trigger mode as external trigger by calling
AI_9111_Config(), AI_9112_Config(),
AI_9113_Config(),AI_9114_Config(), AI_9812_Config()
or AI_9118_Config(), the sampling rate is determined by an
external trigger source, you have to set this argument as
CLKSRC_EXT_SampRate.

If you set A/D trigger mode as external trigger by calling
AI_9812_Config(), the frequency divider is set as 2 by the driver.
Hence, the sampling rate is:

Frequency of external clock source / 2

SyncMode : Whether this operation is performed synchronously or

asynchronously. If any trigger mode is enabled by calling
AI_9111_Config(), AI_9116_Config(),
AI_9812_Config() or AI_9118_Config(), this operation

should be performed asynchronously.
Valid values:

SYNCH_OP: synchronous A/D conversion, that is, the function

does not return until the A/D operation complete.

Function Description • 25

ASYNCH_OP:asynchronous A/D conversion

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
ErrorInvalidIoChannel, ErrorInvalidSampleRate, ErrorInvalidAdRange,
ErrorTransferCountTooLarge, ErrorContIoNotAllowed, ErrorLastChannelNotZero,

ErrorDiffRangeNotSupport, ErrorChannelNotDescending, ErrorChannelNotAscending

2.2.20 AI_ContScanChannelsToFile

@ Description

This function performs continuous A/D conversions on the specified continuous analog
input channels at a rate as close to the rate you specified and saves the acquired data
in a disk file. The data is written to disk in binary format, with the lower byte first (little

endian). Please refer to Appendix D, Data File Format for the data file structure and
Appendix C, AI Data Format for the format of the data in the data file. This function
takes advantage of the hardware auto-scan functionality to perform multi-channel

analog input.

@ Cards Support

9111, 9112, 9113, 9114, 9116, 9118, 9812/10

@ Syntax

Microsoft C/C++ and Borland C++
I16 AI_ContScanChannelsToFile (U16 CardNumber, U16 Channel, U16 AdRange,

U8 *FileName, U32 ReadCount, F64 SampleRate, U16 SyncMode)

Visual Basic
AI_ContScanChannelsToFile (ByVal CardNumber As Integer, ByVal Channel As

Integer, ByVal AdRange As Integer, ByVal FileName As String, ByVal
ReadCount As Long, ByVal SampleRate As Double, ByVal SyncMode As
Integer) As Integer

@ Parameter

CardNumber : The card ID of the card that want to perform this operation.
Channel : The largest channel number of specified continuous analog input

channel. The channel order for acquiring data is as follows:
PCI-9111: number of Channel must be within 0 and 15. The

continuous scan sequence is ascending and the first one

must be zero. For example, 0, 1, 2, 3.
PCI-9112/cPCI-9112: number of Channel must be within 0 and 15.

The continuous scan sequence is descending,

and the first one must be zero. For example, 3,
2, 1, 0.

PCI-9113: number of Channel must be within 0 and 31. The

continuous scan sequence is ascending and the first one
must be zero. For example, 0, 1, 2, 3.

PCI-9114: number of Channel must be within 0 and 31. The

continuous scan sequence is ascending and the first one
must be zero. For example, 0, 1, 2, 3.

26 • Function Description

cPCI-9116: number of Channel must be within 0 and 63. The
continuous scan sequence is ascending and the first one

must be zero. For example, 0, 1, 2, 3.
PCI-9118: number of Channel must be within 0 and 15. The

continuous scan sequence is ascending and the first one

must be zero. For example, 0, 1, 2, 3.
PCI-9812/10: number of Channel must be 0, 1 or 3. The continuous

scan sequence is ascending and the first one must be

zero. For example, 0, 1, 2, 3.

AdRange : The analog input range the continuous specified channel is setting.

Please refer to the Appendix B for the valid range values.

FileName : Name of data file which stores the acquired data
ReadCount : If double-buffered mode is disabled, ReadCount is the number of A/D

conversions (except cPCI9116) or the total number of scans (for
cPCI9116) to be performed. For double-buffered acquisition,
ReadCount is the size (in samples) of the circular buffer (except

cPCI9116) or the size (in samples) allocated for each channel in the
circular buffer (for cPCI9116) and its value must be a multiple of 4.

Note: if the card is PCI-9111, PCI-9113 or PCI-9114, this function uses
FIFO-Half-Full interrupt transfer mode. So the value of ReadCount
must be the multiple of 512 for non-double-buffer mode, or multiple
of 1024 for double-buffer mode.

SampleRate : The sampling rate you want for analog input in hertz (samples per

second). The maximum rate depends on the card type and your
computer system.
On cPCI9116, this parameter is ignored. Use
AI_9116_CounterInterval() to set the scan rate.
If you set A/D trigger mode as external trigger by calling
AI_9111_Config(), AI_9112_Config(),
AI_9113_Config(),AI_9114_Config(), AI_9812_Config()
or AI_9118_Config(), the sampling rate is determined by an
external trigger source, you have to set this argument as

CLKSRC_EXT_SampRate.
If you set A/D trigger mode as external trigger by calling
AI_9812_Config(), the frequency divider is set as 2 by the driver.

Hence, the sampling rate is:
Frequency of external clock source / 2

SyncMode : Whether this operation is performed synchronously or
asynchronously. If any trigger mode is enabled by calling
AI_9111_Config(), AI_9116_Config(),
AI_9812_Config() or AI_9118_Config(), this operation
should be performed asynchronously.
Valid values:

SYNCH_OP: synchronous A/D conversion, that is, the function
does not return until the A/D operation complete.

ASYNCH_OP:asynchronous A/D conversion

Function Description • 27

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,

ErrorInvalidIoChannel, ErrorInvalidSampleRate, ErrorInvalidAdRange,
ErrorTransferCountTooLarge, ErrorContIoNotAllowed, ErrorLastChannelNotZero,
ErrorDiffRangeNotSupport, ErrorChannelNotDescending, ErrorChannelNotAscending

2.2.21 AI_ContStatus

@ Description

While performing continuous A/D conversions, this function is called to get the A/D

status. Please refer to the manual for your device for the AI status the device might
meet.

@ Cards Support

9111, 9112, 9113, 9114, 9116, 9118, 9812/10

@ Syntax

Microsoft C/C++ and Borland C++
I16 AI_ContStatus (U16 CardNumber, U16 *Status)

Visual Basic
AI_ContStatus (ByVal CardNumber As Integer, Status Integer) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.
Status : The continuous AI status returned. The description of the parameter

Status for various card types is the following:

PCI9111/PCI9113/PCI9114 :
 bit 0 : '0' indicates FIFO is empty

 bit 1 : '0' indicates FIFO is Half Full

 bit 2 : '0' indicates FIFO is Full, the data might have been lost

 bit 3 : '0' indicates AD is busy, the A/D data hasn’t been latched into FIFO

yet

 bit 4 ~ 15 : not used

 PCI9112:

bit 0 : '1' indicates A/D conversion is Completed (Ready)

bit 1 : '1' indicates A/D conversion is Over-Run

bit 2 ~ 15 : not used

cPCI9116:
bit 0 : '1' indicates A/D conversion is Over Speed

bit 1 : '1' indicates A/D conversion is Over-Run

bit 2 : '1' indicates Scan Counter Counts to zero

bit 3 : '1' indicates External Digital Trigger ever happened

bit 4 : '1' indicates A/D FIFO is empty

bit 5 : '1' indicates A/D FIFO is Half Full

bit 6 : '0' indicates A/D FIFO is Full

bit 7 ~ 15 : not used

PCI9118:
bit 0 : '1' indicates A/D conversion is Completed (Ready)

bit 1 : '1' indicates A/D conversion is Over-Run

28 • Function Description

bit 2 : '1' indicates A/D conversion is Over-Speed

bit 3 : '1' indicates Burst Mode of A/D conversion is Over-Run

bit 4 : '1' indicates External Digital Trigger ever happened

bit 5 : '1' indicates About Trigger of A/D conversion is Completed

bit 6 : '1' indicates A/D FIFO is empty

bit 7 : '1' indicates FIFO is Half Full

bit 8 : '1' indicates FIFO is Full

bit 9 ~ 15 : not used

PCI9812:
bit 0 : '1' indicates FIFO is ready for Input (Not Full)

bit 1 : '1' indicates FIFO is at least Half-Full

bit 2 : '1' indicates FIFO is ready for Output (Not Empty)

bit 3 : '3' indicates the post trigger counter reaches zero

bit 4 ~ 15 : not used

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered

2.2.22 AI_ContVScale

@ Description

This function converts the values of an array of acquired binary data from an
continuous A/D conversion call to the actual input voltages. The acquires binary data

in the reading array might include the channel information (please refer to continuous
functions, AI_ContReadChannel or AI_ContScanChannels, for the detailed data
format); however, The calculated voltage values in the voltage array returned will not

include the channel message.

@ Cards Support

9111, 9112, 9113, 9114, 9116, 9118, 9812/10

@ Syntax

Microsoft C/C++ and Borland C++
I16 AI_ContVScale (U16 CardNumber, U16 AdRange, U16 *readingArray, F64

*voltageArray, I32 count)

Visual Basic
AI_ContVScale (ByVal CardNumber As Integer, ByVal AdRange As Integer,

readingArray As Integer, voltageArray As Double, ByVal count As Long) As
Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.
AdRange : The analog input range the continuous specified channel is setting.

Please refer to the Appendix B for the valid range values.

readingArray : Acquired continuous analog input data array

voltageArray : computed voltages array returned

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
ErrorInvalidAdRange

Function Description • 29

2.2.23 AI_InitialMemoryAllocated

@ Description

This function returns the available memory size for analog input in the device driver in
argument MemSize. The continuous analog input transfer size can not exceed this
size.

@ Cards Support

9111, 9112, 9113, 9114, 9116, 9118, 9812/10

@ Syntax

Microsoft C/C++ and Borland C++
I16 AI_InitialMemoryAllocated (U16 CardNumber, U32 *MemSize)

Visual Basic
AI_InitialMemoryAllocated (ByVal CardNumber As Integer, MemSize As Long) As

Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.
MemSize : The available memory size for continuous AI in device driver of this

card. The unit is KB (1024 bytes).

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered

2.2.24 AI_ReadChannel

@ Description

This function performs a software triggered A/D conversion (analog input) on an
analog input channel and returns the value converted.

@ Cards Support

9111, 9112, 9113, 9114, 9116, 9118

@ Syntax

Microsoft C/C++ and Borland C++
I16 AI_ReadChannel (U16 CardNumber, U16 Channel, U16 AdRange, U16 *Value)

Visual Basic
AI_ReadChannel (ByVal CardNumber As Integer, ByVal Channel As Integer, ByVal

AdRange As Integer, Value As Integer) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.
Channel : Analog input channel number.

Range: 0 through 15 for PCI-9112/cPCI-9112, PCI-9111, PCI-9118

Range: 0 through 31 for PCI-9113, PCI-9114
Range: 0 through 63 for cPCI-9116

AdRange : The analog input range the specified channel is setting. Please refer

to the Appendix B for the valid range values.

30 • Function Description

Value : The A/D converted value. The data format in value is described as
below:

PCI-9113
16-bit unsigned data:

 B15 … B12 D11 D10 …. D1 D0

where D11, D10, ... , D0 : A/D converted data

B15 ~ B12: don’t care

PCI-9114

16-bit signed data:

 D15 D14 … … … … … .. D1 D0

where D15, D14, ... , D0 : A/D converted data

For PCI-9111, PCI-9112/cPCI-9112, cPCI-9116, and PCI-9118,
please refer to the description of Buffer argument of
AI_ContReadChannel() for the correct data format.

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,

ErrorInvalidIoChannel, ErrorInvalidAdRange

2.2.25 AI_VReadChannel

@ Description

This function performs a software triggered A/D conversion (analog input) on an
analog input channel and returns the value scaled to a voltage in units of volts.

@ Cards Support

9111, 9112, 9113, 9114, 9116, 9118

@ Syntax

Microsoft C/C++ and Borland C++
I16 AI_VReadChannel (U16 CardNumber, U16 Channel, U16 AdRange, F64

*voltage)

Visual Basic
AI_ReadChannel (ByVal CardNumber As Integer, ByVal Channel As Integer, ByVal

AdRange As Integer, voltage As Double) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.
Channel : Analog input channel number.

Range: 0 through 15 for PCI-9112/cPCI-9112, PCI-9111, PCI-9118

Range: 0 through 31 for PCI-9113, PCI-9114
Range: 0 through 63 for cPCI-9116

AdRange : The analog input range the specified channel is setting. Please refer

to the Appendix B for the valid range values.
voltage : The measured voltage value returned and scaled to units of voltage.

@ Return Code

Function Description • 31

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
ErrorInvalidIoChannel, ErrorInvalidAdRange

2.2.26 AI_VoltScale

@ Description

This function converts the result from an AI_ReadChannel call to the actual input

voltage.

@ Cards Support

9111, 9112, 9113, 9114, 9116, 9118

@ Syntax

Microsoft C/C++ and Borland C++
I16 AI_VoltScale (U16 CardNumber, U16 AdRange, I16 reading, F64 *voltage)

Visual Basic
AI_VoltScale (ByVal CardNumber As Integer, ByVal AdRange As Integer, ByVal

reading As Integer, voltage As Double) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.
AdRange : The analog input range the specified channel is setting. Please refer

to the Appendix B for the valid range values.
reading : The result of the AD Conversion.
voltage : Computed voltage value.

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
ErrorInvalidAdRange

2.2.27 AO_6208A_Config

@ Description

Sets the Voltage to Current Mode of PCI-6208A.

@ Cards Support

6208A

@ Syntax

Microsoft C/C++ and Borland C++
I16 AO_6208A_Config (U16 CardNumber, U16 V2AMode)

Visual Basic
AO_6208A_Config (ByVal CardNumber As Integer, ByVal V2AMode As Integer) As

Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.
V2AMode : The voltage to current mode. The valid V2Amode are:

P6208_CURRENT_0_20MA

P6208_CURRENT_5_25MA
P6208_CURRENT_4_20MA

32 • Function Description

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,

ErrorInvalidIoChannel

2.2.28 AO_6308A_Config

@ Description

Sets the Voltage to Current Mode of PCI-6308A.

@ Cards Support

6308A

@ Syntax

Microsoft C/C++ and Borland C++
I16 AO_6308A_Config (U16 CardNumber, U16 V2AMode)

Visual Basic
AO_6308A_Config (ByVal CardNumber As Integer, ByVal V2AMode As Integer) As

Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.
V2AMode : The voltage to current mode. The valid V2Amode are:

P6308_CURRENT_0_20MA
P6308_CURRENT_5_25MA
P6308_CURRENT_4_20MA

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
ErrorInvalidIoChannel

2.2.29 AO_6308V_Config

@ Description

Informs PCIS-DASK library of the polarity (unipolar or bipolar) that the output channel

is configured for the analog output and the reference voltage value selected for an
analog output channel of PCI-6308V. You can configure each channel to use an
internal reference of 10V or an external reference (0V ~ +10V) by setting related

jumpers. You must call this function before calling function to perform voltage output
operation.

@ Cards Support

6308V

@ Syntax

Microsoft C/C++ and Borland C++
I16 AO_6308V_Config (U16 wCardNumber, U16 Channel, U16 wOutputPolarity,

F64 refVoltage)

Visual Basic
AO_6308V_Config (ByVal CardNumber As Integer, ByVal Channel As Integer,

ByVal OutputPolarity As Integer, ByVal refVoltage As Double) As Integer

Function Description • 33

@ Parameter

CardNumber : The card id of the card that want to perform this operation.

Channel : The AO channel number configured. The valid values are:
P6308V_AO_CH0_3
P6308V_AO_CH4_7

OutputPolarity : The polarity (unipolar or bipolar) of the output channel. The valid
values are:

P6308V_AO_UNIPOLAR

P6308V_AO_BIPOLAR
refVoltage : Voltage reference value.

If the D/A reference voltage source your device use is internal

reference, the valid values for refVoltage is 10.
If the D/A reference voltage source your device use is external
reference, the valid range for refVoltage is 0 to +10.

Note : If the 10V D/A reference voltage is selected, the D/A output range is 0V~10V.

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
ErrorInvalidDaRefVoltage

2.2.30 AO_9111_Config

@ Description

Informs PCIS-DASK library of the polarity (unipolar or bipolar) that the output channel

is configured for the analog output of PCI9111. You must call this function before
calling function to perform voltage output operation.

@ Cards Support

9111

@ Syntax

Microsoft C/C++ and Borland C++
I16 AO_9111_Config (U16 CardNumber, U16 OutputPolarity)

Visual Basic
AO_9111_Config (ByVal CardNumber As Integer, ByVal OutputPolarity As Integer)

As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.

OutputPolarity : The polarity (unipolar or bipolar) of the output channel. The valid
values are:

P9111_AO_UNIPOLAR

P9111_AO_BIPOLAR

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

2.2.31 AO_9112_Config

@ Description

34 • Function Description

Informs PCIS-DASK library of the reference voltage value selected for an analog
output channel of PCI9112. You can configure each channel to use an internal

reference of –5V (default) or –10V or an external reference (-10V ~ +10V) by setting
related jumpers. You must call this function before calling function to perform voltage
output operation.

@ Cards Support

9112

@ Syntax

Microsoft C/C++ and Borland C++
I16 AO_9112_Config (U16 CardNumber, U16 Channel, F64 refVoltage)

Visual Basic
AO_9112_Config (ByVal CardNumber As Integer, ByVal Channel As Integer, ByVal

refVoltage As Double) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.
Channel : The AO channel number configured.
refVoltage : Voltage reference value.

If the D/A reference voltage source your device use is internal
reference, the valid values for refVoltage is –5 and –10.
If the D/A reference voltage source your device use is external

reference, the valid range for refVoltage is –10 to +10.

Note : If the -10V D/A reference voltage is selected, the D/A output range is 0V~10V. On
the other hand, if the +10V is selected, the D/A output range is -10V~0V.

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,

ErrorInvalidDaRefVoltage

2.2.32 AO_SimuVWriteChannel

@ Description

Writes voltage values, scales them to the proper binary values and writes binary
values to the specified analog output channels simultaneously.

@ Cards Support

6308V/08A

@ Syntax

Microsoft C/C++ and Borland C++
I16 AO_SimuVWriteChannel (U16 wCardNumber, U16 wGroup, F64 *VBuffer)

Visual Basic
AO_SimuVWriteChannel (ByVal CardNumber As Integer, ByVal wGroup As Integer,

voltageArray As Double) As Intege

@ Parameter

CardNumber : The card id of the card that want to perform this operation.

Function Description • 35

Group : The group number of the analog output channels. The valid value:

P6308V_AO_CH0_3

P6308V_AO_CH4_7
VBuffer : An voltage array to contain the update data. The length (in samples) of

VBuffer must be equal to or greater the number of channels in the specified

group. The range of voltages depends on the type of device, on the output
polarity, and on the voltage reference (external or internal)

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
ErrorInvalidIoChannel

2.2.33 AO_SimuWriteChannel

@ Description

Writes binary values to the specified analog output channels simultaneously.

@ Cards Support

6308V/08A

@ Syntax

Microsoft C/C++ and Borland C++
I16 AO_SimuWriteChannel (U16 wCardNumber, U16 wGroup, I16 *Buffer)

Visual Basic
AO_SimuWriteChannel (ByVal CardNumber As Integer, ByVal wGroup As Integer,

valueArray As Integer) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.

Group : The group number of the analog output channels. The valid value:

P6308V_AO_CH0_3
P6308V_AO_CH4_7

Value : An integer array to contain the update data. The length (in samples) of Buffer must be equal
to or greater the number of channels in the specified group. The range of value to be written
to the analog output channels:

Range: 0 through 4095 for PCI-6308

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
ErrorInvalidIoChannel

2.2.34 AO_VoltScale

@ Description

Scales a voltage (or a current value) to a binary value.

@ Cards Support

9111, 9112, 9118, 6208V/16V/08A, 6308V/08A

@ Syntax

Microsoft C/C++ and Borland C++

36 • Function Description

I16 AO_VoltScale (U16 CardNumber, U16 Channel, F64 Voltage, I16 *binValue)

Visual Basic
AO_VoltScale (ByVal CardNumber As Integer, ByVal Channel As Integer, ByVal

Voltage As Double, binValue As Integer) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.
Channel : The analog output channel number.

Range: 0 or 1 for PCI-9112/cPCI-9112

Range: 0 for PCI-9111
Range: 0 or 1 for PCI-9118
Range: 0 through 7 for PCI-6208V/08A and PCI-6308V/08A

Range: 0 through 15 for PCI-6216V
Voltage : Voltage, in volts, to be converted to a binary value
binValue : the converted binary value returned

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
ErrorInvalidIoChannel. ErrorDaVoltageOutOfRange

2.2.35 AO_VWriteChannel

@ Description

Accepts a voltage value (or a current value), scales it to the proper binary value and

writes a binary value to the specified analog output channel.

@ Cards Support

9111, 9112, 9118, 6208V/16V/08A, 6308V/08A

@ Syntax

Microsoft C/C++ and Borland C++
I16 AO_VWriteChannel (U16 CardNumber, U16 Channel, F64 Voltage)

Visual Basic
AO_VWriteChannel (ByVal CardNumber As Integer, ByVal Channel As Integer,

ByVal Voltage As Double) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.
Channel : The analog output channel number.

Range: 0 or 1 for PCI-9112/cPCI-9112
Range: 0 for PCI-9111
Range: 0 or 1 for PCI-9118

Range: 0 through 7 for PCI-6208V/08A and PCI-6308V/08A
Range: 0 through 15 for PCI-6216V

Voltage : The value to be scaled and written to the analog output channel. The

range of voltages depends on the type of device, on the output
polarity, and on the voltage reference (external or internal).

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
ErrorInvalidIoChannel, ErrorDaVoltageOutOfRange

Function Description • 37

2.2.36 AO_WriteChannel

@ Description

Writes a binary value to the specified analog output channel.

@ Cards Support

9111, 9112, 9118, 6208V/16V/08A, 6308V/08A

@ Syntax

Microsoft C/C++ and Borland C++
I16 AO_WriteChannel (U16 CardNumber, U16 Channel, U16 Value)

Visual Basic
AO_WriteChannel (ByVal CardNumber As Integer, ByVal Channel As Integer, ByVal

Value As Integer) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.
Channel : The analog output channel number.

Range: 0 or 1 for PCI-9112/cPCI-9112

Range: 0 for PCI-9111
Range: 0 or 1 for PCI-9118
Range: 0 through 7 for PCI-6208V/08A and PCI-6308V/08A

Range: 0 through 15 for PCI-6216V
Value : The value to be written to the analog output channel.

Range: 0 through 4095 for PCI-9111, PCI-9112/cPCI-9112, PCI-9118

0 though 32767 for PCI-6208A and PCI-6308A
-32768 through 32767 for PCI-6208V/16V and PCI-6308V

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
ErrorInvalidIoChannel

2.2.37 CTR_8554_CK1_Config

@ Description

Selects the source of CK1.

@ Cards Support

8554

@ Syntax

Microsoft C/C++ and Borland C++
I16 CTR_8554_CK1_Config (U16 CardNumber, U16 ClockSource)

Visual Basic
CTR_8554_CK1_Config (ByVal CardNumber As Integer, ByVal ClockSource As

Integer) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.
ClockSource : The source of CK1. CK1_C8M or CK1_COUT11.

@ Return Code

38 • Function Description

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
InvalidCtrSource

2.2.38 CTR_8554_ClkSrc_Config

@ Description

Selects PCI-8554 counter #1 ~ #10 clock source. (Clock source of counter #11 is

8MHz and clock source of counter #12 is from COUT11, both are fixed.)

@ Cards Support

8554

@ Syntax

Microsoft C/C++ and Borland C++
I16 CTR_8554_ClkSrc_Config (U16 CardNumber, U16 Ctr, U16 ClockSource)

Visual Basic
CTR_8554_ClkSrc_Config (ByVal CardNumber As Integer, ByVal Ctr As Integer,

ByVal ClockSource As Integer) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.
Ctr : The counter number.

Range: 1~10
ClockSource : The clock source of the specified counter.

ECKN: external clock source

COUTN_1: the cascaded counter output (COUT n-1)
CK1: internal clock source CK1
COUT10: output of the counter 10

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
InvalidCounter

2.2.39 CTR_8554_Debounce_Config

@ Description

Selects debounce clock.

@ Cards Support

8554

@ Syntax

Microsoft C/C++ and Borland C++
I16 CTR_8554_Debounce_Config (U16 CardNumber, U16 DebounceClock)

Visual Basic
CTR_8554_CK1_Config (ByVal CardNumber As Integer, ByVal DebounceClock As

Integer) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.
DebounceClock : DBCLK_COUT11: output of counter 11 DBCLK_2MHZ: 2MHz

Function Description • 39

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,

InvalidCtrSource

2.2.40 CTR_Clear

@ Description

Turns off the specified counter operation and sets the output of the selected counter to
the specified state.

@ Cards Support

9111, 9112, 9113, 9114, 9118, 7248, 7249, 7296, 7396, 8554

@ Syntax

Microsoft C/C++ and Borland C++
I16 CTR_Clear (U16 CardNumber, U16 Ctr, U16 State)

Visual Basic
CTR_Clear (ByVal CardNumber As Integer, ByVal Ctr As Integer, ByVal State As

Integer) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.

Ctr : The counter number.
Range: 0 for PCI-9111, PCI-9112/cPCI-9112, PCI-9113, PCI-9114,

PCI-9118.

0, 1, 2 for PCI-7248/cPCI-7248, cPCI-7249R, PCI-7296,
PCI-7396.
1~12 for PCI-8554

state : The logic state to which the counter is to be reset.
Range: 0 or 1.

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
InvalidCounter

2.2.41 CTR_Read

@ Description

Reads the current contents of the selected counter without disturbing the counting
process.

@ Cards Support

9111, 9112, 9113, 9114, 9118, 7248, 7249, 7296, 7396, 8554

@ Syntax

Microsoft C/C++ and Borland C++
I16 CTR_Read (U16 CardNumber, U16 Ctr, U32 *Value)

Visual Basic
CTR_Read (ByVal CardNumber As Integer, ByVal Ctr As Integer, Value As Long) As

Integer

40 • Function Description

@ Parameter

CardNumber : The card id of the card that want to perform this operation.

Ctr : The counter number.
Range: 0 for PCI-9111, PCI-9112/cPCI-9112, PCI-9113, PCI-9114,

PCI-9118.

0, 1, 2 for PCI-7248/cPCI-7248, cPCI-7249R, PCI-7296,
PCI-7396.
1~12 for PCI-8554.

Value : Returns the current count of the specified counter.
Range: 0 through 65536 for binary mode (default).

0 through 9999 for BCD counting mode.

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
InvalidCounter

2.2.42 CTR_Setup

@ Description

Configures the selected counter to operate in the specified mode.

@ Cards Support

9111, 9112, 9113, 9114, 9118, 7248, 7249, 7296, 7396, 8554

@ Syntax

Microsoft C/C++ and Borland C++
I16 CTR_Setup (U16 CardNumber, U16 Ctr, U16 Mode, U32 Count, U16 BinBcd)

Visual Basic
CTR_Setup (ByVal CardNumber As Integer, ByVal Ctr As Integer, ByVal Mode As

Integer, ByVal Count As Long, ByVal BinBcd As Integer) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.
Ctr : The counter number.

Range: 0 for PCI-9111, PCI-9112/cPCI-9112, PCI-9113, PCI-9114,

PCI-9118.
0, 1, 2 for PCI-7248/cPCI-7248, cPCI-7249R, PCI-7296,
PCI-7396.

1~12 for PCI-8554
Mode : The mode in which the counter is to operate.

Valid value:

TOGGLE_OUTPUT
PROG_ONE_SHOT
RATE_GENERATOR

SQ_WAVE_RATE_GENERATOR
SOFT_TRIG
HARD_TRIG

TOGGLE_OUTPUT:Toggle output from low to high on terminal count

Function Description • 41

In this mode, the output goes low after the mode set operation, and
the counter begins to count down while the gate input is high.

When terminal count is reached, the output goes high and remains
high until the selected counter is set to a different mode. The
following diagram shows the TOGGLE_OUTPUT mode timing

diagram.

Clock

WR

Gate

Output
6 5 4 3 2 1 0

(n = 6)

A BA + B = n

PROG_ONE_SHOT:Programmable one-shot

In this mode, the output goes low on the cofollowing the rising

edge of the gate input and goes high on terminal count. The
following diagram shows the
PROG_ONE_SHOT mode timing diagram.

Clock

Gate

Output

4 3 2 1 0

(n = 4)

RATE_GENERATOR:Rate generator

In this mode, the output goes low for one period of the clock input.
count indicates the period from one output pulse to the next. The

following diagram shows the RATE_GENERATOR mode timing
diagram.

Clock

Gate

Output

4 3 2 1 0 (4) 3 2 1 0 (4)

(n = 4)

SQ_WAVE_RATE_GENERATOR:Square wave rate generator

In this mode, the output stays high for one half of the count clock

pulses and stays low for the other half. The following diagram
shows the SQ_WAVE_RATE_GENERATOR mode timing diagram.

Clock

Gate

Output (n = 4)
4 2 4 2 4 2 4 2 4 2 4 2

Output (n = 5)
5 4 2 5 2 5 4 2 5 2 5 4

SOFT_TRIG:Software-triggered strobe

42 • Function Description

In this mode, the output is initially high, and the counter begins to

count down while the gate input is high. On terminal count, the
output goes low for one clock pulse, then goes high again. The
following diagram shows the SOFT_TRIG mode timing diagram.

Clock

WR

Gate

Output

4 3 2 1 0

n = 4

HARD_TRIG:Hardware-triggered strobe

This mode is similar to SOFT_TRIG mode except that the gate
input is used as a trigger to start counting. The following diagram
shows the HARD_TRIG mode timing diagram.

Clock

Gate

Output
4 3 2 1 0

n = 4

Count : The period from one output pulse to the next.
BinBcd : Whether the counter operates as a 16-bit binary counter or as a 4-

decade binary-coded decimal (BCD) counter.

Valid value:
BIN: 16-bit binary counter.
BCD: 4-decade BCD counter.

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
InvalidCounter

2.2.43 DI_7200_Config

@ Description

Informs PCIS-DASK library of the trigger source, and input mode selected for

PCI7200/cPCI7200 with card ID CardNumber. You must call this function before
calling function to perform continuous digital input operation.

@ Cards Support

7200

@ Syntax

Microsoft C/C++ and Borland C++
I16 DI_7200_Config (U16 CardNumber, U16 TrigSource, U16 ExtTrigEn, U16

TrigPol, U16 I_REQ_Pol)

Visual Basic

Function Description • 43

DI_7200_Config (ByVal CardNumber As Integer, ByVal TrigSource As Integer,
ByVal ExtTrigEn As Integer, ByVal TrigPol As Integer, ByVal I_REQ_PolAs

Integer) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.

TrigSource : The trigger mode for continuous digital input.
Valid values:

TRIG_INT_PACER: on-board Programmable pacer

TRIG_EXT_STROBE: external signal trigger
TRIG_HANDSHAKE: handshaking

ExtTrigEn : External Trigger Enable, the valid values are:

DI_WAITING: digital input sampling waits rising or falling edge of
I_TRG to start DI

DI_NOWAITING: input sampling starts immediately

TrigPol : Trigger Polarity, the valid values are:
DI_TRIG_RISING: I_TRG is rising edge active
DI_TRIG_FALLING: I_TRG is falling edge active

I_REQ_Pol : I_REQ Polarity, the valid values are:
IREQ_RISING: I_REQ is rising edge active
IREQ_FALLING: I_REQ is falling edge active

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

2.2.44 DI_7300A_Config

@ Description

Informs PCIS-DASK library of the trigger source, port width, etc. selected for
PCI7300A Rev.A/cPCI7300A Rev.A card with card ID CardNumber. You must call this

function before calling function to perform continuous digital input operation.

@ Cards Support

7300A Rev.A

@ Syntax

Microsoft C/C++ and Borland C++
I16 DI_7300A_Config (U16 CardNumber, U16 PortWidth, U16 TrigSource, U16

WaitStatus, U16 Terminator, U16 I_REQ_Pol, BOOLEAN ClearFifo,
BOOLEAN DisableDI)

Visual Basic
DI_7300A_Config (ByVal CardNumber As Integer, ByVal PortWidth As Integer,

ByVal TrigSource As Integer, ByVal WaitStatus As Integer, ByVal
Terminator As Integer, ByVal I_REQ_Pol As Integer, ByVal ClearFifo As

Byte, ByVal DisableDI As Byte) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.

PortWidth : The width of digital input port (PORT A). The valid value is 0, 8, 16, or
32.

TrigSource : The trigger mode for continuous digital input.

Valid values:

44 • Function Description

TRIG_INT_PACER: on-board programmable pacer timer0
TRIG_EXT_STROBE: external signal trigger

TRIG_HANDSHAKE: handshaking
TRIG_CLK_10MHz: 10MHz clock
TRIG_CLK_20MHz: 20MHz clock

WaitStatus : DI Wait Trigger Status, the valid values are:
P7300_WAIT_NO:input sampling starts immediately
P7300_WAIT_TRG:digital input sampling waits rising or falling edge

of I_TRG to start DI
Terminator : PortA Terminator On/Off, the valid values are:

P7300_TERM_ON: terminator on

P7300_TERM_OFF:terminator off
I_REQ_Pol : I_REQ Polarity. This function is not implemented on PCI-7300A

Rev.A/cPCI-7300A Rev.A card. You can ignore this argument.

ClearFifo : FALSE: retain the FIFO data
TRUE:clear FIFO data before perform digital input

DisableDI : FALSE: digital input operation still active after DMA transfer complete.

The input data still put into FIFO
TRUE:disable digital input operation immediately when DMA transfer
complete

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

2.2.45 DI_7300B_Config

@ Description

Informs PCIS-DASK library of the trigger source, port width, etc. selected for
PCI7300A Rev.B/cPCI7300A Rev.B card with card ID CardNumber. You must call this

function before calling function to perform continuous digital input operation.

@ Cards Support

7300A Rev.B

@ Syntax

Microsoft C/C++ and Borland C++
I16 DI_7300B_Config (U16 CardNumber, U16 PortWidth, U16 TrigSource, U16

WaitStatus, U16 Terminator, U16 I_Cntrl_Pol, BOOLEAN ClearFifo,
BOOLEAN DisableDI)

Visual Basic
DI_7300B_Config (ByVal CardNumber As Integer, ByVal PortWidth As Integer,

ByVal TrigSource As Integer, ByVal WaitStatus As Integer, ByVal
Terminator As Integer, ByVal I_Cntrl_Pol As Integer, ByVal ClearFifo As

Byte, ByVal DisableDI As Byte) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.

PortWidth : The width of digital input port (PORT A). The valid value is 0, 8, 16, or
32.

TrigSource : The trigger mode for continuous digital input.

Valid values:

Function Description • 45

TRIG_INT_PACER: on-board programmable pacer timer0
TRIG_EXT_STROBE: external signal trigger

TRIG_HANDSHAKE: handshaking
TRIG_CLK_10MHz: 10MHz clock
TRIG_CLK_20MHz: 20MHz clock

WaitStatus : DI Wait Trigger Status, the valid values are:
P7300_WAIT_NO:input sampling starts immediately
P7300_WAIT_TRG:digital input sampling waits rising or falling edge

of I_TRG to start DI
Terminator : PortA Terminator On/Off, the valid values are:

P7300_TERM_ON: terminator on

P7300_TERM_OFF:terminator off
I_Cntrl_Pol : The polarity configuration. This argument is an integer expression

formed from one or more of the manifest constants defined in

DASK.H. There are three groups of constants:
(1) DIREQ

P7300_DIREQ_POS: DIREQ signal is rising edge active

P7300_DIREQ_NEG: DIREQ signal is falling edge active
(2) DIACK

P7300_DIACK_POS: DIACK signal is rising edge active

P7300_DIACK_NEG: DIACK signal is falling edge active
(3) DITRIG

P7300_DITRIG_POS: DITRIG signal is rising edge active

P7300_DITRIG_NEG: DITRIG signal is falling edge active
ClearFifo : FALSE: retain the FIFO data

TRUE:clear FIFO data before perform digital input

DisableDI : FALSE: digital input operation still active after DMA transfer complete.
The input data still put into FIFO
TRUE:disable digital input operation immediately when DMA transfer

complete

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

2.2.46 DI_AsyncCheck

@ Description

Check the current status of the asynchronous digital input operation.

@ Cards Support

7200, 7300A

@ Syntax

Microsoft C/C++ and Borland C++
I16 DI_AsyncCheck (U16 CardNumber, BOOLEAN *Stopped, U32 *AccessCnt)

Visual Basic
DI_AsyncCheck (ByVal CardNumber As Integer, Stopped As Byte, AccessCnt As

Long) As Integer

@ Parameter

CardNumber : The card id of the card that performs the asynchronous operation.

46 • Function Description

Stopped : Whether the asynchronous analog input operation has completed. If
Stopped = TRUE, the digital input operation has stopped. Either the

number of digital input indicated in the call that initiated the
asynchronous digital input operation has completed or an error has
occurred. If Stopped = FALSE, the operation is not yet complete.

(constants TRUE and FALSE are defined in DASK.H)
AccessCnt : The number of digital input data that has been transferred at the time

the call to DI_AsyncCheck().

AccessCnt is of no use (always returns 0) in DI_AsyncCheck() and
DI_AsyncClear() with PCI-7300A board because PLX9080 has no
function or register to get the current amount of DMA transfer.

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

2.2.47 DI_AsyncClear

@ Description

Stop the asynchronous digital input operation.

@ Cards Support

7200, 7300A

@ Syntax

Microsoft C/C++ and Borland C++
I16 DI_AsyncClear (U16 CardNumber, U32 *AccessCnt)

Visual Basic
DI_AsyncClear (ByVal CardNumber As Integer, AccessCnt As Long) As Integer

@ Parameter

CardNumber : The card id of the card that performs the asynchronous operation.
AccessCnt : The number of digital input data that has been transferred at the time

the call to DI_AsyncClear().
If double-buffered mode is enabled, AccessCnt returns the next
position after the position the last data is stored in the circular buffer. If

the AccessCnt execeeds the half size of circular buffer, call
"DI_AsyncDblBufferTransfer " twice to get the data.
AccessCnt is of no use (always returns 0) in DI_AsyncCheck() and

DI_AsyncClear() with PCI-7300A board because PLX9080 has no
function or register to get the current amount of DMA transfer.

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

2.2.48 DI_AsyncDblBufferHalfReady

@ Description

Checks whether the next half buffer of data in circular buffer is ready for transfer
during an asynchronous double-buffered digital input operation.

@ Cards Support

Function Description • 47

7200

@ Syntax

Microsoft C/C++ and Borland C++
I16 DI_AsyncDblBufferHalfReady (U16 CardNumber, BOOLEAN *HalfReady)

Visual Basic
DI_AsyncDblBufferHalfReady(ByVal CardNumber As Integer, HalfReady As Byte)

As Integer

@ Parameter

CardNumber : The card id of the card that performs the asynchronous double-
buffered operation.

HalfReady : Whether the next half buffer of data is available. If HalfReady =

TRUE, you can call DI_AsyncDblBufferTransfer() to copy the
data to your user buffer. (constants TRUE and FALSE are defined in
DASK.H)

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

2.2.49 DI_AsyncDblBufferMode

@ Description

Enables or disables double-buffered data acquisition mode.

@ Cards Support

7200

@ Syntax

Microsoft C/C++ and Borland C++
I16 DI_AsyncDblBufferMode (U16 CardNumber, BOOLEAN Enable)

Visual Basic
DI_AsyncDblBufferMode (ByVal CardNumber As Integer, ByVal Enable As Byte) As

Integer

@ Parameter

CardNumber : The card id of the card that double-buffered mode to be set.

Enable : Whether the double-buffered mode is enabled or not.
TRUE: double-buffered mode is enabled.
FALSE: double-buffered mode is disabled.

(constants TRUE and FALSE are defined in DASK.H)

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

2.2.50 DI_AsyncDblBufferTransfer

@ Description

Depending on the continuous DI function selected, half of the data of the circular

buffer will be logged into the user buffer (if continuous DI function is:
DI_Cont ReadPort) or a disk file (if continuous DI function is: DI_ContReadPortToFile).

48 • Function Description

If the data will be saved in a file, the data is written to disk in binary format, with the
lower byte first (little endian).

You can execute this function repeatedly to return sequential half buffers of the data.

@ Cards Support

7200

@ Syntax

Microsoft C/C++ and Borland C++
I16 DI_AsyncDblBufferTransfer (U16 CardNumber, void *Buffer)

Visual Basic
DI_AsyncDblBufferTransfer (ByVal CardNumber As Integer, Buffer As Any) As

Integer

@ Parameter

CardNumber : The card id of the card that performs the asynchronous double-
buffered operation.

Buffer : The user buffer to which the data is to be copied. If the data will be
saved into a disk file, this argument is of no use.

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
ErrorNotDoubleBufferMode

2.2.51 DI_AsyncMultiBufferNextReady

@ Description

Checks whether the next buffer of data in circular buffer is ready for transfer during an
asynchronous multi-buffered digital input operation. The returned BufferId is the index

of the most recently available (newest available) buffer.

@ Cards Support

7300A

@ Syntax

Microsoft C/C++ and Borland C++
I16 DI_AsyncMultiBufferNextReady (U16 CardNumber, BOOLEAN *NextReady, U16

*BufferId)

Visual Basic
DI_AsyncMultiBufferNextReady (ByVal CardNumber As Integer, NextReady As

Byte, BufferId As Integer) As Integer

@ Parameter

CardNumber : The card id of the card that performs the asynchronous multi-buffered

operation.
NextReady : Whether the next buffer of data is available. If NextReady = TRUE,

you can handle the data in the buffer. (constants TRUE and FALSE

are defined in DASK.H)
BufferId : Returns the index of the ready buffer.

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

Function Description • 49

2.2.52 DI_ContMultiBufferSetup

@ Description

This function set up the buffer for multi-buffered digital input. The function has to be
called repeatedly to setup all of the data buffers (at most 8 buffers).

@ Cards Support

7300A

@ Syntax

Microsoft C/C++ and Borland C++
I16 DI_ContMultiBufferSetup (U16 CardNumber, void *Buffer, U32 ReadCount, U16

*BufferId)

Visual Basic
DI_ContMultiBufferSetup (ByVal CardNumber As Integer, Buffer As Any, ByVal

ReadCount As Long, BufferId As Integer) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.
Buffer : The starting address of the memory to contain the input data.
ReadCount : The size (in samples) of the buffer and its value must be even.

BufferId : Returns the index of the buffer currently set up.

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,

ErrorTransferCountTooLarge , ErrorContIoNotAllowed

2.2.53 DI_ContMultiBufferStart

@ Description

This function starts multi-buffered continuous digital input on the specified digital input
port at a rate as close to the rate you specified.

@ Cards Support

7300A

@ Syntax

Microsoft C/C++ and Borland C++
I16 DI_ContMultiBufferStart (U16 CardNumber, U16 Port, F64 SampleRate)

Visual Basic
DI_ContMultiBufferStart (ByVal CardNumber As Integer, ByVal Port As Integer,

ByVal SampleRate As Double) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.

Port : Digital input port number. For PCI-7300A/cPCI-7300A, this argument
must be set to 0.

SampleRate : The sampling rate you want for digital input in hertz (samples per

second). Your maximum rate depends on the card type and your
computer system. This argument is only useful if the DI trigger mode

50 • Function Description

was set as internal programmable pacer (TRIG_INT_PACER) by
calling DI_7300A_Config() or DI_7300B_Config().

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
ErrorInvalidIoChannel, ErrorContIoNotAllowed

2.2.54 DI_ContReadPort

@ Description

This function performs continuous digital input on the specified digital input port at a

rate as close to the rate you specified.

@ Cards Support

7200, 7300A

@ Syntax

Microsoft C/C++ and Borland C++
I16 DI_ContReadPort (U16 CardNumber, U16 Port, void *Buffer, U32 ReadCount,

F64 SampleRate, U16 SyncMode)

Visual Basic
DI_ContReadPort (ByVal CardNumber As Integer, ByVal Port As Integer, Buffer As

Any, ByVal ReadCount As Long, ByVal SampleRate As Double, ByVal
SyncMode As Integer) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.
Port : Digital input port number. For PCI-7200/cPCI-7200 and PCI-

7300A/cPCI-7300A, this argument must be set to 0.

Buffer : The starting address of the memory to contain the input data. This
memory must have been allocated for enough space to store input
data. If double-buffered mode is enabled, this buffer is of no use, you

can ignore this argument.
ReadCount : If double-buffered mode is disabled, ReadCount is the number of input

operation to be performed. For double-buffered acquisition,

ReadCount is the size (in samples) of the circular buffer and its value
must be even.

SampleRate : The sampling rate you want for digital input in hertz (samples per

second). Your maximum rate depends on the card type and your
computer system. This argument is only useful if the DI trigger mode
was set as internal programmable pacer (TRIG_INT_PACER) by

calling DI_7200_Config() or DI_7300_Config(). For the other
settings, you have to set this argument as CLKSRC_EXT_SampRate.

SyncMode : Whether this operation is performed synchronously or

asynchronously.
Valid values:

SYNCH_OP: synchronous digital input, that is, the function does

not return until the digital input operation complete.
ASYNCH_OP:asynchronous digital input operation

@ Return Code

Function Description • 51

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
ErrorInvalidIoChannel, ErrorTransferCountTooLarge , ErrorContIoNotAllowed

2.2.55 DI_ContReadPortToFile

@ Description

This function performs continuous digital input on the specified digital input port at a

rate as close to the rate you specified and saves the acquired data in a disk file. The
data is written to disk in binary format, with the lower byte first (little endian). Please
refer to Appendix D, Data File Format for the data file structure.

@ Cards Support

7200, 7300A

@ Syntax

Microsoft C/C++ and Borland C++
I16 DI_ContReadPortToFile (U16 CardNumber, U16 Port, U8 *FileName, U32

ReadCount, F64 SampleRate, U16 SyncMode)

Visual Basic
DI_ContReadPortToFile (ByVal CardNumber As Integer, ByVal Port As Integer,

ByVal FileName As String, ByVal ReadCount As Long, ByVal SampleRate

As Double, ByVal SyncMode As Integer) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.

Port : Digital input port number. For PCI-7200/cPCI-7200 and PCI-
7300A/cPCI-7300A, this argument must be set to 0.

FileName : Name of data file which stores the acquired data

ReadCount : If double-buffered mode is disabled, ReadCount is the number of input
operation to be performed. For double-buffered acquisition,
ReadCount is the size (in samples) of the circular buffer and its value

must be even.
SampleRate : The sampling rate you want for digital input in hertz (samples per

second). Your maximum rate depends on the card type and your

computer system. This argument is only useful if the DI trigger mode
was set as internal programmable pacer (TRIG_INT_PACER) by
calling DI_7200_Config() or DI_7300_Config(). For the other

settings, you have to set this argument as CLKSRC_EXT_SampRate.
SyncMode : Whether this operation is performed synchronously or

asynchronously.

Valid values:
SYNCH_OP: synchronous digital input, that is, the function does

not return until the digital input operation complete.

ASYNCH_OP:asynchronous digital input operation

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,

ErrorInvalidIoChannel, ErrorInvalidSampleRate, ErrorTransferCountTooLarge ,
ErrorContIoNotAllowed

2.2.56 DI_ContStatus

52 • Function Description

@ Description

 While performing continuous DI conversions, this function is called to get the DI

status. Please refer to the manual for your device for the DI status the device might
meet.

@ Cards Support

7200, 7300A

@ Syntax

Microsoft C/C++ and Borland C++
I16 DI_ContStatus (U16 CardNumber, U16 *Status)

Visual Basic
DI_ContStatus (ByVal CardNumber As Integer, Status Integer) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.
Status : The continuous DI status returned. The description of the parameter

Status for various card types is the following:

PCI7200 :
 bit 0 : '1' indicates D/I FIFO is Full (Over-Run)

 bit 1 : '1' indicates D/O FIFO is Empty (Under-Run)

 bit 2 ~ 15 : not used

 PCI7300A_RevA:

bit 0 : '1' indicates DI FIFO is full during input sampling and some data

were lost. Writes ‘1’ to clear this bit

bit 1 : '1' indicates DI FIFO is full

bit 2 : '1' indicates DI FIFO is empty

bit 3 ~ 15 : not used

PCI7300A_RevB:

bit 0 : '1' indicates DI FIFO is full during input sampling and some data

were lost. Writes ‘1’ to clear this bit

bit 1 : '1' indicates DI FIFO is full

bit 2 : '1' indicates DI FIFO is empty

bit 3 ~ 15 : not used

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered

2.2.57 DI_InitialMemoryAllocated

@ Description

This function returns the available memory size for digital input in the device driver of
this card. The continuous digital input transfer size can not exceed this size.

@ Cards Support

7200, 7300A

@ Syntax

Microsoft C/C++ and Borland C++
I16 DI_InitialMemoryAllocated (U16 CardNumber, U32 *MemSize)

Function Description • 53

Visual Basic
DI_InitialMemoryAllocated (ByVal CardNumber As Integer, MemSize As Long) As

Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.

MemSize : The available memory size for continuous DI in device driver of this
card.
The unit is KB (1024 bytes).

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered

2.2.58 DI_ReadLine

@ Description

Read the digital logic state of the specified digital line in the specified port.

@ Cards Support

6208V/16V/08A, 6308V/08A, 7200, 7230, 7233, 7248, 7249, 7250/51, 7252, 7256,
7258, 7296, 7300A, 7396, 7432, 7433, 8554, 9111, 9112, 9114, 9116, 9118

@ Syntax

Microsoft C/C++ and Borland C++
I16 DI_ReadLine (U16 CardNumber, U16 Port, U16 Line, U16 *State)

Visual Basic
DI_ReadLine (ByVal CardNumber As Integer, ByVal Port As Integer, ByVal Line As

Integer, State As Integer) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.
Port : Digital input port number. The valid value:

PCI-6208V/16V/08A: 0

PCI-6308V/08A: 0
 PCI-7200 : 0

cPCI-7200: 0, 1 (auxiliary input port)

PCI-7230/cPCI-7230: 0
PCI-7233: 0
PCI-7248/cPCI-7248:

Channel_P1A, Channel_P1B,
Channel_P1C, Channel_P1CL,
Channel_P1CH, Channel_P2A,

Channel_P2B, Channel_P2C,
Channel_P2CL, Channel_P2CH

cPCI-7249R:

Channel_P1A, Channel_P1B,
Channel_P1C, Channel_P1CL,
Channel_P1CH, Channel_P1AE,

Channel_P1BE, Channel_P1CE,
Channel_P2A, Channel_P2B,
Channel_P2C, Channel_P2CL,

Channel_P2CH, Channel_P2AE,

54 • Function Description

Channel_P2BE, Channel_P2CE,
PCI-7250/51: 0 through 3

cPCI-7252: 0
PCI-7256: 0
PCI-7258: 0

PCI-7296:
Channel_P1A, Channel_P1B,
Channel_P1C, Channel_P1CL,

Channel_P1CH, Channel_P2A,
Channel_P2B, Channel_P2C,
Channel_P2CL, Channel_P2CH,

Channel_P3A, Channel_P3B,
Channel_P3C, Channel_P3CL,
Channel_P3CH, Channel_P4A,

Channel_P4B, Channel_P4C,
Channel_P4CL, Channel_P4CH

PCI-7396:

Channel_P1A, Channel_P1B,
Channel_P1C,
Channel_P2A, Channel_P2B,

Channel_P2C,
Channel_P3A, Channel_P3B,
Channel_P3C,

Channel_P4A, Channel_P4B,
Channel_P4C

PCI-7300A/cPCI-7300A: 1 (auxiliary input port)

PCI-7432/cPCI-7432: 0
cPCI-7432R: 0
PCI-7433/cPCI-7433: PORT_DI_LOW, PORT_DI_HIGH

cPCI-7433R: PORT_DI_LOW, PORT_DI_HIGH
PCI-8554: 0
PCI-9111: P9111_CHANNEL_DI, P9111_CHANNEL_EDI

PCI-9112/cPCI-9112: 0
PCI-9114: 0
cPCI-9116: 0

PCI-9118: 0
Line : The digital line to be read. The valid value:

PCI-6208V/16V/08A: 0 through 3

PCI-6308V/08A: 0 through 3
PCI-7200/cPCI-7200: 0 through 31 (for port 0)

 0 through 3 (for auxiliary input port of cPCI7200)

PCI-7230/cPCI-7230: 0 through 15
PCI-7233: 0 through 31
PCI-7248/cPCI-7248: 0 through 7

cPCI-7249R: 0 through 7
PCI-7250/51: 0 through 7
cPCI-7252: 0 through 15

PCI-7256: 0 through 15
PCI-7258: 0 through 1
PCI-7296: 0 through 7

PCI-7300A/cPCI-7300A: 0 through 3

Function Description • 55

PCI-7396: 0 through 7
PCI-7432/cPCI-7432/cPCI-7432R: 0 through 31

PCI-7433/cPCI-7433/cPCI-7433R: 0 through 31
PCI-8554: 0 through 7
PCI-9111: 0 through 15

PCI-9112/cPCI-9112: 0 through 15
PCI-9114: 0 through 15
cPCI-9116: 0 through 7

PCI-9118: 0 through 3
State : Returns the digital logic state, 0 or 1, of the specified line.

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
ErrorInvalidIoChannel

2.2.59 DI_ReadPort

@ Description

Read digital data from the specified digital input port.

@ Cards Support

6208V/16V/08A, 6308V/08A, 7200, 7230, 7233, 7248, 7249, 7250/51, 7252, 7256,
7258, 7296, 7300A, 7396, 7432, 7433, 7434, 8554, 9111, 9112, 9114, 9116, 9118

@ Syntax

Microsoft C/C++ and Borland C++
I16 DI_ReadPort (I16 CardNumber, U16 Port, U32 *Value)

Visual Basic
DI_ReadPort (ByVal CardNumber As Integer, ByVal Port As Integer, Value As Long)

As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.
Port : Digital input port number. The valid value:

PCI-6208V/16V/08A: 0

PCI-6308V/08A: 0
PCI-7200/cPCI-7200: 0
cPCI-7200: 0 , 1 (auxiliary digital input port)

PCI-7230/cPCI-7230: 0
PCI-7233: 0
PCI-7248/cPCI-7248:

Channel_P1A, Channel_P1B,
Channel_P1C, Channel_P1CL,
Channel_P1CH, Channel_P2A,

Channel_P2B, Channel_P2C,
Channel_P2CL, Channel_P2CH

cPCI-7249R:

Channel_P1A, Channel_P1B,
Channel_P1C, Channel_P1CL,
Channel_P1CH, Channel_P1AE,

Channel_P1BE, Channel_P1CE,

56 • Function Description

Channel_P2A, Channel_P2B,
Channel_P2C, Channel_P2CL,

Channel_P2CH, Channel_P2AE,
Channel_P2BE, Channel_P2CE

PCI-7250/51: 0 through 3

cPCI-7252: 0
PCI-7256: 0
PCI-7258: 0

PCI-7296:
Channel_P1A, Channel_P1B,
Channel_P1C, Channel_P1CL,

Channel_P1CH, Channel_P2A,
Channel_P2B, Channel_P2C,
Channel_P2CL, Channel_P2CH,

Channel_P3A, Channel_P3B,
Channel_P3C, Channel_P3CL,
Channel_P3CH, Channel_P4A,

Channel_P4B, Channel_P4C,
Channel_P4CL, Channel_P4CH

PCI-7300A/cPCI-7300A: 1 (auxiliary digital input port)

PCI-7396:
Channel_P1A, Channel_P1B,
Channel_P1C, Channel_P1,

Channel_P2A, Channel_P2B,
Channel_P2C, Channel_P2
Channel_P3A, Channel_P3B,

Channel_P3C, Channel_P3,
Channel_P4A, Channel_P4B,
Channel_P4C, Channel_P4

PCI-7432/cPCI-7432: 0
cPCI-7432R: 0, P7432R_DI_SLOT
PCI-7433/cPCI-7433: PORT_DI_LOW, PORT_DI_HIGH

cPCI-7433R: PORT_DI_LOW, PORT_DI_HIGH, P7433R_DI_SLOT
cPCI-7434R: P7434R_DI_SLOT
PCI-8554: 0

PCI-9111: P9111_CHANNEL_DI, P9111_CHANNEL_EDI
PCI-9112/cPCI-9112: 0
PCI-9114: 0

cPCI-9116: 0
PCI-9118: 0

Note: The value, Channel_Pn, for argument Port is defined as all of the ports
(Port A, B and C) in channel n.

Value : Returns the digital data read from the specified port.
PCI-6208V/16V/08A: 4-bit data
PCI-6308V/08A: 4-bit data

PCI-7200/cPCI-7200: 32-bit data
 4-bit data (for auxiliary input port of cPCI-7200)

PCI-7230/cPCI-7230: 16-bit data

PCI-7233: 32-bit data

Function Description • 57

 PCI-7248/cPCI-7248: 8-bit data
 cPCI-7249R: 8-bit data

PCI-7250/51: 8-bit data
cPCI-7252: 16-bit data
PCI-7256: 16-bit data

PCI-7258: 2-bit data
PCI-7296: 8-bit data
PCI-7300A/cPCI-7300A: 4-bit data

PCI-7396: 24-bit data (for Channel_Pn, where n is the channel number) or
8-bit data (for Channel_PnA, Channel_PnB, Channel_PnC , where n is

the channel number)

PCI-7432/cPCI-7432/cPCI-7433R: 32-bit data
PCI-7433/cPCI-7433/cPCI-7434: 32-bit data
PCI-8554: 8-bit data

PCI-9111: 16-bit data (for P9111_CHANNEL_DI) or
 8-bit data (for P9111_CHANNEL_EDI)

PCI-9112/cPCI-9112: 16-bit data

PCI-9114: 16-bit data
cPCI-9116: 8-bit data
PCI-9118: 4-bit data

Note: The data format for Channel_Pn is as follows:

Don’t care PORT C PORT B PORT A

Bit 31 - 24 23 - 16 15 – 8 7 - 0

@ Return Code

NoError, CardNotRegistered, ErrorInvalidCardNumber, ErrorCardNotRegistered,
ErrorFuncNotSupport

2.2.60 DIO_7300SetInterrupt

@ Description
This function controls the interrupt sources (AuxDI0 and Timer 2) of local interrupt
system of PCI-7300A/cPCI7300A and returns the two interrupt events. If an interrupt is
generated, the corresponding interrupt event will be signaled. The application can use
Win32 wait functions, such as WaitForSingleObject or WaitForMultipleObjects to
check the interrupt event status.

@ Cards Support

7300A

@ Syntax

Microsoft C/C++ and Borland C++
I16 DIO_7300SetInterrupt (U16 CardNumber, I16 AuxDIEn, I16 T2En, HANDLE

*hEvent)

Visual Basic
DIO_7300SetInterrupt (ByVal CardNumber As Integer, ByVal AuxDIEn As Integer,

ByVal T2En As Integer, hEvent As Long) As Integer

58 • Function Description

@ Parameter

CardNumber : The card id of the card that want to be performed this operation.

AuxDIEn : The control value for AUXDI interrupt.
The valid values:
0: disabled

1: enabled
T2En : The control value for Timer2 interrupt.

The valid values:

0: disabled
1: enabled

hEvent : The local interrupt event handles returned. The status of the interrupt

event indicates that an interrupt is generated or not.

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered

ErrorFuncNotSupport

2.2.61 DIO_AUXDI_EventMessage

@ Description

Controls the AUXDI interrupt and notifies the user’s application when an interrupt
event occurs. The notification is performed through a user-specified callback function
or the Windows PostMessage API.

@ Cards Support

7300A

@ Syntax

Microsoft C/C++ and Borland C++
I16 DIO_AUXDI_EventMessage (U16 CardNumber, I16 AuxDIEn, HANDLE

windowHandle, U32 message, void *callbackAddr())

Visual Basic 5
DIO_ AUXDI _EventMessage (ByVal CardNumber As Integer, ByVal AuxDIEn As

Integer, ByVal windowHandle As Long, ByVal message As Long, ByVal

callbackAddr As Long) As Integer

@ Parameter

CardNumber : The card id of the card that want to be performed this operation.

AuxDIEn : The control value for AUXDI interrupt.
The valid values:
0: disabled

1: enabled
windowHandle : The handle to the window you want to receive a Windows message

in when the specified AUXDI event happens. If windowHandle is 0,

no Windows messages are sent.
message : a message you define. When the specified AUXDI event happens,

PCIS-DASK passes message back to you. message can be any

value.
In Windows, you can set message to a value including any
Windows predefined messages (such as WM_PAINT). However, to

define your own message, you can use any value ranging from
WM_USER (0x400) to 0x7fff. This range is reserved by Microsoft

Function Description • 59

for messages you define.
callbackAddr : address of the user callback function. PCIS-DASK calls this

function when the specified AUXDI event occurs. If you do not want
to use a callback function, set callbackAddr to 0.

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered
ErrorFuncNotSupport

2.2.62 DIO_GetCOSLatchData

@ Description

Gets the DI data that latched in the the COS Latch register while the Change-of-State(COS)

interrupt occurred.

@ Cards Support

7256

@ Syntax

Microsoft C/C++ and Borland C++
I16 DIO_GetCOSLatchData(U16 wCardNumber, U16 *CosLData)

Visual Basic
DIO_GetCOSLatchData (ByVal CardNumber As Integer, Value As Long) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.

Value : Returns the DI data that latched in the the COS Latch register while the

Change-of-State(COS) interrupt occurred.
PCI-7256: 16-bit data

@ Return Code

NoError, CardNotRegistered, ErrorInvalidCardNumber, ErrorCardNotRegistered,
ErrorFuncNotSupport

2.2.63 DIO_INT1_EventMessage

@ Description
Controls the interrupt sources of INT1 of Dual Interrupt system and notifies the user’s
application when an interrupt event occurs. The notification is performed through a
user-specified callback function or the Windows PostMessage API.

@ Cards Support

7230, 7233, 7248, 7249, 7256, 7258, 7296, 7396, 7432, 7433, 8554

@ Syntax

Microsoft C/C++ and Borland C++
I16 DIO_INT1_EventMessage (U16 CardNumber, I16 Int1Mode, HANDLE

windowHandle, U32 message, void *callbackAddr())

Visual Basic 5
DIO_INT1_EventMessage (ByVal CardNumber As Integer, ByVal Int1Mode As

Integer, ByVal windowHandle As Long, ByVal message As Long, ByVal
callbackAddr As Long) As Integer

@ Parameter

60 • Function Description

CardNumber : The card id of the card that want to be performed this operation.
Int1Mode : The interrupt mode of INT1. The valid values:

PCI-7248/cPCI-7248/cPCI-7249R/7296:
INT1_DISABLE : INT1 Disabled
INT1_FP1C0 : INT1 by Falling edge of P1C0

INT1_RP1C0_FP1C3 : INT1 by P1C0 Rising or P1C3 Falling
INT1_EVENT_COUNTER: INT1 by Event Counter down to zero
INT1_ EXT_SIGNAL: INT1 by External Signal

PCI-7230/cPCI-7230/7233/7432/7433:
INT1_DISABLE : INT1 Disabled
INT1_ EXT_SIGNAL: INT1 by External Signal

PCI-7256:
INT1_DISABLE : INT1 Disabled
INT1_COS : INT1 by COS

INT1_CH0 : INT1 by CH0
PCI-7258:

INT1_DISABLE : INT1 Disabled

INT1_ EXT_SIGNAL: INT1 by External Signal
PCI-8554:

INT1_DISABLE : INT1 Disabled

INT1_COUT12 : INT1 by Counter #12
INT1_ EXT_SIGNAL: INT1 by External Signal

PCI-7396:

INT1_DISABLE : INT1 Disabled
INT1_COS : INT1 by COS
INT1_FP1C0 : INT1 by Falling edge of P1C0

INT1_RP1C0_FP1C3 : INT1 by P1C0 Rising or P1C3 Falling
INT1_EVENT_COUNTER: INT1 by Event Counter down to zero
INT1_ EXT_SIGNAL: INT1 by External Signal

windowHandle : The handle to the window you want to receive a Windows message
in when the specified INT1 event happens. If windowHandle is 0,
no Windows messages are sent.

message : a message you define. When the specified INT1 event happens,
PCIS-DASK passes message back to you. message can be any
value.

In Windows, you can set message to a value including any
Windows predefined messages (such as WM_PAINT). However, to
define your own message, you can use any value ranging from

WM_USER (0x400) to 0x7fff. This range is reserved by Microsoft
for messages you define.

callbackAddr : address of the user callback function. PCIS-DASK calls this

function when the specified INT1 event occurs. If you do not want
to use a callback function, set callbackAddr to 0.

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered
ErrorFuncNotSupport

2.2.64 DIO_INT2_EventMessage

@ Description

Function Description • 61

Controls the interrupt sources of INT2 of Dual Interrupt system and notifies the user’s
application when an interrupt event occurs. The notification is performed through a
user-specified callback function or the Windows PostMessage API.

@ Cards Support

7230, 7233, 7248, 7249, 7256, 7258, 7296, 7396, 7432, 7433, 8554

@ Syntax

Microsoft C/C++ and Borland C++
I16 DIO_INT2_EventMessage (U16 CardNumber, I16 Int2Mode, HANDLE

windowHandle, U32 message, void *callbackAddr())

Visual Basic 5
DIO_INT2_EventMessage (ByVal CardNumber As Integer, ByVal Int2Mode As

Integer, ByVal windowHandle As Long, ByVal message As Long, ByVal
callbackAddr As Long) As Integer

@ Parameter

CardNumber : The card id of the card that want to be performed this operation.
Int2Mode : The interrupt mode of INT2.The valid values:

PCI-7248/cPCI-7248/cPCI-7249R/7296:

INT2_DISABLE : INT2 Disabled
INT2_FP2C0 : INT2 by Falling edge of P2C0
INT2_RP2C0_FP2C3 : INT2 by P2C0 Rising or P2C3 Falling

INT2_TIMER_COUNTER: INT2 by Timer Counter down to zero
INT2_ EXT_SIGNAL: INT2 by External Signal

PCI-7230/cPCI-7230/7233/7432/7433/8554:

INT2_DISABLE : INT2 Disabled
INT2_ EXT_SIGNAL: INT2 by External Signal

PCI-7256:

INT2_DISABLE : INT2 Disabled
INT2_CH1 : INT2 by CH1

PCI-7258:

INT2_DISABLE : INT2 Disabled
INT2_ EXT_SIGNAL: INT2 by External Signal

PCI-7396:

INT2_DISABLE : INT2 Disabled
INT2_COS : INT2 by COS
INT2_FP2C0 : INT2 by Falling edge of P2C0

INT2_RP2C0_FP2C3 : INT2 by P2C0 Rising or P2C3 Falling
INT2_TIMER_COUNTER: INT2 by Timer Counter down to zero
INT2_ EXT_SIGNAL: INT2 by External Signal

windowHandle : The handle to the window you want to receive a Windows message
in when the specified INT2 event happens. If windowHandle is 0,
no Windows messages are sent.

message : a message you define. When the specified INT2 event happens,
PCIS-DASK passes message back to you. message can be any
value.

In Windows, you can set message to a value including any
Windows predefined messages (such as WM_PAINT). However, to
define your own message, you can use any value ranging from

WM_USER (0x400) to 0x7fff. This range is reserved by Microsoft
for messages you define.

62 • Function Description

callbackAddr : address of the user callback function. PCIS-DASK calls this
function when the specified INT2 event occurs. If you do not want

to use a callback function, set callbackAddr to 0..

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered

ErrorFuncNotSupport

2.2.65 DIO_PortConfig

@ Description

Informs PCIS-DASK library of the port selected and the direction (Input or output)
setting of the selected port.

@ Cards Support

7248, 7249, 7296, 7396

@ Syntax

Microsoft C/C++ and Borland C++
I16 DIO_PortConfig (U16 CardNumber, U16 Port, U16 Direction)

Visual Basic
DIO_PortConfig (ByVal CardNumber As Integer, ByVal Port As Integer, ByVal

Direction As Integer) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.

Port : The port selected. The valid value:
PCI-7248/cPCI-7248:

Channel_P1A, Channel_P1B,

Channel_P1C, Channel_P1CL
Channel_P1CH, Channel_P2A,
Channel_P2B, Channel_P2C,

Channel_P2CL, Channel_P2CH
cPCI-7249R:

Channel_P1A, Channel_P1B,

Channel_P1C, Channel_P1CL
Channel_P1CH, Channel_P2A,
Channel_P2B, Channel_P2C,

Channel_P2CL, Channel_P2CH
PCI-7296:

Channel_P1A, Channel_P1B,
Channel_P1C, Channel_P1CL,
Channel_P1CH, Channel_P2A,
Channel_P2B, Channel_P2C,
Channel_P2CL, Channel_P2CH,
Channel_P3A, Channel_P3B,
Channel_P3C, Channel_P3CL,
Channel_P3CH, Channel_P4A,
Channel_P4B, Channel_P4C,
Channel_P4CL, Channel_P4CH

PCI-7396:
Channel_P1A, Channel_P1B,
Channel_P1C, Channel_P1,

Function Description • 63

Channel_P1E,
Channel_P2A, Channel_P2B,
Channel_P2C, Channel_P2,
Channel_P2E,
Channel_P3A, Channel_P3B,
Channel_P3C, Channel_P3,
Channel_P3E,
Channel_P4A, Channel_P4B,
Channel_P4C, Channel_P4,
Channel_P4E

Note: 1. The value, Channel_Pn, for argument Port is defined as all of the
ports (Port A, B and C) in channel n.

 2. If the port argument of DIO_PortConfig is set to Channel_PnE, the
channel n will be configured as INPUT_PORT (the argument
Direction is of no use here) and the digital input of channel n is
controlled by external clock.

Direction : The port direction of PIO port. The valid value:
INPUT_PORT
OUTPUT_PORT

@ Return Code
NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,

ErrorInvalidIoChannel

2.2.66 DIO_SetCOSInterrupt

@ Description

This functions enable/disables the COS (Change Of State) interrupt detection
capability of the specified ports.

@ Cards Support

7396, 7256

@ Syntax

Microsoft C/C++ and Borland C++
I16 DIO_SetCOSInterrupt (U16 CardNumber, U16 Channel_no, U16 ctlA, U16 ctlB,

U16 ctlC)

Visual Basic
DIO_SetCOSInterrupt (ByVal wCardNumber As Integer, ByVal Channel_no As

Integer, ByVal ctlA As Integer, ByVal ctlB As Integer, ByVal ctlC As
Integer) As Integer

@ Parameter

CardNumber : The card id of the card that want to be performed this operation.
Channel_no : The channel number to be enabled or disabled COS detection

capability. The valid port numbers are:
PCI-7396:

Channel_P1 : Port 1

Channel_P2 : Port 2
Channel_P3 : Port 3
Channel_P4 : Port 4

PCI-7256: 0

64 • Function Description

ctlA : The control value for Port A of the channel defined by argument
Channel_no or the control value for the port defined by Channel_no.

The valid values:
PCI-7396:

0: disabled

1: enabled

PCI-7256:

Each bit of the value of ctrlA controls one DI channel. The '0' value

of the bit value enable the COS function of the corresponding
channel, and the '1' value of the bit value disable the COS function
of the corresponding channel. The valid values for ctrlA :

0 through 65535

ctlB : The control value for Port B of the channel defined by argument
Channel_no.
The valid values:

PCI-7396:
0: disabled
1: enabled

PCI-7256: Not Needed

ctlC : The control value for Port C of the channel defined by argument
Channel_no.
The valid values:

PCI-7396:
0: disabled
1: enabled

PCI-7256: Not Needed

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered

ErrorFuncNotSupport

2.2.67 DIO_SetDualInterrupt

@ Description
This function informs PCIS-DASK library of the interrupt mode of two interrupt sources
of dual-interrupt system and returns dual interrupt events. If an interrupt is generated,
the corresponding interrupt event will be signaled. The application can use Win32 wait
functions, such as WaitForSingleObject or WaitForMultipleObjects to check the
interrupt event status.

@ Cards Support

7230, 7233, 7248, 7249, 7256, 7258, 7296, 7396, 7432, 7433, 8554

@ Syntax

Microsoft C/C++ and Borland C++
I16 DIO_SetDualInterrupt (U16 CardNumber, I16 Int1Mode, I16 Int2Mode, HANDLE

*hEvent)

Visual Basic
DIO_SetDualInterrupt (ByVal CardNumber As Integer, ByVal Int1Mode As Integer,

ByVal Int2Mode As Integer, hEvent As Long) As Integer

Function Description • 65

@ Parameter

CardNumber : The card id of the card that want to be performed this operation.

Int1Mode : The interrupt mode of INT1. The valid values:
PCI-7248/cPCI-7248/cPCI7249R//7296:

INT1_DISABLE : INT1 Disabled

INT1_FP1C0 : INT1 by Falling edge of P1C0
INT1_RP1C0_FP1C3 : INT1 by P1C0 Rising or P1C3 Falling
INT1_EVENT_COUNTER: INT1 by Event Counter down to zero

PCI-7230/cPCI-7230/7233/7432/7433:
INT1_DISABLE : INT1 Disabled
INT1_ EXT_SIGNAL: INT1 by External Signal

PCI-7256:
INT1_DISABLE : INT1 Disabled
INT1_COS : INT1 by COS

INT1_CH0 : INT1 by CH0
PCI-7258:

INT1_DISABLE : INT1 Disabled

INT1_ EXT_SIGNAL: INT1 by External Signal
PCI-8554:

INT1_DISABLE : INT1 Disabled

INT1_ EXT_SIGNAL: INT1 by External Signal
INT1_COUT12 : INT1 by Counter #12

PCI-7396:

INT1_DISABLE : INT1 Disabled
INT1_COS : INT1 by COS
INT1_FP1C0 : INT1 by Falling edge of P1C0

INT1_RP1C0_FP1C3 : INT1 by P1C0 Rising or P1C3 Falling
INT1_EVENT_COUNTER: INT1 by Event Counter down to zero

Int2Mode : The interrupt mode of INT2.The valid values:

PCI-7248/cPCI-7248/cPCI-7249R/7296:
INT2_DISABLE : INT2 Disabled
INT2_FP2C0 : INT2 by Falling edge of P2C0

INT2_RP2C0_FP2C3 : INT2 by P2C0 Rising or P2C3 Falling
INT2_TIMER_COUNTER: INT2 by Timer Counter down to zero

PCI-7230/cPCI-7230/7233/7432/7433/8554:

INT2_DISABLE : INT2 Disabled
INT2_ EXT_SIGNAL: INT2 by External Signal

PCI-7256:

INT2_DISABLE : INT2 Disabled
INT2_CH1 : INT2 by CH1

PCI-7258:

INT2_DISABLE : INT2 Disabled
INT2_ EXT_SIGNAL: INT2 by External Signal

PCI-7396:

INT2_DISABLE : INT2 Disabled
INT2_COS : INT2 by COS
INT2_FP2C0 : INT2 by Falling edge of P2C0

INT2_RP2C0_FP2C3 : INT2 by P2C0 Rising or P2C3 Falling
INT2_TIMER_COUNTER: INT2 by Timer Counter down to zero

hEvent : dual interrupt event handles returned. The status of a dual interrupt

event indicates that an interrupt is generated or not for the cards

66 • Function Description

comprising dual interrupts system (PCI-7230/cPCI-7230, PCI-7233,
PCI-7248/cPCI-7248, cPCI-7249R, PCI-7256, PCI-7258, PCI-7296,

PCI-7396, PCI-7432/cPCI-7432/cPCI7432R, and PCI-7433/cPCI-
7433/cPCI7433R).

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered
ErrorFuncNotSupport

2.2.68 DIO_T2_EventMessage

@ Description
Controls the Timer2 interrupt and notifies the user’s application when an interrupt
event occurs. The notification is performed through a user-specified callback function
or the Windows PostMessage API.

@ Cards Support

7300A

@ Syntax

Microsoft C/C++ and Borland C++
I16 DIO_T2_EventMessage (U16 CardNumber, I16 T2En, HANDLE windowHandle,

U32 message, void *callbackAddr())

Visual Basic 5
DIO_ AUXDI _EventMessage (ByVal CardNumber As Integer, ByVal T2En As

Integer, ByVal windowHandle As Long, ByVal message As Long, ByVal
callbackAddr As Long) As Integer

@ Parameter

CardNumber : The card id of the card that want to be performed this operation.
T2En : The control value for Timer2 interrupt.

The valid values:
0: disabled
1: enabled

windowHandle : The handle to the window you want to receive a Windows message
in when the specified Timer2 event happens. If windowHandle is 0,
no Windows messages are sent.

message : a message you define. When the specified Timer2 event happens,
PCIS-DASK passes message back to you. message can be any
value.

In Windows, you can set message to a value including any
Windows predefined messages (such as WM_PAINT). However, to
define your own message, you can use any value ranging from

WM_USER (0x400) to 0x7fff. This range is reserved by Microsoft
for messages you define.

callbackAddr : address of the user callback function. PCIS-DASK calls this

function when the specified Timer2 event occurs. If you do not want
to use a callback function, set callbackAddr to 0.

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered

Function Description • 67

ErrorFuncNotSupport

2.2.69 DO_7200_Config

@ Description

Informs PCIS-DASK library of the trigger source and output mode selected for
PCI7200/cPCI7200 with card ID CardNumber. You must call this function before

calling function to perform continuous digital output operation.

@ Cards Support

7200

@ Syntax

Microsoft C/C++ and Borland C++
I16 DO_7200_Config (U16 CardNumber, U16 TrigSource, U16 OutReqEn, U16

OutTrigSig)

Visual Basic
DO_7200_Config (ByVal CardNumber As Integer, ByVal TrigSource As Integer,

ByVal OutReqEn As Integer, ByVal OutTrigSig As Integer) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.

TrigSource : The trigger source for continuous digital input.
Valid values:

TRIG_INT_PACER: on-board Programmable pacer

TRIG_HANDSHAKE: handshaking
Output REQ Enable :

OREQ_ENABLE: output REQ is enabled, an O_REQ strobe is

generated after output data is strobe
OREQ_DISABLE: output REQ is disable

Output Trigger Signal :
OTRIG_HIGH: O_TRIG signal goes high
OTRIG_LOW: O_TRIG signal goes low

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

2.2.70 DO_7300A_Config

@ Description

Informs PCIS-DASK library of the trigger source, port width, etc. selected for
PCI7300A Rev.A/cPCI7300A Rev.A card with card ID CardNumber. You must call this
function before calling function to perform continuous digital output operation.

@ Cards Support

7300A Rev.A

@ Syntax

Microsoft C/C++ and Borland C++
I16 DO_7300A_Config (U16 CardNumber, U16 PortWidth, U16 TrigSource, U16

WaitStatus, U16 Terminator, U16 O_REQ_Pol)

68 • Function Description

Visual Basic
DO_7300A_Config (ByVal CardNumber As Integer, ByVal PortWidth As Integer,

ByVal TrigSource As Integer, ByVal WaitStatus As Integer, ByVal
Terminator As Integer, ByVal O_REQ_Pol As Integer) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.
PortWidth : The width of digital output port (PORT B). The valid value is 0, 8, 16,

or 32.

TrigSource : The trigger mode for continuous digital output.
Valid values:

TRIG_INT_PACER: on-board programmable pacer timer1

TRIG_CLK_10MHz: 10MHz clock
TRIG_CLK_20MHz: 20MHz clock
TRIG_HANDSHAKE: handshaking mode

WaitStatus : DO Wait Status, the valid values are:
P7300_WAIT_NO:digital output starts immediately
P7300_WAIT_TRG:digital output waits rising or falling edge of

O_TRG to start
P7300_WAIT_FIFO:delay output data until FIFO is not almost empty
P7300_WAIT_BOTH:delay output data until O_TRG active and

FIFO is not almost empty
Terminator : PortB Terminator On/Off, the valid values are:

P7300_TERM_ON: terminator on

P7300_TERM_OFF:terminator off
O_REQ_Pol : O_REQ Polarity. This function is not implemented on PCI-7300A

Rev.A/cPCI-7300A Rev.A card. You can ignore this argument.

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

2.2.71 DO_7300B_Config

@ Description

Informs PCIS-DASK library of the trigger source, port width, etc. selected for
PCI7300A Rev.B/cPCI7300A Rev.B card with card ID CardNumber. You must call this

function before calling function to perform continuous digital output operation.

@ Cards Support

7300A Rev.B

@ Syntax

Microsoft C/C++ and Borland C++
I16 DO_7300B_Config (U16 CardNumber, U16 PortWidth, U16 TrigSource, U16

WaitStatus, U16 Terminator, U16 O_Cntrl_Pol, U32 FifoThreshold)

Visual Basic
DO_7300B_Config (ByVal CardNumber As Integer, ByVal PortWidth As Integer,

ByVal TrigSource As Integer, ByVal WaitStatus As Integer, ByVal
Terminator As Integer, ByVal O_Cntrl_Pol As Integer, ByVal FifoThreshold
As Long) As Integer

@ Parameter

Function Description • 69

CardNumber : The card id of the card that want to perform this operation.
PortWidth : The width of digital output port (PORT B). The valid value is 0, 8, 16,

or 32.
TrigSource : The trigger mode for continuous digital output.

Valid values:

TRIG_INT_PACER: on-board programmable pacer timer1
TRIG_CLK_10MHz: 10MHz clock
TRIG_CLK_20MHz: 20MHz clock

TRIG_HANDSHAKE: handshaking mode
TRIG_DO_CLK_TIMER_ACK: burst handshaking mode by using

timer1 output as output clock

TRIG_DO_CLK_10M_ACK: burst handshaking mode by using
10MHz clock as output clock

TRIG_DO_CLK_20M_ACK: burst handshaking mode by using

20MHz clock as output clock
WaitStatus : DO Wait Status, the valid values are:

P7300_WAIT_NO:digital output starts immediately

P7300_WAIT_TRG:digital output waits rising or falling edge of
O_TRG to start

P7300_WAIT_FIFO:delay output data until FIFO is not almost empty

P7300_WAIT_BOTH:delay output data until O_TRG active and
FIFO is not almost empty

Terminator : PortB Terminator On/Off, the valid values are:

P7300_TERM_ON: terminator on
P7300_TERM_OFF:terminator off

O_Cntrl_Pol : The polarity configuration. This argument is an integer expression

formed from one or more of the manifest constants defined in
DASK.H. There are three groups of constants:
(1) DOREQ

P7300_DOREQ_POS: DOREQ signal is rising edge active
P7300_DOREQ_NEG: DOREQ signal is falling edge active

(2) DOACK
P7300_DOACK_POS: DOACK signal is rising edge active
P7300_DOACK_NEG: DOACK signal is falling edge active

(3) DOTRIG
P7300_DOTRIG_POS: DOTRIG signal is rising edge active
P7300_DOTRIG_NEG: DOTRIG signal is falling edge active

FifoThreshold :programmable almost empty threshold of both PORTB FIFO and

PORTA FIFO (if output port width is 32).

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

2.2.72 DO_AsyncCheck

@ Description

Check the current status of the asynchronous digital output operation.

@ Cards Support

7200, 7300A

70 • Function Description

@ Syntax

Microsoft C/C++ and Borland C++
I16 DO_AsyncCheck (U16 CardNumber, BOOLEAN *Stopped, U32 *AccessCnt)

Visual Basic
DO_AsyncCheck (ByVal CardNumber As Integer, Stopped As Byte, AccessCnt As

Long) As Integer

@ Parameter

CardNumber : The card id of the card that performs the asynchronous operation.

Stopped : Whether the asynchronous digital output operation has completed. If
Stopped = TRUE, the digital output operation has stopped. Either the
number of digital output indicated in the call that initiated the

asynchronous digital output operation has completed or an error has
occurred. If Stopped = FALSE, the operation is not yet complete.
(constants TRUE and FALSE are defined in DASK.H)

AccessCnt : The number of digital output data that has been written at the time the
call to DO_AsyncCheck().

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

2.2.73 DO_AsyncClear

@ Description

Stop the asynchronous digital output operation.

@ Cards Support

7200, 7300A

@ Syntax

Microsoft C/C++ and Borland C++
I16 DO_AsyncClear (U16 CardNumber, U32 *AccessCnt)

Visual Basic
DO_AsyncClear (ByVal CardNumber As Integer, AccessCnt As Long) As Integer

@ Parameter

CardNumber : The card id of the card that performs the asynchronous operation.
AccessCnt : The number of digital output data that has been transferred at the time

the call to DO_AsyncClear().

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered,
ErrorFuncNotSupport

2.2.74 DO_AsyncMultiBufferNextReady

@ Description

Checks whether the next buffer is ready for new data during an asynchronous multi-

buffered digital output operation. The returned BufferId is the index of the most
recently available (newest available) buffer.

Function Description • 71

@ Cards Support

7300A

@ Syntax

Microsoft C/C++ and Borland C++
I16 DO_AsyncMultiBufferNextReady (U16 CardNumber, BOOLEAN *bNextReady,

U16 *wBufferId)

Visual Basic
DO_AsyncMultiBufferNextReady (ByVal CardNumber As Integer, NextReady As

Byte, BufferId As Integer) As Integer

@ Parameter

CardNumber : The card id of the card that performs the asynchronous multi-buffered

operation.
NextReady : Whether the next buffer is ready for new data.
BufferId : Returns the index of the ready buffer.

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

2.2.75 DO_ContMultiBufferSetup

@ Description

This function set up the buffer for multi-buffered digital output. The function has to be
called repeatedly to setup all of the data buffers (at most 8 buffers).

@ Cards Support

7300A

@ Syntax

Microsoft C/C++ and Borland C++
I16 DO_ContMultiBufferSetup (U16 CardNumber, void *pwBuffer, U32

dwWriteCount, U16 *BufferId)

Visual Basic
DO_ContMultiBufferSetup (ByVal CardNumber As Integer, Buffer As Any, ByVal

WriteCount As Long, BufferId As Integer) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.
Buffer : The starting address of the memory to contain the output data.

WriteCount : The size (in samples) of the buffer and its value must be even.
BufferId : Returns the index of the buffer currently set up.

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
ErrorTransferCountTooLarge , ErrorContIoNotAllowed

2.2.76 DO_ContMultiBufferStart

@ Description

72 • Function Description

This function starts multi-buffered continuous digital output on the specified digital
output port at a rate as close to the rate you specified.

@ Cards Support

7300A Rev.B

@ Syntax

Microsoft C/C++ and Borland C++
I16 DO_ContMultiBufferStart (U16 CardNumber, U16 Port, F64 SampleRate)

Visual Basic
DO_ContMultiBufferStart (ByVal CardNumber As Integer, ByVal Port As Integer,

ByVal SampleRate As Double) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.
Port : Digital output port number. For PCI-7300A/cPCI-7300A, this argument

must be set to 0.

SampleRate : The sampling rate you want for digital output in hertz (samples per
second). Your maximum rate depends on the card type and your
computer system. This argument is only useful if the DO trigger mode

was set as internal programmable pacer (TRIG_INT_PACER) by
calling DO_7300B_Config().

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
ErrorInvalidIoChannel, ErrorContIoNotAllowed

2.2.77 DO_ContStatus

@ Description

While performing continuous DO conversions, this function is called to get the DO
status. Please refer to the manual for your device for the DO status the device might
meet.

@ Cards Support

7200, 7300A

@ Syntax

Microsoft C/C++ and Borland C++
I16 DO_ContStatus (U16 CardNumber, U16 *Status)

Visual Basic
DO_ContStatus (ByVal CardNumber As Integer, Status Integer) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.

Status : The continuous DO status returned. The description of the parameter
Status for various card types is the following:

PCI7200 :

 bit 0 : '1' indicates D/I FIFO is Full (Over-Run)

 bit 1 : '1' indicates D/O FIFO is Empty (Under-Run)

 bit 2 ~ 15 : not used

 PCI7300A_RevA:

Function Description • 73

bit 0 : '1' indicates DO FIFO is empty during data output and some output

data were written twice. Writes ‘1’ to clear this bit

bit 1 : '1' indicates DO FIFO is full

bit 2 : '1' indicates DO FIFO is empty

bit 3 ~ 15 : not used

PCI7300A_RevB:
bit 0 : '1' indicates DO FIFO is empty during data output and some output

data were written twice. Writes ‘1’ to clear this bit

bit 1 : '1' indicates DO FIFO is full

bit 2 : '1' indicates DO FIFO is empty

bit 3 ~ 15 : not used

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered

2.2.78 DO_ContWritePort

@ Description

This function performs continuous digital output on the specified digital output port at a
rate as close to the rate you specified.

@ Cards Support

7200, 7300A

@ Syntax

Microsoft C/C++ and Borland C++
I16 DO_ContWritePort (U16 CardNumber, U16 Port, void *Buffer, U32 WriteCount,

U16 Iterations, F32 SampleRate, U16 SyncMode)

Visual Basic
DO_ContWritePort (ByVal CardNumber As Integer, ByVal Port As Integer, Buffer As

Any, ByVal WriteCount As Long, ByVal Iterations As Integer, ByVal

SampleRate As Single, ByVal SyncMode As Integer) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.

Port : Digital output port number. For PCI-7200/cPCI-7200 and PCI-
7300A/cPCI-7300A, this argument must be set to 0.

Buffer : The starting address of the memory containing the output data. This

memory must have been allocated for enough space to store output
data.

WriteCount : the number of output operation to be performed.

Iterations : the number of times the data in Buffer to output to the Port. A value of
0 means that digital output operation proceeds indefinitely. If the
digital output operation is performed synchronously, this argument

must be set as 1.
SampleRate : The sampling rate you want for digital output in hertz (samples per

second). Your maximum rate depends on the card type and your

computer system. This argument is only useful if the DO trigger mode
was set as internal programmable pacer (TRIG_INT_PACER and
TRIG_DO_CLK_TIMER_ACK) by calling DO_7200_Config() or

74 • Function Description

DO_7300_Config(). For the other settings, you have to set this
argument as CLKSRC_EXT_SampRate.

SyncMode : Whether this operation is performed synchronously or
asynchronously.
Valid values:

SYNCH_OP: synchronous digital input, that is, the function does
not return until the digital input operation complete.

ASYNCH_OP:asynchronous digital input operation

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
ErrorInvalidIoChannel, ErrorTransferCountTooLarge , ErrorContIoNotAllowed

2.2.79 DO_InitialMemoryAllocated

@ Description

This function returns the available memory size for continuous digital output in the

device driver of this card. The continuous digital output transfer size can not exceed
this size.

@ Cards Support

7200, 7300A

@ Syntax

Microsoft C/C++ and Borland C++
I16 DO_InitialMemoryAllocated (U16 CardNumber, U32 *MemSize)

Visual Basic
DO_InitialMemoryAllocated (ByVal CardNumber As Integer, MemSize As Long) As

Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.

MemSize : The available memory size in device driver of this card.
The unit is KB (1024 bytes).

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered

2.2.80 DO_PGStart

@ Description

This function performs pattern generation for digital output with the data stored in
Buffer at a rate as close to the rate you specified.

@ Cards Support

7300A

@ Syntax

Microsoft C/C++ and Borland C++
I16 DO_PGStart (U16 CardNumber, void *Buffer, U32 WriteCount, F64 SampleRate)

Visual Basic

Function Description • 75

DO_PGStart (ByVal CardNumber As Integer, Buffer As Any, ByVal WriteCount As
Long, ByVal SampleRate As Double) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.
Buffer : The starting address of the memory containing the output data of

pattern generation. This memory must have been allocated for
enough space to store output data.

WriteCount : the number of pattern generation output samples.

SampleRate : The sampling rate you want for digital output in hertz (samples per
second). Your maximum rate depends on the card type and your
computer system. This argument is only useful if the DO trigger mode

was set as internal programmable pacer (TRIG_INT_PACER) by
calling DO_7300_Config().

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
ErrorTransferCountTooLarge

2.2.81 DO_PGStop

@ Description

This function stops pattern generation for digital output operation.

@ Cards Support

7300A

@ Syntax

Microsoft C/C++ and Borland C++
I16 DO_PGStop (U16 CardNumber)

Visual Basic
DO_PGStop (ByVal CardNumber As Integer) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

2.2.82 DO_ReadLine

@ Description

Read back the digital logic state of the specified digital output line in the specified port.

@ Cards Support

6208, 6308, 7200, 7248, c7249R, 7296, 7300A, 7396, 7250/51, 7252, 7256, 7258,

9116, 9118

@ Syntax

Microsoft C/C++ and Borland C++
I16 DO_ReadLine (U16 CardNumber, U16 Port, U16 Line, U16 *State)

Visual Basic

76 • Function Description

DO_ReadLine (ByVal CardNumber As Integer, ByVal Port As Integer, ByVal Line As
Integer, State As Integer) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.
Port : Digital output port number. The valid value:

PCI-6208V/16V/08A: 0
PCI-6308V/08A: 0
PCI-7200: 0

cPCI-7200: 0, 1 (auxiliary output port)
PCI-7250/51: 0 through 3
cPCI-7252: 0

PCI-7256: 0
PCI-7258: 0, 1
cPCI-9116: 0

PCI-9118DG/HG/HR: 0
PCI-7300A/cPCI-7300A: 1 (auxiliary output port)
PCI-7248/96, cPCI-7249R, PCI-7396: refer to the function

DI_ReadLine section.
Line : The digital line to be accessed. The valid value:

PCI-6208V/16V/08A: 0 through 3

PCI-6308V/08A: 0 through 3
PCI-7200/cPCI-7200: 0 through 31 (for port 0)

0 through 3 (auxiliary output port of cPCI-7200)

PCI-7250/51: 0 through 7
cPCI-7252: 0 through 7
PCI-7256: 0 through 15

PCI-7258: 0 through 15
PCI-7300A/cPCI-7300A: 0 through 3
cPCI-9116: 0 through 7

PCI-9118DG/HG/HR: 0 through 3
PCI-7248/96, cPCI-7249R, PCI-7396: refer to the function
DI_ReadLine section.

State : Returns the digital logic state, 0 or 1, of the specified line.

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,

ErrorInvalidIoChannel

2.2.83 DO_ReadPort

@ Description

Read back the output digital data from the specified digital output port.

@ Cards Support

6208, 6308, 7200, 7248, c7249R, 7296, 7300A, 7396, 7250/51, 7252, 7256, 7258,

9116, 9118

@ Syntax

Microsoft C/C++ and Borland C++
I16 DO_ReadPort (U16 CardNumber, U16 Port, U32 *Value)

Function Description • 77

Visual Basic
DI_ReadPort (ByVal CardNumber As Integer, ByVal Port As Integer, Value As Long)

As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.

Port : Digital output port number. The valid value:
PCI-6208V/16V/08A: 0
PCI-6308V/08A: 0

PCI-7200: 0
cPCI-7200: 0, 1 (auxiliary output port)
PCI-7250/51: 0 through 3

 cPCI-7252: 0
PCI-7256: 0
PCI-7258: 0, 1

PCI-9118DG/HG/HR: 0
cPCI-9116: 0
PCI-7300A/cPCI-7300A: 1 (auxiliary output port)

PCI-7248/96, cPCI-7249R, PCI-7396: refer to the function
DI_ReadPort section.

Value : Returns the digital data read from the specified output port.

PCI-6208V/16V/08A: 4-bit data
PCI-6308V/08A: 4-bit data
PCI-7200/cPCI-7200: 32-bit data (for port 0)

4-bit data (for auxiliary output port of cPCI-7200)
PCI-7250/51: 8-bit data
cPCI-7252: 8-bit data

PCI-7256: 16-bit data
PCI-7258: 16-bit data
PCI-7300A/cPCI-7300A: 4-bit data

cPCI-9116: 8-bit data
PCI-9118DG/HG/HR: 4-bit data
PCI-7248/96, cPCI-7249R, PCI-7396: refer to the function

DI_ReadPort section.

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,

ErrorInvalidIoChannel

2.2.84 DO_Write ExtTrigLine

@ Description

Sets the digital output trigger line to the specified state. This function is only available
for PCI-7200.

@ Cards Support

7200

@ Syntax

Microsoft C/C++ and Borland C++
I16 DO_WriteExtTrigLine (U16 CardNumber, U16 Value)

Visual Basic

78 • Function Description

DO_WriteExtTrigLine(ByVal CardNumber As Integer, ByVal Value As Integer) As
Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.
Value : The new digital logic state, 0 or 1.

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

2.2.85 DO_WriteLine

@ Description

Sets the specified digital output line in the specified digital port to the specified state.
This function is only available for these cards that support digital output read-back

functionality.

@ Cards Support

6208, 6308, 7200, 7248, c7249R, 7296, 7300A, 7396, 7250/51, 7252, 7256, 7258,

9116, 9118

@ Syntax

Microsoft C/C++ and Borland C++
I16 DO_WriteLine (U16 CardNumber, U16 Port, U16 Line, U16 State)

Visual Basic
DO_WriteLine(ByVal CardNumber As Integer, ByVal Port As Integer, ByVal DoLine

As Integer, ByVal State As Integer) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.

Port : Digital output port number. The valid value:
PCI-6208V/16V/08A: 0
PCI-6308V/08A: 0

PCI-7200: 0
cPCI-7200: 0, 1 (auxiliary output port)
PCI-7250/51: 0 through 3

cPCI-7252: 0
PCI-7256: 0
PCI-7258: 0, 1

PCI-9118DG/HG/HR: 0
cPCI-9116: 0
PCI-7300A/cPCI-7300A: 1 (auxiliary output port)

PCI-7248/96, cPCI-7249R, PCI-7396: refer to the function
DI_ReadLine section.

Line : The digital line to write to. The valid value:

PCI-6208V/16V/08A: 0 through 3
PCI-6308V/08A: 0 through 3
PCI-7200/cPCI-7200: 0 through 31(for port 0)

: 0 through 3 (auxiliary output port of cPCI-7200)
PCI-7250/51: 0 through 7
cPCI-7252: 0 through 7

PCI-7256: 0 through 15

Function Description • 79

PCI-7258: 0 through 15
PCI-7300A/cPCI-7300A: 0 through 3

PCI-9118DG/HG/HR: 0 through 3
cPCI-9116: 0 through 7
PCI-7248/96, cPCI-7249R, PCI-7396: refer to the function

DI_ReadLine section.
State : The new digital logic state, 0 or 1.

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
ErrorInvalidIoChannel

2.2.86 DO_WritePort

@ Description

Writes digital data to the specified digital output port.

@ Cards Support

6208V/16V/08A, 6308V/08A, 7200, 7230, 7234, 7248, 7249, 7250/51, 7252, 7256,
7258, 7296, 7300A, 7349, 7432, 7433, 7434, 8554, 9111, 9112, 9116, 9118

@ Syntax

Microsoft C/C++ and Borland C++
I16 DO_WritePort (U16 CardNumber, U16 Port, U32 Value)

Visual Basic
DO_WritePort (ByVal CardNumber As Integer, ByVal Port As Integer, ByVal Value

As Long) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.
Port : Digital output port number. The cards that support this function and

their corresponding valid value are as follows:

PCI-6208V/16V/08A: 0
PCI-6308V/08A: 0
PCI-7200: 0

cPCI-7200: 0, 1 (auxiliary digital output port)
PCI-7230/cPCI-7230: 0
PCI-7234: 0

PCI-7248/cPCI-7248:
Channel_P1A, Channel_P1B,
Channel_P1C, Channel_P1CL,

Channel_P1CH, Channel_P2A,
Channel_P2B, Channel_P2C,
Channel_P2CL, Channel_P2CH

cPCI-7249R:
Channel_P1A, Channel_P1B,
Channel_P1C, Channel_P1CL,

Channel_P1CH, Channel_P2A,
Channel_P2B, Channel_P2C,
Channel_P2CL, Channel_P2CH

PCI-7250/51: 0 through 3

80 • Function Description

cPCI-7252: 0
PCI-7256: 0

PCI-7258: 0, 1
PCI-7296:

Channel_P1A, Channel_P1B,

Channel_P1C, Channel_P1CL,
Channel_P1CH, Channel_P2A,
Channel_P2B, Channel_P2C,

Channel_P2CL, Channel_P2CH,
Channel_P3A, Channel_P3B,
Channel_P3C, Channel_P3CL,

Channel_P3CH, Channel_P4A,
Channel_P4B, Channel_P4C,
Channel_P4CL, Channel_P4CH

PCI-7300A/cPCI-7300A: 1 (auxiliary digital output port)
PCI-7396:

Channel_P1A, Channel_P1B,

Channel_P1C, Channel_P1,
Channel_P2A, Channel_P2B,
Channel_P2C, Channel_P2

Channel_P3A, Channel_P3B,
Channel_P3C, Channel_P3,
Channel_P4A, Channel_P4B,

Channel_P4C, Channel_P4
PCI-7432/cPCI-7432: 0
cPCI-7432R: 0, P7432R_DO_LED

cPCI-7433R: P7433R_DO_LED
PCI-7434/cPCI-7434: PORT_DO_LOW, PORT_DO_HIGH
cPCI-7434R: PORT_DO_LOW, PORT_DO_HIGH, P7434R_DO_LED

PCI-8554: 0
PCI-9111: P9111_CHANNEL_DO, P9111_CHANNEL_EDO
PCI-9112/cPCI-9112: 0

cPCI-9116: 0
PCI-9118: 0
PCI-9114: 0

Note: The value, Channel_Pn, for argument Port is defined as all of the ports
(Port A, B and C) in channel n.

Value : Digital data that is written to the specified port.
PCI-6208V/16V/08A: 4-bit data

PCI-6308V/08A: 4-bit data
PCI-7200/cPCI-7200: 32-bit data (for port 0)

4-bit data (for auxiliary output port of cPCI-7200)

PCI-7230/cPCI-7230: 16-bit data
PCI-7234: 32-bit data
PCI-7248/cPCI-7248: 8-bit data

cPCI-7249R: 8-bit data
PCI-7250/51: 8-bit data
cPCI-7252: 8-bit data

PCI-7256: 16-bit data

Function Description • 81

PCI-7258: 16-bit data
PCI-7296: 8-bit data

PCI-7300A/cPCI-7300A: 4-bit data
PCI-7396: 24-bit data (for Channel_PnT, where n is the channel number) or

8-bit data (for Channel_PnA, Channel_PnB, Channel_PnC , where n is

the channel number)

PCI-7432/cPCI-7432/cPCI-7432R: 32-bit data
cPCI-7433R: 32-bit data

PCI-7434/cPCI-7434/cPCI-7434R: 32-bit data
PCI-8554: 8-bit data
PCI-9111: 16-bit data (for P9111_CHANNEL_DO) or

 4-bit data (for P9111_CHANNEL_EDO)

PCI-9112/cPCI-9112: 16-bit data
PCI-9114: 16-bit data

cPCI-9116: 8-bit data
PCI-9118: 4-bit data

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered
ErrorFuncNotSupport, ErrorInvalidIoChannel

2.2.87 EDO_9111_Config

@ Description

Informs PCIS-DASK library of the mode of EDO channels for the PCI-9111 card with
card ID CardNumber.

@ Cards Support

9111

@ Syntax

Microsoft C/C++ and Borland C++
I16 EDO_9111_Config (U16 CardNumber, U16 EDO_Fun)

Visual Basic
EDO_9111_Config (ByVal CardNumber As Integer, ByVal EDO_Fun As Integer) As

Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.
EDO_Fun: The mode of EDO ports. The valid modes are:

P9111_EDO_INPUT: EDO channels are used as input channels

P9111_EDO_OUT_EDO: EDO channels are used as output
channels

P9111_EDO_OUT_CHN: EDO channels are used as channel

number output

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

2.2.88 GCTR_Read

82 • Function Description

@ Description

Reads the counter value of the general-purpose counter without disturbing the

counting process.

@ Cards Support

9116

@ Syntax

Microsoft C/C++ and Borland C++
I16 GCTR_Read (U16 CardNumber, U16 GCtr, U32 *Value)

Visual Basic
GCTR_Read (ByVal CardNumber As Integer, ByVal GCtr As Integer, Value As

Long) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.
GCtr : The counter number.

Range: 0 for PCI-9116
Value : Returns the counter value of the specified general-purpose

timer/counter.

Range: 0 through 65536

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,

InvalidCounter

2.2.89 GCTR_Clear

@ Description

Turns off the specified general-purpose timer/counter operation and reset the counter
value to zero.

@ Cards Support

9116

@ Syntax

Microsoft C/C++ and Borland C++
I16 GCTR_Clear (U16 CardNumber, U16 GCtr)

Visual Basic
GCTR_Clear (ByVal CardNumber As Integer, ByVal GCtr As Integer) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.
GCtr : The counter number.

Range: 0 for PCI-9116

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,

InvalidCounter

2.2.90 GCTR_Setup

Function Description • 83

@ Description

Controls the operation of the selected counter/timer.

@ Cards Support

9116

@ Syntax

Microsoft C/C++ and Borland C++
I16 GCTR_Setup (U16 CardNumber, U16 GCtr, U16 GCtrCtrl, U32 Count)

Visual Basic
GCTR_Setup (ByVal CardNumber As Integer, ByVal GCtr As Integer, ByVal

GCtrCtrl As Integer, ByVal Count As Long) As Integer

@ Parameter

CardNumber : The card id of the card that want to perform this operation.
GCtr : The counter number.

Range: 0 for cPCI-9116.

GCtrCtrl : The setting for general-purpose timer/counter control. This argument
is an integer expression formed from one or more of the manifest
constants defined in DASK.H. There are four groups of constants:

(1) Timer/Counter Mode
General_Counter: General counter
Pulse_Generation: Generation of pulse

(2) Timer/Counter Source
GPTC_CLKSRC_INT : internal time base
GPTC_CLKSRC_EXT : external time base from GP_TC_CLK pin

(3) Timer/Counter Gate Source
GPTC_GATESRC_INT : gate is controlled by software
GPTC_GATESRC_EXT: gate is controlled by GP_TC_GATE pin

(4) Timer/Counter UpDown Source
GPTC_UPDOWN_SELECT_SOFT: Up/Down controlled by

software

GPTC_UPDOWN_SELECT_EXT : Up/Down controlled by
GP_TC_UPDN pin

(5) Timer/Counter UpDown Control
GPTC_DOWN_CTR: counting direction is down
GPTC_UP_CTR: counting direction is up

(6) Timer/Counter Enable
GPTC_ENABLE: general-purpose counter/timer enabled
GPTC_DISABLE: general-purpose counter/timer disabled

When two or more constants are used to form the GCtrCtrl argument,

the constants are combined with the bitwise-OR operator(|).
Count : The counter value of general-purpose timer/counter

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport,
InvalidCounter

2.2.91 GetActualRate

@ Description

84 • Function Description

Gets the actual sampling rate the hardware will perform according to the board type
and the rate you want.

@ Cards Support

7200, 7300A, 9111, 9112, 9113, 9114, 9118, 9812/10

@ Syntax

Microsoft C/C++ and Borland C++
I16 GetActualRate (U16 CardNumber, F64 SampleRate, F64 *ActualRate)

Visual Basic
GetActualRate (ByVal CardNumber As Integer, ByVal SampleRate As Double,

ActualRate As Double) As Integer

@ Parameter

CardNumber : The card id of the card that wants to perform this operation.
SampleRate : The desired sampling rate.
ActualRate : Returns the actual acquisition rate performed. The value depends on

the card type and the desired sampling rate.

@ Return Code

NoError, ErrorInvalidCardNumber, ErrorCardNotRegistered, ErrorFuncNotSupport

2.2.92 Register_Card

@ Description

Initializes the hardware and software states of a NuDAQ PCI-bus data acquisition

card, and then returns a numeric card ID that corresponds to the card initialized.
Register_Card must be called before any other PCIS-DASK library functions can be
called for that card. The function initializes the card and variables internal to PCIS-

DASK library. Because NuDAQ PCI-bus data acquisition cards meets the plug-and-
play design, the base address (pass-through address) and IRQ level are assigned by
system BIOS directly.

@ Cards Support

6208V/6216V, 6208A, 6308V, 6308A, 7200, 7230, 7233, 7234, 7248, 7249, 7250,
7252, 7256, 7258, 7296, 7300A, 7396, 7432, 7433, 7434, 8554, 9111, 9112, 9113,

9114, 9116, 9118, 9812/10

@ Syntax

Microsoft C/C++ and Borland C++
I16 Register_Card (U16 CardType, U16 card_num)

Visual Basic
Register_Card (ByVal CardType As Integer, ByVal card_num As Integer) As Integer

@ Parameter

CardType : The type of card to be initialized. ADLink will periodically upgrades
PCIS-DASK to add support for new NuDAQ PCI-bus data acquisition

cards and NuIPC CompactPCI cards. Please refer to Release Notes
for the card types that the current release of PCIS-DASK actually
supports. Following are the constants defined in DASK.H that

represent the NuDAQ PCI-bus data acquisition cards that DASK
supports currently or in the near future:

Function Description • 85

PCI_6208V (for PCI-6208V/6216V)
PCI_6208A

PCI_6308V
PCI_6308A
PCI_7200 (for PCI-7200/cPCI-7200)

PCI_7230 (for PCI-7230/cPCI-7230)
PCI_7233 (for PCI-7233/PCI-7233H)
PCI_7234

PCI_7248 (for PCI-7248/cPCI-7248)
PCI_7249 (for cPCI-7249R)
PCI_7250

PCI_7252 (for cPCI-7252)
PCI_7256
PCI_7258

PCI_7296
PCI_7300A_RevA (for PCI_7300A_RevA/

cPCI_7300A_RevA)

PCI_7300A_RevB (for PCI_7300A_RevB/
cPCI_7300A_RevB)

PCI_7396

PCI_7432 (for PCI-7432/cPCI-7432/cPCI-7432R)
PCI_7433 (for PCI-7433/cPCI-7433/cPCI-7433R)
PCI_7434 (for PCI-7434/cPCI-7434/cPCI-7434R)

PCI_8554
PCI_9111DG
PCI_9111HR

PCI_9112 (for PCI-9112/cPCI-9112)
PCI_9113
PCI_9114DG

PCI_9114HG
PCI_9116 (for cPCI-9116)
PCI_9118DG

PCI_9118HG
PCI_9118HR
PCI_9810 (for PCI-9810)

PCI_9812 (for PCI-9812)
card_num : The sequence number of the card with the same card type (as

defined in argument CardType) or belonging to the same card type
series (Except PCI-7300A_RevA and PCI-7300A_RevB) plugged in
the PCI slot. The card sequence number setting is according to the
PCI slot sequence in the mainboard. The first card (in the most prior

slot) is with card_num=0. For example, if there are one PCI-9111DG
card (in the first PCI slot) and one PCI-9111HR card and two PCI-
9112 cards plugged on your PC, the PCI-9111DG card should be

registered with card_num=0, and the PCI-9111HR card with
card_num=1. The PCI-9112 card in the prior slot should be registered
with card_num=0, and the other one with card_num=1.

The following table categories the NuDAQ PCI devices by card type
series.

86 • Function Description

Card Type Series Device Type

PCI-6208 Series PCI-6208V, PCI-6216V, PCI-6208A

PCI-6308 Series PCI-6308V, PCI_6308A

PCI-7200/cPCI-7200 PCI-7200/cPCI-7200

PCI-7230/cPCI-7230 PCI-7230/cPCI-7230

PCI-7233 PCI-7233, PCI-7233H

PCI-7234 PCI-7234

PCI-7248/cPCI-7248 PCI-7248/cPCI-7248

PCI-7249 cPCI-7249R

PCI-7250 PCI-7250

PCI-7252 cPCI-7252

PCI-7256 PCI-7256

PCI-7258 PCI-7258

PCI-7296 PCI-7296

PCI_7300A_RevA/ cPCI-7300A_RevA PCI-7300A_RevA/cPCI-7300A_RevA

PCI_7300A_RevB/ cPCI-7300A_RevB PCI-7300A_RevB/cPCI-7300A_RevB

PCI-7396 PCI-7396

PCI-7432/cPCI-7432 series PCI-7432/cPCI-7432/cPCI-7432R

PCI-7433/cPCI-7433 series PCI-7433/cPCI-7433/cPCI-7433R

PCI-7434/cPCI-7434 series PCI-7434/cPCI-7434/cPCI-7434R

PCI-8554 PCI-8554

PCI-9111 Series PCI-9111DG, PCI-9111HR

PCI-9112/cPCI-9112 PCI-9112/cPCI-9112

PCI-9113 PCI-9113

PCI-9114 Series PCI-9114DG, PCI-9114HG

PCI-9116 cPCI-9116

PCI-9118 Series PCI-9118DG, PCI-9118HG, PCI-9118HR

PCI-9812 Series PCI-9812, PCI-9810

@ Return Code

This function returns a numeric card id for the card initialized. The range of card id is
between 0 and 31. If there is any error occurs, it will return negative error code, the
possible error codes are listed below:

ErrorTooManyCardRegistered, ErrorUnknownCardType, ErrorOpenDriverFailed,
ErrorOpenEventFailed

2.2.93 Release_Card

@ Description

Function Description • 87

There are at most 32 cards that can be registered simultaneously. This function is
used to tell PCIS-DASK library that this registered card is not used currently and can

be released. This would make room for new card to register. Also by the end of a
program, you need to use this function to release all cards that were registered.

@ Cards Support

6208V/6216V, 6208A, 6308V, 6308A, 7200, 7230, 7233, 7234, 7248, 7249, 7250/51,
7252, 7256, 7258, 7296, 7300A, 7396, 7432, 7433, 7434, 8554, 9111, 9112, 9113,
9114, 9116, 9118, 9812/10

@ Syntax

Microsoft C/C++ and Borland C++
I16 Release_Card (U16 CardNumber)

Visual Basic
Release_Card (ByVal CardNumber As Integer) As Integer

@ Parameter

CardNumber : The card id of the card that want to be released.

@ Return Code

NoError

88 • Appendix

Appendix A Status Codes

This appendix lists the status codes returned by PCIS-DASK, including the name and
description.

Each PCIS-DASK function returns a status code that indicates whether the function was
performed successfully. When a PCIS-DASK function returns a negative number, it
means that an error occurred while executing the function.

Status
Code

Status Name Description

0 NoError No error occurred
-1 ErrorUnknownCardType The CardType argument is not valid
-2 ErrorInvalidCardNumber The CardNumber argument is out of

range (larger than 31).
-3 ErrorTooManyCardRegistered There have been 32 cards that were

registered.
-4 ErrorCardNotRegistered No card registered as id CardNumber.
-5 ErrorFuncNotSupport The function called is not supported by

this type of card..
-6 ErrorInvalidIoChannel The specified Channel or Port

argument is out of range..
-7 ErrorInvalidAdRange The specified analog input range is

invalid.
-8 ErrorContIoNotAllowed The specified continuous IO operation

is not supported by this type of card.
-9 ErrorDiffRangeNotSupport All the analog input ranges must be

the same for multi-channel analog
input.

-10 ErrorLastChannelNotZero The channels for multi-channel analog
input must be ended with or started
from zero.

-11 ErrorChannelNotDescending The channels for multi-channel analog
input must be contiguous and in
descending order.

-12 ErrorChannelNotAscending The channels for multi-channel analog
input must be contiguous and in
ascending order.

-13 ErrorOpenDriverFailed Failed to open the device driver.
-14 ErrorOpenEventFailed Open event failed in device driver.
-15 ErrorTransferCountTooLarge The size of transfer is larger than the

size of Initially allocated memory in
driver.

-16 ErrorNotDoubleBufferMode Double buffer mode is disabled.
-17 ErrorInvalidSampleRate The specified sampling rate is out of

range.
-18 ErrorInvalidCounterMode The value of the Mode argument is

invalid.
-19 ErrorInvalidCounter The value of the Ctr argument is out of

range.
-20 ErrorInvalidCounterState The value of the State argument is out

of range.

Appendix • 89

-21 ErrorInvalidBinBcdParam The value of the BinBcd argument is
invalid.

-22 ErrorBadCardType The value of Card Type argument is
invalid

-23 ErrorInvalidDaRefVoltage The value of DA reference voltage
argument is invalid

-24 ErrorAdTimeOut Time out for AD operation
-25 ErrorNoAsyncAI Continuous Analog Input is not set as

Asynchronous mode
-26 ErrorNoAsyncAO Continuous Analog Output is not set

as Asynchronous mode
-27 ErrorNoAsyncDI Continuous Digital Input is not set as

Asynchronous mode
-28 ErrorNoAsyncDO Continuous Digital Output is not set as

Asynchronous mode
-29 ErrorNotInputPort The value of AI/DI port argument is

invalid
-30 ErrorNotOutputPort The value of AO/DO argument is

invalid
-31 ErrorInvalidDioPort The value of DI/O port argument is

invalid
-32 ErrorInvalidDioLine The value of DI/O line argument is

invalid
-33 ErrorContIoActive Continuous IO operation is not active
-34 ErrorDblBufModeNotAllowed Double Buffer mode is not allowed

-35 ErrorConfigFailed The specified function configuration is
failed

-36 ErrorInvalidPortDirection The value of DIO port direction
argument is invalid

-37 ErrorBeginThreadError Failed to create thread
-38 ErrorInvalidPortWidth The port width setting for PCI-

7300A/cPCI-7300A is not allowed
-39 ErrorInvalidCtrSource The clock source setting is invalid
-40 ErrorOpenFile Failed to Open file
-41 ErrorAllocateMemory The memory allocation is failed
-42 ErrorDaVoltageOutOfRange The value of DA voltage argument is

out of range
-201 ErrorConfigIoctl The configuration API is failed
-202 ErrorAsyncSetIoctl The async. mode API is failed
-203 ErrorDBSetIoctl The double-buffer setting API is failed
-204 ErrorDBHalfReadyIoctl The half-ready API is failed
-205 ErrorContOPIoctl The continuous data acquisition API is

failed
-206 ErrorContStatusIoctl The continuous data acquisition status

API setting is failed
-207 ErrorPIOIoctl The polling data API is failed
-208 ErrorDIntSetIoctl The dual interrupt setting API is failed
-209 ErrorWaitEvtIoctl The wait event API is failed
-210 ErrorOpenEvtIoctl The open event API is failed
-211 ErrorCOSIntSetIoctl The cos interrupt setting API is failed
-212 ErrorMemMapIoctl The memory mapping API is failed
-213 ErrorMemUMapSetIoctl The memory Unmapping API is failed
-214 ErrorCTRIoctl The counter API is failed

90 • Appendix

Appendix B AI Range Codes

The Analog Input Range of NuDAQ PCI-bus Cards

AD_B_10_V Bipolar -10V to +10V
AD_B_5_V Bipolar -5V to +5V
AD_B_2_5_V Bipolar -2.5V to +2.5V
AD_B_1_25_V Bipolar -1.25V to +1.25V
AD_B_0_625_V Bipolar -0.625V to +0.625V
AD_B_0_3125_V Bipolar -0.3125V to +0.3125V
AD_B_0_5_V Bipolar -0.5V to +0.5V
AD_B_0_05_V Bipolar -0.05V to +0.05V
AD_B_0_005_V Bipolar -0.005V to +0.005V
AD_B_1_V Bipolar -1V to +1V
AD_B_0_1_V Bipolar -0.1V to +0.1V
AD_B_0_01_V Bipolar -0.01V to +0.01V
AD_B_0_001_V Bipolar -0.01V to +0.001V
AD_U_20_V Unipolar 0 to +20V
AD_U_10_V Unipolar 0 to +10V
AD_U_5_V Unipolar 0 to +5V
AD_U_2_5_V Unipolar 0 to +2.5V
AD_U_1_25_V Unipolar 0 to +1.25V
AD_U_1_V Unipolar 0 to +1V
AD_U_0_1_V Unipolar 0 to +0.1V
AD_U_0_01_V Unipolar 0 to +0.01V
AD_U_0_001_V Unipolar 0 to +0.001V

Valid values for each card:

PCI-9111 DG/HR : AD_B_10_V, AD_B_5_V,
AD_B_2_5_V, AD_B_1_25_V,
AD_B_0_625_V

PCI-9112/cPCI-9112 : AD_B_10_V, AD_B_5_V,
AD_B_2_5_V, AD_B_1_25_V,
AD_B_0_625_V, AD_U_10_V,
AD_U_5_V, AD_U_2_5_V,
AD_U_1_25_V

PCI-9113 : AD_B_10_V, AD_B_1_V,
AD_B_0_1_V, AD_B_5_V,
AD_B_0_5_V, AD_B_0_05_V,
AD_U_10_V, AD_U_1_V,
AD_U_0_1_V

PCI-9114 HG : AD_B_10_V, AD_B_1_V,
AD_B_0_1_V, AD_B_0_01_V

PCI-9114 DG : AD_B_10_V, AD_B_5_V,
AD_B_2_5_V, AD_B_1_25_V

cPCI-9116 : AD_B_5_V, AD_B_2_5_V,
AD_B_1_25_V, AD_B_0_625_V,
AD_U_10_V, AD_U_5_V,
AD_U_2_5_V, AD_U_1_25_V

PCI-9118 DG/HR : AD_B_5_V, AD_B_2_5_V,
AD_B_1_25_V, AD_B_0_625_V,

Appendix • 91

AD_U_10_V, AD_U_5_V,
AD_U_2_5_V, AD_U_1_25_V

PCI-9118 HG : AD_B_5_V, AD_B_0_5_V,
AD_B_0_05_V, AD_B_0_005_V,
AD_U_10_V, AD_U_1_V,
AD_U_0_1_V, AD_U_0_01_V

PCI-9812/10 : AD_B_1_V, AD_B_5_V

92 • Appendix

 Appendix C AI DATA FORMAT

This appendix lists the AI data format for the cards performing analog input operation,
as well as the calculation methods to retrieve the A/D converted data and the channel
where the data read from.

Card Type Data Format AI type Value calculation
* channel no. (CH#)
* A/D converted data (ND)
* Value returned from AI
function (OD)

PCI-9111DG Every 16-bit signed integer data:

D11 D10 D9 D1 D0 C3 C2 C1 C0

where D11, D10, ... , D0 : A/D converted data
 C3, C2, C1, C0 : converted channel no.

One-Shot AI

Continuous AI

CH# = OD & 0x0F

ND = OD >>4 or
ND = OD/16

PCI-9111HR Every 16-bit signed integer data:

D15 D14 D13 D1 D0

where D15, D14, ... , D0 : A/D converted data

One-Shot AI

Continuous AI

ND = OD

PCI-
9112/cPCI9112

Every 16-bit unsigned integer data:

D11 D10 D9 D1 D0 C3 C2 C1 C0

where D11, D10, ... , D0 : A/D converted data
 C3, C2, C1, C0 : converted channel no.

One-Shot AI

Continuous AI

CH# = OD & 0x0F

ND = OD >>4 or
ND = OD/16

PCI-9113 Every 16-bit unsigned integer data (including 12-
bit unsigned A/D data):

B15 … B12 D11 D10 ... D1 D0

where D11, D10, ... , D0 : A/D converted data
 B15 ~ B12: don’t care

One-Shot AI ND = OD & 0x0FFF

PCI-9113 Every 32-bit unsigned integer data (including 12-
bit unsigned A/D data):

B31 … B21 C4 C3 C2 C1 C0 B15 … B12 D11
D10 ... D1 D0

where D11, D10, ... , D0 : A/D converted data
 C3, C2, C1, C0 : converted channel no.
 B31 ~ B21 & B15 ~ B12: don’t care

Continuous AI CH# = (OD >>16) & 0x1F

ND = OD & 0x0FFF

PCI-9114 Every 16-bit signed integer data:

D15 D14 ... D1 D0

where D15, D14, ... , D0 : A/D converted data

One-Shot AI ND = OD

PCI-9114 Every 32-bit unsigned integer data (including 16-
bit signed A/D data):

B31 … B21 C4 C3 C2 C1 C0 D15 D14 ... D1 D0

where D15, D14, ... , D0 : A/D converted data
 C3, C2, C1, C0 : converted channel no.
 B31 ~ B21: don’t care

Continuous AI CH# = (OD >>16) & 0x1F

ND = OD & 0xFFFF

cPCI-9116 Every 16-bit signed integer data: One-Shot AI ND = OD

Appendix • 93

D15 D14 D13 D1 D0

where D15, D14, ... , D0 : A/D converted data

Continuous AI

PCI-9118HR Every 16-bit signed integer data:

D15 D14 D13 D1 D0

where D15, D14, ... , D0 : A/D converted data

One-Shot AI

Continuous AI

ND = OD

PCI-
9118DG/HG

Every 16-bit unsigned integer data:

D11 D10 D9 D1 D0 C3 C2 C1 C0

where D11, D10, ... , D0 : A/D converted data
 C3, C2, C1, C0 : converted channel no.

One-Shot AI

Continuous AI

CH# = OD & 0x0F

ND = OD >>4 or
ND = OD/16

PCI-9812 Every 16-bit signed integer data:

D11 D10 D9 D1 D0 b3 b2 b1 b0

where D11, D10, ... , D0 : A/D converted data
 b2, b1, b0 : Digital Input data.
 b3: trigger detection flag

Continuous AI ND = OD >>4 or
ND = OD/16

PCI-
9810/cPCI9810

Every 16-bit signed integer data:

D9 D8 D7 … ... D1 D0 b5 b4 b3 b2 b1 b0

where D9, D8, ... , D0 : A/D converted data
 b2, b1, b0 : Digital Input data.
 b3: trigger detection flag

Continuous AI ND = OD >>6 or
ND = OD/64

94 • Appendix

Appendix D DATA File FORMAT

This appendix describes the file format of the data files generated by the functions
performing continuous data acquisition followed by storing the data to disk.

The data file includes three parts, Header, ChannelRange (optional) and Data block.

The file structure is as the figure below:

Header

ChannelRange (Optional)

DAQ data

Header

The header part records the information related to the stored data and its total length is
60 bytes. The data structure of the file header is as follows:

 Header Total Length: 60 bytes

Elements Type Size
(bytes)

Comments

ID char 10 file ID

ex. ADLinkDAQ1

card_type short 2 card Type

ex. Pci7250, Pci9112

num_of_channel short 2 number of scanned channels

ex. 1, 2

channel_no unsigned
char

1 channel number where the data read
from (only available as the
num_of_channel is 1)

ex. 0, 1

num_of_scan long 4 the number of scan for each channel

(total count / num_of_channel)

data_width short 2 the data width

0: 8 bits, 1: 16 bits, 2: 32 bits

channel_order short 2 the channel scanned sequence

0: normal (ex. 0-1-2-3)
1: reverse (ex. 3-2-1-0)
2: custom* (ex. 0, 1, 3)

ad_range short 2 the AI range code

Please refer to Appexdix B

Appendix • 95

ex. 0 (AD_B_5V)

scan_rate double 8 The scanning rate of each channel

(total sampling rate / num_of_channel)

num_of_channel_range short 2 The number of ChannelRange* structure

start_date char 8 The starting date of data acquisition

ex. 12/31/99

start_time char 8 The starting time of data acquisition

ex. 18:30:25

start_millisec char 3 The starting millisecond of data
acquisition

ex. 360

reserved char 6 not used

* If the num_of_channel_range is 0, the ChannelRange block won’t be included in the
data file.

* The channel_order is set to “custom” only when the card supports variant channel
scanning order.

ChannelRange

The ChannelRange part records the channel number and data range information
related to the stored data. This part consists of several channel & range units. The

length of each unit is 2 bytes. The total length depends on the value of
num_of_channel_range (one element of the file header) and is calculated as the
following formula:

Total Length = 2 * num_of_channel_range bytes

 The data structure of each ChannelRange unit is as follows:

 ChannelRange Unit
 Length: 2 bytes

Elements Type Size
(bytes)

Comments

channel char 1 scanned channel number

ex. 0, 1

range char 1 the AI range code of channel
Please refer to Appexdix B

ex. 0 (AD_B_5V)

Data Block

The last part is the data block. The data is written to file in 16-bit binary format, with the
lower byte first (little endian). For example, the value 0x1234 is written to disk with 34

first followed by 12. The total length of the data block depends on the data width and
the total data count.

The file is written in Binary format and can’t be read in normal text editor. You can use
any binary file editor to view it or the functions used for reading files, e.g. fread, to get

96 • Appendix

the file information and data value. PCIS-DASK provides a useful utility DAQCvt for
you to convert the binary file. The DAQCvt main window is as the figure below:

DAQCvt first translates the information stored in the header part and the
ChannelRange part and then displays the corresponding information in the “Input File”
frame of DAQCvt main window. After setting the properties (File Path, Format, … etc)

of the converted file and push “Start Convert” button in the “Output File” frame,
DAQCvt gets rid of header and ChannelRange parts and converts the data in data
block according to the card type and the data width. Finally, DAQCvt writes the

converted data to disk. You thus can use any text editor or Excel to view or analyze the
accessed data.

Appendix • 97

Appendix E Function Support

This appendix shows which data acquisition hardware each PCIS-DASK function
supports.

 ｄ
 ｒ

 ａ

 ｏ

 Ｂ

 F u n c t i o n

P
C
I
|
6
2
0
8
A

P
C
I
|
6
2
0
8
V
\
6
2
1
6
V

P
C
I
|
6
3
0
8
A

P
C
I
|
6
3
0
8
V

P
C
I
|
7
2
0
0

P
C
I
|
7
2
3
0
\
7
2
5
8

P
C
I
|
7
2
3
3

P
C
I
|
7
2
3
4

P
C
I
|
7
2
5
0
\
7
2
5
1
\
7
2
5
2

P
C
I
|
7
2
5
6

P
C
I
|
7
2
4
8
\
7
2
4
9
\
7
2
9
6

P
C
I
|
7
3
9
6

P
C
I
|
7
3
0
0
A

R
e
v
A

P
C
I
|
7
3
0
0
A

R
e
v
B

P
C
I
|
7
4
3
2

P
C
I
|
7
4
3
3

P
C
I
|
7
4
3
4

P
C
I
|
8
5
5
4

P
C
I
|
9
1
1
1

P
C
I
|
9
1
1
2

P
C
I
|
9
1
1
3

P
C
I
|
9
1
1
4

P
C
I
|
9
1
1
6

P
C
I
|
9
1
1
8

P
C
I
|
9
8
1
2
\
9
8
1
0

AI_9111_Config l
AI_9112_Config l
AI_9113_Config l
AI_9114_Config l
AI_9116_Config l
AI_9116_CounterInterval l
AI_9118_Config l
AI_9812_Config l
AI_AsyncCheck l l l l l l l
AI_AsyncClear l l l l l l l
AI_AsyncDblBufferHalfReady l l l l l l l
AI_AsyncDblBufferMode l l l l l l l
AI_AsyncDblBufferTransfer l l l l l l l
AI_ContReadChannel l l l l l l l
AI_ContReadMultiChannels l l
AI_ContScanChannels l l l l l l l
AI_ContReadChannelToFile l l l l l l l
AI_ContReadMultiChannelsToFile l l
AI_ContScanChannelsToFile l l l l l l l
AI_ContStatus l l l l l l l
AI_ContVScale l l l l l l l
AI_InitialMemoryAllocated l l l l l l l
AI_ReadChannel l l l l l l
AI_VReadChannel l l l l l l
AI_VScale l l l l l l
AO_6208A_Config l
AO_6308A_Config l
AO_6308V_Config l
AO_9111_Config l
AO_9112_Config l
AO_VScale l l l l l l l
AO_VWriteChannel l l l l l l l
AO_WriteChannel l l l l l l l
CTR_8554_CK1_Config l
CTR_8554_ClkSrc_Config l
CTR_8554_Debounce_Config l
CTR_Read l l l l l l l l

98 • Appendix

 ｄ

 ｒ

 ａ

 ｏ

 Ｂ

 F u n c t i o n

P
C
I
|
6
2
0
8
A

P
C
I
|
6
2
0
8
V
\
6
2
1
6
V

P
C
I
|
6
3
0
8
A

P
C
I
|
6
3
0
8
V

P
C
I
|
7
2
0
0

P
C
I
|
7
2
3
0
\
7
2
5
8

P
C
I
|
7
2
3
3

P
C
I
|
7
2
3
4

P
C
I
|
7
2
5
0
\
7
2
5
1
\
7
2
5
2

P
C
I
|
7
2
5
6

P
C
I
|
7
2
4
8
\
7
2
4
9
\
7
2
9
6

P
C
I
|
7
3
9
6

P
C
I
|
7
3
0
0
A

R
e
v
A

P
C
I
|
7
3
0
0
A

R
e
v
B

P
C
I
|
7
4
3
2

P
C
I
|
7
4
3
3

P
C
I
|
7
4
3
4

P
C
I
|
8
5
5
4

P
C
I
|
9
1
1
1

P
C
I
|
9
1
1
2

P
C
I
|
9
1
1
3

P
C
I
|
9
1
1
4

P
C
I
|
9
1
1
6

P
C
I
|
9
1
1
8

P
C
I
|
9
8
1
2
\
9
8
1
0

CTR_Reset l l l l l
CTR_Setup l l l l l
DI_7200_Config l
DI_7300A_Config l
DI_7300B_Config l
DI_AsyncCheck l l l
DI_AsyncClear l l l
DI_AsyncDblBufferHalfReady l
DI_AsyncDblBufferMode l
DI_AsyncDblBufferTransfer l
DI_AsyncMultiBufferNextReady l l
DI_ContMultiBufferSetup l l
DI_ContMultiBufferStart l l
DI_ContReadPort l l l
DI_ContReadPortToFile l l l
DI_ContStatus l l l
DI_InitialMemoryAllocated l l l
DI_ReadLine l
DI_ReadPort l
DIO_7300SetInterrupt l l
DIO_AUXDI_EventMessage l l
DIO_GetCOSLatchData l
DIO_INT1_EventMessage l l l l l l l
DIO_INT2_EventMessage l l l l l l
DIO_PortConfig l l
DIO_SetCOSInterrupt l l
DIO_SetDualInterrupt l l l l l l l
DIO_T2_EventMessage l l
DO_7200_Config l
DO_7300A_Config l
DO_7300B_Config l
DO_ContStatus l l l
DO_ContWritePort l l l
DO_AsyncCheck l l l
DO_AsyncClear l l l
DO_InitialMemoryAllocated l l l
DO_PGStart l l
DO_PGStop l l
DO_ReadLine l l l l l l l l l l l l l
DO_ReadPort l l l l l l l l l l l l l
DO_WriteLine l l l l l l l l l l l l l
DO_WritePort l
EDO_9111_Config l
GCTR_Read l
GCTR_Reset l

Appendix • 99

 ｄ

 ｒ

 ａ

 ｏ

 Ｂ

 F u n c t i o n

P
C
I
|
6
2
0
8
A

P
C
I
|
6
2
0
8
V
\
6
2
1
6
V

P
C
I
|
6
3
0
8
A

P
C
I
|
6
3
0
8
V

P
C
I
|
7
2
0
0

P
C
I
|
7
2
3
0
\
7
2
5
8

P
C
I
|
7
2
3
3

P
C
I
|
7
2
3
4

P
C
I
|
7
2
5
0
\
7
2
5
1
\
7
2
5
2

P
C
I
|
7
2
5
6

P
C
I
|
7
2
4
8
\
7
2
4
9
\
7
2
9
6

P
C
I
|
7
3
9
6

P
C
I
|
7
3
0
0
A

R
e
v
A

P
C
I
|
7
3
0
0
A

R
e
v
B

P
C
I
|
7
4
3
2

P
C
I
|
7
4
3
3

P
C
I
|
7
4
3
4

P
C
I
|
8
5
5
4

P
C
I
|
9
1
1
1

P
C
I
|
9
1
1
2

P
C
I
|
9
1
1
3

P
C
I
|
9
1
1
4

P
C
I
|
9
1
1
6

P
C
I
|
9
1
1
8

P
C
I
|
9
8
1
2
\
9
8
1
0

GCTR_Setup l
GetActualRate l l l l l l l l l
Register_Card l
Release_Card l

