NulPC®/ NuDAQ®
cPCI-7300A / PCI-7300A

80MB Ultra-High Speed 32-CH
Digital I/O Boards

User’s Guide

@Copyright 1998~2000 ADLINK Technology Inc.
All Rights Reserved.

Manual Rev 2.20: August 24, 2000

The information in this document is subject to change without prior notice in
order to improve reliability, design and function and does not represent a
commitment on the part of the manufacturer.

In no event will the manufacturer be liable for direct, indirect, special, incidental,
or consequential damages arising out of the use or inability to use the product
or documentation, even if advised of the possibility of such damages.

This document contains proprietary information protected by copyright. All
rights are reserved. No part of this manual may be reproduced by any
mechanical, electronic, or other means in any form without prior written
permission of the manufacturer.

Trademarks))
NuDAQ®, NulPC®, DAQBench® are registered trademarks of ADLINK
Technology Inc.,

Other product names mentioned herein are used for identification purposes
only and may be trademarks and/or registered trademarks of their respective
companies.

Getting service from ADLINK

Customer Satisfaction is always the most important thing for ADLINK Tech
Inc. If you need any help or service, please contact us and get it.

ADLINK Technology Inc.

Web Site http://www.adlink.com.tw
Sales & Service | service@adlink.com.tw
Technical NuDAQ nudag@adlink.com.tw
Support NuDAM nudam@adlink.com.tw
NulPC nuipc@adlink.com.tw
NuPRO nupro@adlink.com.tw
Software sw@adlink.com.tw
AMB amb@adlink.com.tw
TEL +886-2-82265877 FAX | +886-2-82265717
Address 9F, No. 166, Jian Yi Road, Chungho City, Taipei, 235 Taiwan, R.O.C.

Please inform or FAX us of your detailed information for a prompt,
satisfactory and constant service.

Detailed Company Information

Company/Organization

Contact Person

E-mail Address

Address
Country
TEL FAX
Web Site
Questions

Product Model
Environment to Use oos

0 Computer Brand

0 M/B: 0 CPU:

0 Chipset: 0 Bios:

0 Video Card:

O Network Interface Card:

O Other:

Challenge Description

Suggestions for ADLINK

Contents

Chapter 1 INtrodUCtioNccceeeiiiiiiiiieiee e 1
1.1 APPLICATIONS ...cooootrreeessseessssssssssessseees 2
1.2 FEATURES ..ooiriviiminessessssseessssssss s sssssss s 2
1.3 SPECIFICATIONS ...oooirveersmeesessssssssesesssssssssssssssssssssssssssssssssssssseeees 3
1.4 SOFTWARE SUPPORTING......cccmmrrreemmmnmssssssssssesssssssssssssssssssseees 4

141 PROGRAMMING LIBRARY . 5
1.4.2 PCIS-LVIEW: LABVIEW® DRIVER ..oooiveeeeeeeeeeeeeeeveeeeereeeeenon 5
1.4.3 PCIS-VEE: HP-VEE DRIVER ... 5
1.4.4 DAQBENCHTM: ACTIVEX CONTROLS ... 6

Chapter 2 Installationccccooceeiiiienieee e 7
2.1 WHAT YOU HAVE ...cciiiiiirreciiissseessessssssesssssssssssssssssssssesssssssssssssenns 7
2.2 UNPACKINGcooevteereeestseeeesessss e sssssss s ssssss s ssssssss s sssssnns 8
2.3 DEVICE INSTALLATION FOR WINDOWS SYSTEMS.......cccoouurrvrrenns 8
2.4 PCI-7300A'S LAYOUT w.oooiriieemmnnessessssssessssssssesssssssssssssssssssssssssenns 9
2.5 HARDWARE INSTALLATION OUTLINE w..coooiirnrreeerneneeeeeessseenee 11
2.6 CONNECTOR PIN ASSIGNMENT ...cccommmmmmrrrmmmmenneeessseneessssssssneeee 12
2.7 WIRING AND TERMINATION.....ooirrrveummmmreeeemmeesesessseseessssssssneeee 14
2.8 DAUGHTER BOARD SUPPORTINGccovvvvvermnrreessnnneessesssssneeee 15

2.8.1 CONNECT WITH DIN-100S......cctiiiiiiiiiiiiiiiiiiiiiiiiii e 15
2.8.2 CONNECT WITH DIN-502S.....ciiiiiiiiiiiiiiiiiiii e 15

Chapter 3 Registers Formatccccceveeiiiiee i 16
3.1 I/O PORT BASE ADDRESScoimmmreeeutmnesesesssneessssssssssssssssasssesees 17
3.2 DI_CSR: DI CONTROL & STATUS REGISTER.......coommmrrrrrerrrnnnnee 18
3.3 DO_CSR: DO CONTROL & STATUS REGISTER.....ccooovevvveerrnnnnee 19
3.4 AUXILIARY DIGITAL 1/O REGISTER....ssssrrvveerrrerreeesssseeseessssseeee 21
3.5 INT_CSR: INTERRUPT CONTROL AND STATUS REGISTER....21
3.6 DI_FIFO: DI FIFO DIRECT ACCESS PORTcoooovrveeurneereeesinneeee 22
3.7 DO_FIFO: DO EXTERNAL DATA FIFO DIRECT ACCESS PORT23
3.8 FIFO_CR: FIFO ALMOST EMPTY/FULL REGISTERcccooummenee 24
3.9 POL_CNTRL: CONTROL SIGNAL POLARITY CONTROL

REGISTER ..ooooiiveeetimeeeeeesssesesesessssssessssssss s ssssss s sssssssss e 24
3.10 PLX PCI-9080 DMA CONTROL REGISTERSccoommmrrreeerrnnenee 25

Contents e i

Chapter 4 Operation TheOremM.......cccevueeriieeiniee e 26

4.1 1/O CONFIGURATION ..oooooiivetermeeeeessseseessesssesessssssssssesssssssssssessssnns 26
4.2 BLOCK DIAGRAMcoomrreeeeineneeeesssnseessessssessssssssssssessssssssssssssssnns 27
4.3 DIGITAL /O DATA FLOWoimmrreeeernneeeessseseesssssssssessssssssssesssssens 28
4.4 INPUT FIFO AND OUTPUT FIFOcoomrrreeernneeeesssnnnesseessssnseeseesens 29
45 BUS-MASTERING DMAccommrieeimmneeesssssnesseessssssessssssssssesssssnns 30
4.6 SCATTER/GATHER DMAcommrieeeerineeeeeessseneeeeesssssssesssssssssssessssnns 31
4.7 CLOCKING MODEcoimrreeeemnnneeeessnseessessssesessssssssssessssssssssssssssens 32
4.8 STARTING MODE........ccommrieeeernneeeeessnneessessssesessssssssssesssssssssssessssnns 33
4.9 ACTIVE TERMINATOR ...ccccooternnieeeisneeesessssessesssssssssessssssssssesssssens 34
4.10 DIGITAL INPUT OPERATION MODEccommrreeerrmeneeesssnnneseennns 34

4.10.1 DIGITAL INPUT DMA IN INTERNAL CLOCK MODE 34
4.10.2 DIGITAL INPUT DMA IN EXTERNAL CLOCK MODE 36
4.10.3 DIGITAL INPUT DMA IN HANDSHAKING MODE
4.10.4 CONTINUOUS DIGITAL INPUT
4.11 DIGITAL OUTPUT OPERATION MODE
4.11.1 DIGITAL OUTPUT DMA IN INTERNAL CLOCK MODE...... 41
4.11.2 DIGITAL OUTPUT DMA IN HANDSHAKING MODE 42
4.11.3 DIGITAL OUTPUT DMA IN BURST HANDSHAKING MODE
.. 44
4.11.4 PATTERN GENERATOR ..ottt 45
4.12 AUXILIARY DIO w.cccoooeoreeeeessneeeeeessssseesssssssesessssssssssessssssssssssssssens 46

Chapter 5 C/C++ LibDraries........ccccovoveerieiinieeeiee e 47
5.1 LIBRARIES INSTALLATION ...ccommrrreeermnnneeesssnesessssssnesssssssseenee 47
52 PROGRAMMING GUIDEooooeeeeosinnsesesssnsessesssssssssssssssssseeees 48

5.2.1 NAMING CONVENTION ..oooiiiiiiiiiiiii i, 48

5.2.2 DATA TYPES .. 48
5.3 _7300_INITIAL wooooooommmeeeeessseeeeeesssssseesssssssesssssssssssessssssssssssssssssssenees 49
5.4 _T300_CLOSEooommrveeermnnneseesssnseessenees 50
5.5 _7300_CONFIGUREcoommrrieermnneeeessinnsssssssssssessssssssssessssssssssesees 50
5.6 _7300_DI_MODE.....oiveoermrreeveessnnseesessssssssssssssssessssssssssssssssssssenees 52
5.7 _7300_DO_MODE...........commrrreemmmmneeeesssnssssssssssssssssssssssesssssssssseeees 53
5.8 _7300_AUX_DI c.oooorreeeerienneesesssnseeesssssssesssssssssssesssssssssssssssssssssesees 54
5.9 _7300_AUX_DI_CHANNELcccoommmrrrrerrmmmmneeesssnnreeeesssnnesssssssssneee 54
5.10 _7300_AUX_DO ..oorreierrnreeeesssnseessessssesssssssssssesssssssssssssssssss e 55
5.11 _7300_AUX_DO_CHANNEL ...ccoommrrrreerrrmnmneeeessseeeeeesssssnesssssssseeeee 55
5.12 _7300_ALLOC_DMA_MEMccooommrrrrorrimmmmmreeemsssneeesssssnsessssssssnneeee 56

ii « Contents

5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28

7300_FREE_DMA_MEM ...ooooooeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesesssesssensnennenes
7300 _DI_DMA_START woeoeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseesssesesssssssssenennenes
7300 _DI_DMA_STATUS w.cooeoeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeseesesssssssenenennene
7300 _DI_DMA_ABORTcccc...
7300 _GETOVERRUNSTATUS.....
_7300_DO_DMA_START ...
_7300_DO_DMA_STATUS
_7300_DO_DMA_ABORT.............
7300 _DO_PG_START woeeeeoeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseessssssssssssssssnennene
7300 _DO_PG_STOP ..cooeoeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeessesessssssssssneneene
7300 _DI_TIMER oo eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseesssesssssesseseenennenes
7300 _DO_TIMER .ooooooeeeeeeeeeeseseeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseesssssssssessessenennenes
7300 _INT_TIMER ..oeeseeesssssssssssessenennenes
7300 _GET_SAMPLE....oeoeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeessesssesessseseeeneenes
L TOIRST = T =T
7300_GETUNDERRUNSTATUScooioeoeeeeeeeeeeeeeeeeeeeeeseeeeeseeneeeennene

Appendix A 8254 Programmable Interval Timer 70

Al THE INTEL (NEC) 8254coooiiriereinreet ettt 70
A2 THE CONTROL BYTE......coiiiiireeeereeeneeee et 70
A.3 MODE DEFINITION....cocoiiiiieieirteenereecnte et 72

Product Warranty/ServiCecccoceeevueeiiiee e 74

Contents « i

How to Use This Manual

This manual is designed to help you use the cPCI-7300 and PCI-7300A Rev.B.
The manual describes how to modify various settings on the PCI-7300A card
to meet your requirements. Itis divided into five chapters:

>

Chapter 1, "Introduction”, gives an overview of the product features,
applications, and specifications.

Chapter 2, "Installation”, describes how to install the PCI-7300A. The
layout of PCI-7300A is shown, and the installation procedures, pin
assignment of connectors, and timer pacer generation are specified.

Chapter 3, "Register Structure & Format", describes the low-level register
structure and format of the PCI-7300A.

Chapter 4, "Operation Theorem”, describes how to use the operations of
digital input and output on the PCI-7300A.

Chapter 5, "C/C++ & DLL Library", describes the high level C and DLL
library functions. It will help you to programming in DOS, Win 3.11, Win-95
and Win-NT environments.

Appendix A, "8254 Programmable Interval Timer“, describes the detailed
structure and register format of 8254 timer/counter chip.

1

Introduction

The cPCI/PCI-7300A is cPCI/PCI form factor ultra-high speed digital I/O card,
it consists of 32 digital input or output channel. High performance designs and
the state-of-the-art technology make this card to be ideal for high s peed digital
input and output applications.

The cPCI/PCI-7300A performs high-speed data transfers using bus mastering
DMA and scatter/gather via 32-bit PCI bus architecture. The maximum data
transfer rates can be up to 80MB per second. It is very suitable for interface
between high speed peripherals and your computer system.

The cPCI/PCI-7300A is configured as two ports, PORTA and PORTB, each
port controls 16 digital I/O lines. The I/0O can configure as either input or output,
and 8bit or 16-bit. According to outside device environment, users can
configure cPCI/PCI-7300A to meet all high speed digital I/0 data transfer.

There are 4 different digital I/O operation modes are supported:
1. Internal Clock: the digital input and output operations are paced by internal
clock and transferred by bus mastering DMA.

2. External Clock: the digital input operation is paced by external strobe
signal (DIREQ) and transferred by bus mastering DMA.

3. Handshaking: through REQ signal and ACK signal, the digital /0 data can
have simple handshaking data transfer.

4. Pattern Generation: You can output a digital pattern repeatedly at a
predetermined rate. The transfer rate is controlled by internal timer.

Introduction e 1

1.1 Applications

» Interface to high-speed peripherals

High-speed data transfers from other computers
Automated test equipment (ATE)

Electronic and logic testing

Interface to external high-speed A/D and D/A converter
Digital pattern generator

Waveform and pulse generation

vV V V ¥V V V VY

Parallel digital communication

1.2 Features

The PCI-7300A Ultra-High Speed DIO card provides the following advanced
features:
» 32 digital input/output channels

» Extra 4-bit TTL digital input and output channels

Transfer up to 80M Bytes per second

SCSI active terminator for high speed and long distance data transfer
32-hit PCI bus

Plug and Play

Scatter/gatter DMA

On-board internal clock generator

Internal timer/external clock controls input sampling rate
Internal timer control digital output rate

ACK and REQ for handshaking

TRIG signal controls start of data acquisition/pattern generation
On-board 64KB FIFO

100-pin SCSI style connector

V V V V V V V V V V V V

2« Introduction

1.3 Specifications

> Digital /0O (DIO)
® Numbers of Channel: 32 TTL compatible inputs and/or outputs
) Device: IDT 74FCT373
) I/O Configurations:
" 16 DI& 16 DO
" 32Dl
" 32DO
[Input Voltage:
Low: Min. OV; Max. 0.8V
High: Min. +2.0V
[Input Load:
Terminator OFF:
Low: +0.5V @ +20 mA
High: +2.7V @ +1 mA max.
Terminator ON:
Termination resistor: 110 Ohms
Termination voltage: 2.9V
Low: +0.5V @ +22.4mA
High: +2.7V @ + 1mA max.
) Output Voltage:
Low: Min. OV; Max. 0.5V
High: Min. +2.7V
() Driving Capacity:
Low: Max. +0.5V at 48mA (Sink)
High: Min. 2.4V at -8 mA (Source)
) Hysteresis: 500mV
» Transfer Characteristic

) Mode: Bus Mastering DMA with Scatter/Gather
) Data Transfers: 8/16/32-bit input or output (programmable)
® DMA Transfer count:

2M double words (8M bytes) for non-chaining mode DMA
No limitation for chaining mode (scatter/gather) DMA

Introduction s 3

[) Max. Transfer rate:
DO: 80M Bytes/sec: 32-bit output @ 20 MHz
DI 80M Bytes/sec: 32-hit input @ 20 MHz
» Programmable Counter
Device: 82C54-10
Digital Input Pacer: 20MHz, 10MHz, or clock output of Timer #0
Digital Output Pacer: 20MHz, 10MHz, or clock output of Timer #1
General Purpose Timer: Output of Timer #2

» General Specifications

Connector: one 100-pin male SCSI-II style cable connector
Operating Temperature: 0° C ~ 60°C

Storage Temperature: -20° C ~ 80°C

Humidity: 5 ~ 95%, non-condensing

Dimension: Compact size only 179mm(L) X 102mm(H)
Power Consumption:

+5V @ 830 mA max. with on-board terminator off
or
+5V @ 1.0A max. with on-board terminator on

1.4 Software Supporting

ADLink provides versatile software drivers and packages for users’ different
approach to built-up a system. We not only provide programming library such
as DLL for many Windows systems, but also provide drivers for software
packages such as LabVIEW®, HP VEETM, DASYLabTM, InTouchTM,
InControITM, ISaGRAFTM, and so on.

All the software options are included in the ADLink CD. The non-free software
drivers are protected with serial licensed code. Without the software serial
number, you can still install them and run the demo version for two hours for
demonstration purpose. Please contact with your dealer to purchase the
formal license serial code.

4 « Introduction

1.4.1 Programming Library

For customers who are writing their own programs, we provide function
libraries for many different operating systems, including:

L 2 DOS Library: Borland C/C++ and Microsoft C++, the functions
descriptions are included in this user’ s guide.

4 Windows 95DLL: For VB, VC++, Delphi, BC5, the functions descriptions
are included in this user’ s guide.

L 2 PCIS-DASK: Include device drivers and DLL for Windows 98, Windows
NT and Windows 2000. DLL is binary compatible across Windows 98,
Windows NT and Windows 2000. That means all applications developed
with PCIS-DASK are compatible across Windows 98, Windows NT and
Windows 2000. The developing environment can be VB, VC++, Delphi,
BCS5, or any Windows programming language that allows calls to a DLL.
The user’ s guide and function reference manual of PCIS-DASK are in
the CD. Please refer the PDF manual files under
\\Manual_PDRSoftware\PCIS-DASK

The above software drivers are shipped with the board. Please refer to the
“Software Installation Guide” to install these drivers.

1.4.2 PCIS-LVIEW: LabVIEW® Driver

PCIS-LVIEW contains the Vs, which are used to interface with NI’ s LabVIEW
software package. The PCIS-LVIEW supports Windows 95/98/NT/2000. The
LabVIEW® drivers are free shipped with the board. You can install and use
them without license. For detail information about PCIS-LVIEW, please refer
to the user’ s guide in the CD.

®

(\WManual_PDRSoftware\PCIS-LVIEW)

1.4.3 PCIS-VEE: HP-VEE Driver

The PCIS-VEE includes the user objects, which are used to interface with HP
VEE software package. PCIS-VEE supports Windows 95/98/NT. The HP-VEE
drivers are free shipped with the board. You can install and use them without
license. For detail information about PCIS-VEE, please refer to the user’ s
guide in the CD.

(\WManual_PDRSoftware\PCIS-VEE)

Introduction « 5

1.4.4 DAQBenchTM: ActiveX Controls

We suggest the customers who are familiar with ActiveX controls and
VB/VC++ programming use the DAQBenchTNI ActiveX Control components
library for developing applications. The DAQBenchTM is designed under
Windows NT/98. For more detailed information about DAQBench, please refer
to the user’ s guide in the CD.

(\WManual_PDRSoftware\DAQBench\DAQBench Manual.PDF)

6« Introduction

2

Installation

This chapter describes how to install the cPCI/PCI-7300A. At first, the contents
in the package and unpacking information that you should be careful are
described. Because the PCI-7300A is following the PCI design philosophy, it
is no more jumpers and DIP switches setting for configuration. The Interrupt
and I/O port address are the variables associated with automatic configuration,
the resource allocation is managed by the system BIOS. Upon system
power-on, the internal configuration registers on the board interact with the

BIOS.

2.1 What You Have

In addition to this User's Manual, the package includes the following items:

» cPCI/PCI-7300A 80MB Ultra-High Speed 32-CH Digital I/0 Card
» ADLINK All-in-one CD

» Software Installation Guide

If any of these items is missing or damaged, contact the dealer from whom you
purchased the product. Save the shipping materials and carton in case you
want to ship or store the product in the future.

Installation « 7

2.2 Unpacking

Your cPCI/PCI-7300A card contains sensitive electronic components that can
be easily damaged by static electricity.

The card should be done on a grounded anti-static mat. The operator should
be wearing an anti-static wristband, grounded at the same point as the
anti-static mat.

Inspect the card module carton for obvious damage. Shipping and handling
may cause damage to your module. Be sure there are no shipping and
handling damages on the module before processing.

After opening the card module carton, extract the system module and place it
only on a grounded anti-static surface component side up.

Again inspect the module for damage. Press down on all the socketed IC's to
make sure that they are properly seated. Do this only with the module place on
a firm flat surface.

Note: DO NOT APPLY POWER TO THE CARD IF IT HAS BEEN DAMAGED.

You are now ready to install your cPCI/PCI-7300A.

2.3 Device Installation for Windows Systems

Once Windows 95/98/2000 has started, the Plug and Play function of Windows
system will find the new NuDAQ/NuUIPC cards. If this is the first time to install
NuDAQ/NuIPC cards in your Windows system, you will be informed to input
the device information source. Please refer to the “Software Installation

Guide” for the steps of installing the device.

8 « Installation

2.4 PCI-7300A's Layout

E
'_

CJ (2
= T MO
[T P =
— LI E LL

G
=
@D

O —_

1 O o

o o ‘=

O m

Terminatar Terminator

N

Figure 2.1 PCI-7300A Layout Diagram

Installation « 9

ahpug
5y 142
0414
AL
0414
#HaL

(L3 1IN TTTET |
=g
a50
waz
(3 1IN TV

Figure 2.2 cPCI-7300A Layout Diagram

10 « Installation

2.5 Hardware Installation Outline

PCI configuration

The PCI cards (or CompactPCI cards) are equipped with plug and play PCI
controller, it can request base addresses and interrupt according to PCI
standard. The system BIOS will install the system resource based on the PCI
cards’ configuration registers and system parameters (which are set by system
BIOS). Interrupt assignment and memory usage (I/O port locations) of the PCI
cards can be assigned by system BIOS only. These system resource
assignments are done on aboard-by-board basis. Itis not suggested to assign
the system resource by any other methods.

PCl slot selection

Please note that the PCI slot must provide bus -mastering capability to operate
this board well.

Installation Procedures

1. Turn off your computer

2. Turn off all accessories (printer, modem, monitor, etc.) connected to your
computer.

3. Remove the cover from your computer.

4. Select a 32-bit PCI slot. PCI slots are short than ISA or EISA slots, and are
usually white or ivory.

5. Before handling the PCI cards, discharge any static buildup on your body by
touching the metal case of the computer. Hold the edge and do not touch
the components.

6. Position the board into the PCI slot you selected.

7. Secure the card in place at the rear panel of the system.

Installation « 11

2.6 Connector Pin Assignment

The PCI-7300A comes equipped with one 100-pin SCSI type connector (CN1)
located on the rear mounting plate. The pin assignment of CN1 is illustrated in
the figure 2.2.

Legend:
. : Signal | Signal -
Pins |Signal Name T?/pe Dirgction Description
Ground —these lines are the
1.50 GND GND ground reference for all other
signals
PortB bidirectional data
51..66 | PB15.PB0 | DATA I[e} liness-PB15 is the MSB, and PBO
is the LSB.
Digital output Acknowledge lines—
CONTR In handshaking mode, DOACK
67 DOACK oL carries handsr?aking status
information from the peripheral.
Request line — In handshaking
CONTR mode, DOREQ carries
68 DOREQ oL o handshaking control information to
peripheral.
DO TRIG- can be used to control
CONTR the start of data outputin all DO
69 DOTRIG oL modes and to cpntr_ol the stop of
pattern generation in pattern
generation mode.
AUX DO 3.0—can be used as
70.73 | AUXDO3.0 | DATA (0] extra output data or can be used as
extra control signals.
PortA bidirectional data
85..100 | PA15.PAO DATA 110 liness-PA15 is the MSB, and PAO
is the LSB.
Digital output Acknowledge lines—
CONTR In handshaking mode, DIACK
82 DIACK oL © carries handshaking status
information to the peripheral.
Request line — In handshaking
mode, DIREQ carries
CONTR handshaking control information
83 DIREQ oL : from periphgral. In external clock
mode, DIREQ carries the external
clock input.

12 « Installation

CONT DI TRIG —can be used to control
84 DITRIG R isition i
oL the start of data acquisition in all DI
modes.
AUX DI 3.0—can be used as
78.81 | AUXDI3.0 DATA extra input data or can be used as
extra control signals.
74.77 | TERMPWR | POWER TERMPWR -- 4.7V active
terminator power output
PAO 100 50 GND
PAL 99 49 GND
PA2 98 48 GND
PA3 97 47 GND
PA4 — 96 461+ GND
PA5 95 45 GND
PA6 94 44 GND
PA7 93 43 GND
PA8 92 42 GND
PA9 —]91 41T GND
PA10 90 40 GND
PA11 89 39 GND
PA12 88 38 GND
PA13 87 37 GND
PA14 — 86 364+ GND
PA15 85 35 GND
DI_TRG 84 34 GND
DI_REQ 83 33 GND
DI_ACK 82 32 GND
AUXI0O —81 31 GND
AUXI1 80 30 GND
AUXI2 79 29 GND
AUXI3 78 28 GND
TERMPWR 77 27 GND
TERMPWR —76 26~ GND
TERMPWR 75 25 GND
TERMPWR 74 24 GND
AUXO0 73 23 GND
AUXO1 72 22 GND
AUXO2 —|71 21 [~ GND
AUXO3 70 20 GND
DO_TRG 69 19 GND
DO_REQ 68 18 GND
DO_ACK 67 17 GND
PBO —]66 16~ GND
PB1 65 15 GND
PB2 64 14 GND
PB3 63 13 GND
PB4 62 12 GND
PB5 — 61 111+ GND
PB6 60 10 GND
PB7 59 9 GND
PB8 58 8 GND
PB9 57 7 GND
PB10 —{56 6T GND
pB11 |55 5| GND
PB12 54 4 GND
PB13 53 3 GND
pB14 |52 2| GND
PB15 51 1 GND

Figure 2.2 CN1 Pin Assignment

Installation « 13

2.7 Wiring and Termination

Transmission line effects and environment noise, particularly on clock and
control lines, can lead to incorrect data transfers if you do not take care when
running signal wires to and from the devices.

Take the following precautions to ensure a uniform transformation line and
minimize noise pickup:

1. Use twisted-pair wires to connect digital I/O signals to the device. Twist each
digital I/O signal with a GND line. In PCI-7300A, 50 signals are used as
GND.

2. Place a shield around the wires connecting digital I/O signal to device.

3. Route signals to the devices carefully. Keep cabling away from noise
sources, such as video monitor.

For cPCI/PCI-7300A, it is important to terminate your cable properly to reduce
or eliminate signal reflections in the cable. The PCI-7300A support active
terminator on board, you can enable or disable the terminator by software
selection. This is a good way to include termination on the signal transmission.

Additional recommendations apply for all signal connection to your
cPCI/PCI-7300A are listed as follows:

1. Separate cPCI/PCI-7300A device signal lines from high-current or
high-voltage line. These lines are capable of inducing currents in or voltages
on the cPCI/PCI-7300A if they run in parallel paths at a close distance. To
reduce the magnetic coupling between lines, separate them by a
reasonable distance if they run in parallel, or run the lines at right angles to
each other.

2. Do not run signal lines through conducts that also contain power lines.

3. Protect signal lines from magnetic fields.

14 « Installation

2.8 Daughter Board Supporting

The cPCI/PCI-7300A can be connected with two daughter boards: DIN-100S
or DIN-502S. The functionality and connections are specified as follows.

2.8.1 Connect with DIN-100S

The DIN-100S is a direct connection for the add-on card that is equipped with
SCSI-100 connector. User can connect this daughter board by a 100-pin SCSI
type cable (ACL-102100) to the cPCI/PCI-7300A. It is suitable for the
applications of 32-bit digital input or 32-bit digital output.

2.8.2 Connect with DIN-502S

The DIN-502S with the cable ACL-10252 separates the 100-pin SCSI
connector into two 50-pin SCSI connectors. One 50 pin connector is for pin 1 ~
25 and pin 51~75 of CN1 while the other one is for pin 26 ~ 50 and pin 76~100
of CN1. That means the DIN-502S and the ACL-10252 make users easy to
connect the 16-bit digital inputs and 16-bit digital outputs by using two 50-pin
daughter boards respectively. The independent wiring of 16-bit DI and 16-hit
DO let users convenient to setup and maintain his systems.

Installation « 15

3

Registers Format

In this chapter, the registers’ format of the cPCI/PCI-7300A is described.
Please note that the registers’ map of the PCI-7300A Rev.B is different from
the PCI-7300A Rev.A

This information is quite useful for the programmers who wish to handle the
card by low-level programming. In addition, users can realize how to use
software driver to manipulate this card after understanding the registers'
structure of the cPCI/PCI-7300A

The cPCI/PCI-7300A functions as a 32-bit PCI master device on the PCI bus.
There are three types of registers on the cPCI/PCI-7300A: PCI Configuration
Registers (PCR), Local Configuration Registers (LCR) and cPCI/PCI-7300A' s
registers.

The PCR, which compliant to the PCl-bus specifications, is initialized and
controlled by the plug & play (PnP) PCI BIOS. User* s can study the PCI BIOS
specification to understand the operation of the PCR. Please contact with
PCISIG to acquire the specifications of the PCl interface.

The LCR is specified by the PCI bus controller PLX PCI-9080, which is
provided by PLX technology Inc. (www.plxtech.com) . It is not necessary for
users to understand the details of the LCR if you use the software library. The
base address of the LCR is assigned by the PCI PnP BIOS. The assigned
address is located at offset 14h of PCR.

16 « Registers Format

3.1 1I/O Port Base Address

The registers of the cPCI/PCI-7300A are shown in Table 3.1. The base
address of these registers is also assigned by the PCI P&P BIOS. The
assigned base address is stored at offset 18h of the PCR. Therefore, users
can read the PCR to know the base address by using BIOS function call. Note
that the cPCI/PCI-7300A registers are all 32 bits. Users should access these
registers by 32 bits 1/O instructions.

The PCI-7300A occupies 8 consecutive 32-bit I/O addresses in the 1/O
address space. Table 3.1 shows the I/O Map of the PCI-7300A rev.B.

Address Read Write

Base + 0 DI CSR DI_CSR

Base + 4 DO_CSR DO_CSR

Base + 8 AUX_DIO AUX_DIO

Base + C INT_CSR INT_CSR

Base + 10 DI_FIFO DI_FIFO

Base + 14 DO_FIFO DO_FIFO

Base + 18 - FIFO CR

Base + 1C POL_CTRL POL_CTRL

Base + 20 8254 COUNTO 8254 COUNTO

Base + 24 8254 COUNT1 8254 COUNT1

Base + 28 8254 _COUNT2 8254 _COUNT2

Base + 2C 8254 _CONTROL 8254 _CONTROL
Legend:

DI_CSR: Digital input control & status register

DO_SCR: Digital output control & status register
AUX_DIO: Auxiliary digital I/O port

INT_CSR: Interrupt control and status register

DI_FIFO: DI FIFO direct access port

DO_FIFO: DO FIFO direct access port

FIFO_CR: FIFO almost empty/full programming register
POL_CTRL: Polarity control register for the control signals

Caution:
1. 1/O port is 32-bit width
2. 8-bit or 16-bit I/O access is not allowed.

Registers Format e 17

3.2 DI_CSR: DI Control & Status Register

Digital input control and status checking is done by this register.
Address: BASE + 00
Attribute: READ/WRITE

Data Format:

Bit # 3~0 DI HND SHK DI_CLK SEL DI_32

Bit # 74 0 'F:>A_TERM_OF CD;I_WAIT_TRI ()

Bit#11~8 | DI FIFO FULL |DI OVER DI FIFO CLR |[DI EN

Bit # 15~12 |- - - DI-FIFO_EMPTY
iit#31~16 | don't Cared

(2) This bit is different between Rev.A and Rev.B.

DI_32 (R/IW)

0: Input port is not 32-bit wide (16-bit or 8-bit wide)

1: Input portis 32-bit wide, PORTB is configured as the extension of PORTA.
That means PORTA is input lines 0..15, and PORTB is input lines 16..31.
All the PORTB control signals are disabled.

DI_CLK_SEL (R/W)

00: use timer0 output as input clock

01: use 20MHz clock as input clock

10: use 10MHz clock as input clock

11: use external clock (DI_REQ) as input clock
DI_HND_SHK (R/W)

0: No handshaking

1: REQ/ACK handshaking mode

DI_WAIT_TRIG (R/W)

0: delay input sampling until DITRIG is active
1: start input sampling immediately
PA_TERM_OFF (R/W)

0: PORTA terminator ON

1: PORTA terminator OFF

DI_EN (R/W)
0: Disable digital inputs
1: Enable digital inputs

18 « Registers Format

DI_FIFO_CLR (R/W)

0: No effect

1: Clear digital input FIFO. If both PORTA and PORTB are configured as
inputs, both FIFO will be cleared. Always get O when read.

DI_OVER (R/W)

0: DI FIFO does not full during input sampling

1: DI FIFO full during input sampling, some input data was lost,
write “1” to clear this bit

DI_FIFO_FULL (RO)
0: DI FIFO is not full
1: DI FIFO is full

DI_FIFO_EMPTY (RO)
0: DI FIFO is not empty
1: DI FIFO is empty

3.3 DO_CSR: DO Control & Status Register

Digital input control and status checking is done by this register.
Address: BASE + 04
Attribute: READ/WRITE

Data Format:

Bit # 3~0 DO_WAIT_NAE | DO_MODE DO_32

Bit # 7~4 PG_STOP_TRIG | PB_TERM_OFF DO_WAIT_TRG PAT_GEN
Bit#11~8 | DO_FIFO_FULL | DO_UNDER DO_FIFO_CLR DO_EN

Bit #15~12 | - - BURST_HNDSH (2) | DO_FIFO_EMPTY
Bit # 31~16 | Don’t Cared

(2) This bit is different between Rev.A and Rev.B.

DO_32 (R/W)

0: Output port is not 32-bit wide (16-bit or 8-bit wide)

1: Output portis 32-bitwide, PORTA is configured as the extension of PORTB.
That means PORTB is output lines (0..15), and PORTA is output lines
(16.31). All PORTA control signals are disabled.

DO_MODE (R/W)

00: use timerl output as output clock
01: use 20MHz clock as output clock
10: use 10MHz clock as output clock
11: REQ/ACK handshaking mode

Registers Format« 19

DO_WAIT_NAE (R/W)

0: do not wait output FIFO not almost empty flag

1: delay output data until FIFO is not almost empty

PAT_GEN(R/W)

0: pattern generation disable (FIFO data do not repeat during data output)
1: pattern generation enable (FIFO data repeat themselves during data
output)

DO_WAIT_TRIG (R/W)

0: delay output data until DOTRIG is actived

1. start output data immediately

PB_TERM_OFF (R/W)

0: PORTB terminator ON

1: PORTB terminator OFF

PG_STOP_TRIG (R/W)

0: no effect

1: Stop pattern generation when DOTRIG is deasserted

DO_EN (R/W)

0: Disable digital outputs

1: Enabled digital outputs

DO_FIFO_CLR (R/W)

0: No effect

1. Clear digital output FIFO. If both PORTA and PORTB are configured as
outputs, both FIFO will be cleared. Always get O when read.

DI_UNDER (R/W)

0: DO FIFO does not empty during data output

1: DO FIFO is empty during data output, some output data may be output
twice. Write 1 to clear this bit

DO_FIFO_FULL (RO)
0: DO FIFO is not full
1: DI FIFO is full

DO_FIFO_EMPTY (RO)

0: DO FIFO is not empty
1: DO FIFO is empty

20 « Registers Format

BURST_HNDSHK (R/W)
0: disable burst handshaking mode
1: enable burst handshake mode

* Note: This bit is for Rev.B only.

3.4 Auxiliary Digital 1/0 Register

Auxiliary 4-bit digital inputs and 4-bit digital outputs
Address: BASE + 08
Attribute: READ/WRITE

Data Format:

Bit#3~0 |DO AUX 3 |DO AUX 2 |DO AUX 1 (DO AUX 0
Bit#7~4 |DI AUX 3 DI AUX 2 DI AUX 1 DI AUX 0
Bit # 31~8 | Don’ t Cared

This auxiliary digital I/0 is controlled by porgram 1/0 only.
DO_AUX_3 ~DO_AUX_0 (R/W)

4-bit auxiliary output port. Program 1/O only.

DI_AUX_3 ~DI_AUX 0 (R)

4-bit auxiliary input port. Program I/O only

3.5 INT_CSR: Interrupt Control and Status Register

The interrupt of PCI-7300A is controlled and status is checked through this
register.

Address: BASE + 0x0C

Attribute: READ/WRITE

Data Format:

Bit # 3~0 T2_INT AUXIO_INT |T2_EN AUXDIO_EN
Bit # 7~4 - - Reserved Reserved
Bit#31~8 |Don'tCared

AUXDI_EN (R/W)
0: Disable AUXDIO interrupt
1: Interrupt CPU on falling edge of AUXDIO

Registers Format« 21

T2_EN (R/W)

0: Disable Timer2 interrupt

1: Interrupt CPU on falling edge of Timer 2 output
AUXDIO_INT (R/W)

0: AUXDI does not generate interrupt

1: AUXDI interrupt occurred. Write “ 1" to clear
T2_EN (R/W)

0: Timer 2 does not generate interrupt

1: Timer 2 interrupt occurred. Write “1” to clear

3.6 DI_FIFO: DI FIFO direct access port

The digital input FIFO data can be accessed through this port directly.
Address: BASE + 0x10
Attribute: READ/WRITE

Data Format:
3its 7 |6 | 5 [a] s]2]1]o0o0
Bit # 7~0 DI_FIFO 8
Bit#15~8 |DI_FIFO_16
Bit#31 16 |DI_FIFO 32

DI_FIFO_8
Bit 7 ~ Bit 0 of digital input FIFO

DI_FIFO_16
Bit 15 ~ Bit 8 of digital input FIFO if the digital inputis configured as 16-bit wide
or 32-bit wide.

DI_FIFO 32
Bit 31 ~ Bit 16 of digital input FIFO if the digital input is
configured as 32-bit wide

Note: Although this port is R/W port, write operation should be avoided in normal
operation. If both PORT A and PORT B are configured as output ports, read/write to this
port is meaningless.

22 « Registers Format

3.7 DO _FIFO: DO external data FIFO direct access
port

The digital output FIFO data can be accessed through this port directly.
Address: BASE + 0x0C
Attribute: READ/WRITE

Data Format:

3its 7 s s s s [[t Dy
Bit#7~0 |DO FIFO 8

Bit#15-8 |DO_FIFO_16

Bit#31 16 |DO_FIFO_32

DO_FIFO 8
Bit 7 ~ Bit O of digital output FIFO

DO_FIFO_16

Bit 15 ~ Bit 8 of digital output FIFO if the digital output is configured as 16-bit
wide or 32-bit wide.

DO_FIFO_32
Bit 31 ~ Bit 16 of digital output FIFO of the digital output is
configured as 32-bit wide

Note: Although this port is R/W port, read operation should be avoided in normal
operation. If both PORTA and PORTB are configured as input ports, read/write to this
port is meaningless.

Registers Format« 23

3.8 FIFO_CR: FIFO almost empty/full register

The register is used to control the FIFO programmable almost empty/full flag.
Address: BASE + 0x018
Attribute: WRITE Only

Data Format:

Bits 7 |6 s Ja 3 [2 |1 Jo
Bit 15~0 PB_PAE_PAF
Bit 31_16 PA_PAE_PAF

PB_PAE_PAF (WO)

Programmable almost empty/full threshold of PORTB FIFO, 2
consecutive writes are required to program PORTB FIFO.
Programmable almost empty threshold first.

PA_PAE_PAF(WO)
Programmable almost empty/full threshold of PORTA FIFO, 2

consecutive writes are required to program PORTA FIFO.
Programmable almost empty threshold first.

3.9 POL_CNTRL: Control Signal Polarity Control
Register

The register is used to control the control signals’ polarity. The control signals
include DI_REQ, DI_ACK, DI_TRG, DO_REQ, DO_ACK and DO_TRG.
Please note that this register is for PCI-7300A Rev.B and cPCI-7300 only.
Address: BASE + 0x1C

Attribute: READ/WRITE

Data Format:

Bit # 3~0 DO REG NEG |DI. TRG NEG |DI ACK NEG |DI REQ NEG
Bit # 71~4 - DO _TRG_NEG |DO_ACK_NEG
Bit # 31~8 Don’ t Cared

DI_REQ_NEQ (RW)
0: DI_REQ is rising edge active
1: DI_REQ is falling edge active

24 « Registers Format

DI_ACK_NEQ (R/W)

0: DI_ACK is rising edge active
1: DI_ACK is falling edge active
DI_TRG_NEQ (R/W)

0: DI_TRG is rising edge active
1: DI_TRG is falling edge active
DO_REQ_NEQ (RW)

0: DO_REQ is rising edge active
1: DO_REQ is falling edge active
DO_ACK_NEQ (R/W)

0: DO_ACK is rising edge active
1: DO_ACK is falling edge active
DO_TRG_NEQ (R/W)

0: DO_TRG is rising edge active
1: DO_TRG is falling edge active

3.10 PLX PCI-9080 DMA Control Registers

The registers of bus -mastering DMA as well as the control and status registers
of PCl-bus interrupts are built in the PLX PCI-9080 ASIC. Users can refer to
the manual of PLX PCI-9080 for detailed information.

Registers Format « 25

A

Operation Theorem

This chapter

provides

the detailed operation
cPCI/PCI-7300A, including I/O configuration, block diagram, input/output FIFO,
bus -mastering DMA, scatter/gather, clocking mode, starting mode, termination,

1/0 transfer mode, and auxiliary digital 1/0.

information for

4.1 1/0 Configuration

The 32-bit I/O data path of PCI-7300A can be configured as 8-bit, 16-bit, or

32-bit, the possible configuration modes are listed as follows.

(default mode)

PORTB
(DO0.DO15)

Mode Channel Description

D132 PORTA (DI0.DI15) [Both PORTA and PORTB
PORTB (DI16..DI31) |are configured as input

channel

D032 PORTA Both PORTA and PORTB
(DO16.D031) are configured as output
PORTB channel
(DO0.DO15)

DI16D0O16 PORTA (DI0.DI15) [PORTAis 16-CH input

PORTB is 16-CH output

PORTB (DO0.DO7)

DI16DO8 PORTA (DI0.DI15) |PORTA s 16-CH input
PORTB (DO0.DO7) |PORTB is 8-CH output

DIBDO16 PORTA (DI0.DI7) _ |PORTA s 8-CH input
PORTB PORTB is 16-CH output
(DO0.DO15)

DISBDO8 PORTA (DI0O.DI7) _ |PORTA s 8-CH input

PORTB is 8-CH output

26+ Operation Theorem

Notes:

PORTA is default as Input channel; PORTB is default as output channel.

In DI32 mode, the PORTB has to be configured as the extension of PORTA, that is,
PORTB is the input port (DI16. DI31). PORTB control signals are disabled.

In DO32 mode, the PORTA has to be configured as the extension of PORTB, that is,
PORTA is the output port (DO16.D031). PORTA control signals are disabled.

DIO: input LSB, DI31: input MSB;

DOO0:output LSB, DO31:output MSB.

LSB: Least Significant Bit, MSB: Most Significant Bit

4.2 Block Diagram

Figure 4.1 shows the block diagram of the cPCI/PCI-7300A, it includes the I/O
registers, two 16K FIFOs, auxiliary DIO, active terminators, and so on.

Aot
Tomminalar

Port A PCI

16DI10 .

Bridge

Acthc -

Tomminalar g]
8 o

Port B m g]
16DIO & w

AUX DOD~3] RE (G |t l

AUX DI0"3 i) REG e
DI TRIG, DI-REQ — Timer

Ol-ACHK
OO-REQ

OO-TRIG, DO-ACK Ll L |

PORTA:

PORTB:

FIFO:

AUX DO 3..0:

AUX DI 3..0:

REG | Control & Timing |4~
4

Figure 4.1: Block diagram

16 Digital 1/0O Port, it can be set as terminated mode or
non-terminated mode

16 Digital 1/0O Port, it can be set as terminated mode or
non-terminated mode

Two 16K words FIFO for digital I/0 data buffer

Four auxiliary digital outputs

Four auxiliary digital inputs

Operation Theorem 27

DITRIG: Digital input trigger line
DIACK/DIREQ: Digital input handshaking signals
DOTRIG: Digital output trigger line
DOACK/DOREQ:Digital output handshaking signals

4.3 Digital 1/0 Data Flow

When applying digital input functions, the data will be sampled into the input
FIFO periodically as we configured and then transfer to the system memory by
the bus mastering DMA of the PCI Bridge. Figure 4.2 show the data flow of the
16-bit digital input operation.

REG REG]
16K FIFO Bridge -

Fort A D0-015
16010 ! . REG1

Figure 4.2 Data flow of digital input

sng |04

On the other hand, Figure 4.3 shows the data flow of 16-bit digital output
operation. After the bus mastering DMA of the PCI Bridge transfers the output
data to the output FIFO, the cPCI/PCI-7300A will output the data to the
external devices in a pre-assigned period.

PCI
Bridge

ENE 13

Figure 4.3 Data flow of digital output

The width of local data bus on the cPCI/PCI-7300A can be programmable to
be 8-bit, 16-bit or 32-bit. The default data width is 16-bit. Port A is default to be
input port, and Port B is default to be output one. When 8-bit data width is
applied, only the lower byte of the bus will be used. While we program the data
width to be 32-bit, the two ports will operate in the same manner.

28+ Operation Theorem

4.4 Input FIFO and Output FIFO

Due to the data transfer rate between external devices and the
cPCI/PCI-7300A is independent from that between cPCI/PCI-7300A and PCI
bus. Two 16K words FIFO are provided to be I/0 buffers.

For digital input operation, data is sampled and transferred to the input FIFO.
When the input FIFO is non-empty, the PCI bridge will automatically transfer
the data from the input FIFO to the system memory in the background when
PCI bus is available.

As the data transfer rate from external device to input FIFO (DI pre-transfer
rate) is lower than that from input FIFO to system memory (DI post-transfer
rate), the input FIFO is usually empty. On the contrary, when DI pre-transfer
rate is higher than DI post-transfer rate, the FIFO becomes full and the overrun
situation occurs if the data size is larger than the FIFO size, that is 16K
samples. When DI overrun happens, the next input data will lose until the input
FIFO becomes non-full once again. Users can check the overrun status by
using the function _7300_GetOverrunStatus.

For digital output operation, data is moved from system memory to the output
FIFO by bus mastering DMA, assume the data transfer rate is DO pre-transfer
rate. Then, the data will be transferred to the external devices periodically as
we configured, assume the transfer rate is DO post-transfer rate. When the DO
pre-transfer rate is higher than the DO post-transfer rate, the DMA transfer
stops as the output FIFO becomes full. On the contrary, if DO pre-transfer rate
is lower than DO post-transfer rate. The underrun situation occurs as the
output FIFO becomes empty. The output data remains when underrun
happens. User can check the underrun status by using the function
_7300_GetUnderrunStatus.

Notes: The max data length should be 16K instead of 32K. Users can send repetitive
pattern of 8-/16-/32-bit width with a length of 16K samples, because of the FIFO depth is
as it is no matter how wide the bus. Users should remember that the FIFO chip size is
32K bytes with 16-bits width. Therefore, for each bit, the depth is 16K.

If you need more depth of data, the data have to be in the PC memory and chain the
pattern memory circularly, and then do chaining mode DMA which will generate the
desired pattern repetitively.

Operation Theorem 29

4.5 Bus-mastering DMA

Digital I/O data transfer between PCI-7300A and PC’s system memory is
through bus mastering DMA, which is controlled by PCI bridge chip PLX
PCI-9080. The PCI bus master means the device requires fast access to the
bus or high data throughput in order to achieve good performance.

However, users should note that when more than one bus masters request the
bus ownership, all masters will share the bandwidth of PCI bus and the
performance of each master will unavoidably drop. Therefore, in order to
obtain the maximum data throughput of the cPCI/PCI-7300A, it is
recommended to remove or disable the bus mastering function of other bus
masters, such as network, SCSI, modem adapters, and so on.

The maximum data throughput of the cPCI/PCI-7300A is also limited by the
data throughput of the bridge chipset (North Bridge: NB) between PCI bus and
system memory. The typical data throughput of NB chipset is 120MB/s for
input and 100MB/s for output. Please refer to the figure 4.6. User should check
the specs of the chipset on your main-board to determine the
cPCI/PCI-7300A" s maximum data throughput. The 80MB/s data throughput of
the cPCI/PCI-7300A is guaranteed in the pervious system setup by using the
internal 20MHz-sampling rate.

PC Main-board cPCIPCI-T 3004

Figure 4.6: Maximum data throughput

From figure 4.6, we can find that NB chipset is the bottleneck of the maximum
data transfer rate as only one bus master exists. When the transfer rate users
required is smaller than the maximum transfer rate, by using scatter/gather
(see 4.6), users can transfer the maximum data size as they have on their
system memory. However, if the data should be real-time saved to the
hard-disk rather than memory, thebottleneck would be the data transfer rate of
the hard-disk driver.

30+ Operation Theorem

4.6 Scatter/gather DMA

The PCI Bridge also supports the function of scatter/gather bus mastering
DMA, which helps the users to transfer a large amount of data by linking the all
memory blocks into a continuous linked list.

In the multi-user or multi-tasking OS, like Microsoft Windows, Linux, and so on.
Itis difficult to allocate a large continuous memory block to do the DMA transfer.
Therefore, the PLX PCI-9080 provides the function of scatter/gather or
chaining mode DMA to link the n on-continuous memory blocks into a linked list
so that users can transfer a very large amount of data without limiting by the
fragment of small size memory. Users can configure the linked list for the input
DMA channel or the output DMA channel. The figure 4.7 shows the linked list
that is constructed by three DMA descriptors. Each descriptor contains a PCI
address, a local address, a transfer size, and the pointer to the next descriptor.
Users can allocate many small size memory blocks and chain their associative
DMA descriptors altogether by their application programs. The
cPCI/PCI-7300A’ s software driver provides the easy settings of the
scatter/gather function, and some sample programs are also provided within
the ADLink all-in-one CD. Users can refer to these sample programs and the
function 5.14 and 5.18 for more detailed description.

First PCI Address PCl Address PCl Address

First Local Address Local Address Local Address
Transter Size r Transfer Size _r Tiansfer Size
Mext Desoriptor Mext Descriptor Hext Descriptar |

B

PCIEBus

i

Local Local Laocal
Memory | Memory | Memory

Figure 4.7: Scatter/gather DMA for digital output

Operation Theorems 31

In non-chaining mode, the maximum DMA data transfer size is 2M double
words (8M bytes). However, by using chaining mode, scatter/gather, there is
no limitation on DMA data transfer size. Users can also link the descriptor
nodes circularly to achieve a double-buffered mode DMA.

4.7 Clocking Mode

The data input to or output from the FIFO is operated in a specific rate. The
specific sampling rate or the pacer rate can be programmable by software, by
external clock, or by easy handshaking protocol.

Four clocking modes are provided in the cPCI/PCI-7300A to sample input data
to the FIFO or output date from FIFO to the external devices. They are:

1. Internal Clock: Three sources are available to activate both digital input
and digital output. They are 20MHz, 10MHz, and programmable timer
82C54. There are three counters in 82C54, counter 0 is used to generate
sampling clock for digital input, counter 1 is used timer pacer for digital
output, and counter 2 is used for interrupt function. The configuration is
illustrated as follows.

8254 Timer/Counter
Counter 0 For Digital Input
Counter 1 H For Digital Qutput
Counter 2 » For Interrupt

Figure 4.8: Timer configuration

2. External Clock: This mode is only applied for digital input. The digital
inputs are handled by the external clock strobe (DI-REQ). The DI-ACK
signal reflects the almost full status of the input FIFO. The DI-ACK is
asserted when input FIFO is not almost full, which means the external
device can input data. If the input FIFO is almost full, the DI-ACK is

32+ Operation Theorem

de-asserted, then the external device should pause data transfer and wait
for the assertion of DI-ACK. If the external device follows the rule, there
would be no data lost due to FIFO overrun.

3. Handshaking: For the digital input, through DI-REQ input signal from
external device and DI-ACK output signal to the external deviec, the digital
input can have simple handshaking data transfer.

For the digital output, through DO-REQ output signal to the dexternal
device and DO-ACK input signal from external device, the digital output
can have simple handshaking data transfer

4. Burst Handshaking: This mode is available for both digital output and
digital input. If the digital output DMA use internal clock and the burst
handshaking mode is enable, the cPCI/PCI-7300A output data only when
DO-ACK is asserted. That is, the external device can control the data input
from the cPCI/PCI-7300A by asserting the DO-ACK pin when it is ready to
receive data.

The software driver functions of 5.6 and 5.7 are provided to setup the clocking
mode of digital input and digital output, respectively.

Notes: Due to the internal clock is based on 10MHz clock, some specific sampling rate or
pacer rate cannot be generated by software, such as 9MHz. For digital input, users can
use the external clock source. However, for digital output, users should replace the
default 40MHz oscillator because the current version of cPCI/PCI-7300A does not
support external clock for digital output.

The frequency of external input clock cannot exceed 40MHz due to the local bus timing
requirement.

When users replace the default oscillator on board, the corresponding frequency would
be changed, for example, by replacement with 36Mhz oscillator, the internal clock
selection would be changed to 18MHz, 9MHz, and 9MHz base timer output.

4.8 Starting Mode

Users can also control the starting mode of digital input and output by external
signals (DITRIG and DOTRIG) with the software programs. The trigger modes
includes NoWait, WaitTRIG, WaitFIFO, and WaitBoth.

1. NoWait: The data transfer is started immediately when a 1/O transfer
command is issued.

Operation Theorem 33

2. WaitTRIG: The data transfer will not start until external trigger signal
(DI-TRIG for digital input, DO-TRIG for digital output) is activated.

3. WaitFIFO: This starting mode is only available for digital output. The data
transfer is started until the output FIFO is not almost empty. The threshold
of FIFO almost empty is software programmable.

4. WaitBoth: This starting mode is only available for digital output. The data
transfer is started until the output FIFO is not almost empty and DO-TRIG
signal is activated.

The software driver functions of 5.6 and 5.7 are provided to setup the starting
mode of digital input and digital output, respectively.

4.9 Active Terminator

For cPCI/PCI-7300A, it is important to terminate your cable properly to reduce
or eliminate signal reflections in the cable. The PCI-7300A support active
terminator on board, you can enable or disable the terminator by software
selection (Please refer to section 5.5 function _7300_config).

The active terminator is the same as the one used in SCSI 2. When the
terminator is ON, it presents a terminal 110-ohm impedance to the
transmission line to match the line impedance. When itis OFF, itjust add a few
pF capacitance to the line

4.10 Digital Input Operation Mode
4.10.1 Digital Input DMA in Internal Clock Mode

There are three sources to trigger digital input in the internal clock mode:
20MHz, 10MHz, and programmable timer 82C54. There are three counters in
82C54, where the counter 0 is used for sampling clock source for digital input.
The operations sequence of digital input with internal clock are listed as
follows:

1. Define the input configuration to be 32-bit, 16-bit or 8-bit data width.

2.Enable or disable the active terminators.

3. Define the input sampling rate to be 20MHz, 10MHz, or the output of 82C54
counter O.

34+ Operation Theorem

4. Define the starting mode to be NoWait or WaitTRIG.
5. The digital input data are stored in the input FIFO after a DI command is
issued and waiting for DI-TRIG signal if in WaitTRIG mode.

6. The data in the input FIFO will be transferred into system memory directly
and automatically by bus mastering DMA.

The operation flow is show as below:

Counter 0 P DI-TRIG
10Mhz z|JLUL
c J sa-nplhgr Flip Flop re——————
20MhE " Rato Data from
External
Device

Bus Mastering 16KW FIFO
DMA

e 111 =

Data from the external device to the input FIFO

Sampling
Clock

PCl bus latency time

e of ¢PCI/PCL7300A
PCl Bus
Timing

i Bus mastering DMA
Data from the input FIFO to system memory

Operation Theorem 35

Notes: When the DMA function of digital input starts, the input data will be stored in the
FIFO of the cPCI/PCI-7300A. The data then transfer to system memory if PCI bus is
available. If the speed of translation from external device to the FIFO on board is higher
than that from FIFO to system memory or the PCI bus is busy for a long time, the FIFO
become full and overrun situation occurs after the next data being written to the input
FIFO. Users should check the overrun status to see whether the overrun occurs or not.
Some input data will lost when the input FIFO is overrun.

Notes: The overrun occurs when the DMA idle time (from the end of DMA transfer N to
the start of DMA transfer N+1) is longer than the on-board FIFO buffer time. The FIFO
size is 16K sample, so it has 1.6 ms buffer time for 10MHz sampling rate if the FIFO is
empty when last DMA is complete. Users may try different DMA buffer size to see how
the DMA bulffer size affects the overall performance. Generally, the larger DMA size the
less overhead, however, the process time required between DMAs also increases.

4.10.2 Digital Input DMA in External Clock Mode

The digital input data transfer can be controlled by external strobe, which is
from pin-83 DI-REQ of CN1. The operation sequence is very similar to Internal
Clock. The only difference is the clock source comes from the outside
peripheral devices. The operations sequence of digital input with external clock
are listed:

1. Define the input configuration to be 32-bit, 16-bit or 8-bit data width.

. Enable or disable the active terminators.

3. Define the input sampling rate as external clock. Connect the external clock
to the input pin DI-REQ.

4. Define the starting mode to be NoWait or WaitTRIG.

5. The digital input data are stored in the input FIFO after a DI command is
issued and waiting for DI-TRIG signal if in WaitTRIG mode..

6. The data saved in FIFO will transfer to system memory of your computer
directly and automatically by bus mastering DMA.

7. The DI-ACK signal indicates the status of the cPCI/PCI-7300A’ s input FIFO
is in external clock mode. When the digital input circuit of cPCI/PCI-7300A
is enabled and its FIFO is not almost full, the DIACK signal will remain
asserted. If the external device does not transfer data according to the
status of DI-ACK, the on-board FIFO could be full and data could be lost.

N

36+ Operation Theorem

The operation flow is show as below:

Mokt
w:mmc: -—
. DI-TRIG
=] JUL
= Flip Flop [
¢ | Sampling
-~ Rate Data from
External
Device
Bus Mastering 16KW FIFO
DMA
L E
— T DI-ACK
B

The followings are timing diagrams of the DI-REQ and the input data. The

active edge of DI-REQ can be programmed by the function 5.5.

"
DIREQ . 4

Input _ e > -
Data [_ValidData > Valid Data >
t

t, t,>10ns t>10ns t_ >26ns
tz1ins t=5ns

DIREQ as input data strobe (when Rising Edge Active)

Operation Theorem 37

) Leye

DREQ | | b J

.1

Input

Data ﬂ' 'Jalld Data > K

| t,=10ns t=10ns t, =25ns
t =10ns tx5ns

DIREQ as input data strobe (when Falling Edge Active)

Notes: From the timing diagram of external clock mode, the maximum frequency can be
up to 40MHz. However, users should note that when the sampling frequency of digital
input is higher than the PCI bus bandwidth (33Mhz), or the bandwidth of chipset (30Mhz
typically) from PCI bus to system memory. Users should check the overrun status when
the DMA block size is larger than 16K samples. If overrun always happens, users should
reduce the DMA block size or slow down the sampling frequency. For example, the DMA
block size should be smaller than 64K when the external clock is 40Mhz in the DOS

Operation

4.10.3 Digital Input DMA in Handshaking Mode

For digital input, through DI-REQ input signal and DI-ACK output signal, the
digital input can have simple handshaking data transfer.The operations
sequence of digital input with handshaking are listed:

1. Define the input configuration to be 32-bit, 16-bit or 8-bit data width.

. Enable or disable the active terminators.

3. Define the input sampling rate as handshaking mode. Connect the
handshaking signals of the external device to input pin DI-REQ and output
pin DI-ACK.

4. Define the starting mode to be NoWait or WaitTRIG.

5. After digital input data is ready on device side, the peripheral device strobe
data into the cPCI/PCI-7300A by asserting a DIREQ signal,

6. The DIREQ signal caused the PCI-7300A to latch digital input data and
store it into FIFO

7. The PCI-7300A asserts a DIACK signal when it is ready for another input,
the step 5 to step 7 will be repeated again.

8. The data saved in FIFO will transfer to system memory of your computer
directly and automatically by bus mastering DMA.

N

38+ Operation Theorem

The operation flow is show as below:

I EF L

Timing NoWait/
b TR Control WaitTRIG
HIAEK DI-TRIG
_F L] L
> el
DI-REQ hm"ng Flm Flup
Rate Data from
External
Bus Mastering 16KW FIFO Device
DMA

e 111 =

The following figure shows the timing requirement of the handshaking mode
digital input operation.

| B
DIREQ N L
DIACK N T L
Input A . % B
Data . Valid Data < e

I

t,=0ns t,=0ns t,=35ns ty=10ns t.=50ns
DIREQ & DIACK Handshaking

Note: DIREQ must be asserted until DIACK asserts, DIACK will be asserted until DIREQ
de-asserted.

Operation Theorem 39

4.10.4 Continuous Digital Input

If the digital input operation still active after the competition of the previous
DMA transfer and do not clear the data in the input FIFO when the next DMA
starts, the cPCI/PCI-7300A can achieve the continuous digital input function in
a high-speed sampling rate. In this case, the input FIFO buffers the input data
and waits for the next DMA to move the queued data to the system memory.
To avoid the overrun of input FIFO causes the data lost of the continuous
digital input, the latency time of the next DMA should be smaller than the time
to overrun the input FIFO. There are some rules of thumb should be mentioned
here:

1. The lower the sampling frequency is, the longer the time to overrun the input
FIFO is. That means the fewer overrun situations will occur.

2.To reduce the latency time between two DMA transfers, please disable
unnecessary PCIl bus mastering devices, and remove the unnecessary
processes in your application programs.

3. When high-speed sampling frequency is applied, the larger block size will
improve the efficiency of DMA transferring, and probability of overrun in the
DMA process will be reduced.

4.To apply the high-speed continuous digital input, it is recommended to
execute your application programs in the non-multitask operation system to
reduce the latency time between two DMA transfers.

Diata queued in FIFO

|
-

|
i Il
T Data transferred by DMA transfer B

L ; | |
" DMA transfer A Laten oy sime botaen DMA tranzfar B il

= GMA Tramsfar & and <
POl s | atescy thno
of PFCUPCITI00A

40 « Operation Theorem

Notes: The latency time between two DMA transfers is different from the PCI bus latency
time mentioned in the previous section of “ Bus Mastering”. The former means the time
difference between two continuous DMA processes started by the software. And the
latter means the time difference between two continuously hardware DMA requests on

the PCI bus within a DMA process.

4.11 Digital Output Operation Mode
4.11.1 Digital Output DMA in Internal Clock Mode

There are three sources to trigger digital output: 20MHz, 10MHz, and
programmable timer 82C54. There are three counters in 82C54, where the
counter 1 is used timer pacer for digital output. The operations sequence of
digital output with internal clock are listed:

1. Define the input configuration to be 32-bit, 16-bit or 8-bit data width.

. Enable or disable the active terminators.

3. Define the output timer pacer rate to be 20MHz, 10MHz, or the output
82C54 timer 1. The timer pacer controls the output rate.

4. Define the starting mode to be NoWait, WaitTRIG, WaitFIFO, or WaitBoth

5. The output data saved in the system memory will be transferred to output
FIFO directly and automatically by bus mastering DMA.

6. The digital output data will be transferred to the external device after a DO
command is issued and DO-TRIG signal is activated.

N

The operation flow is show as below:

MNoWWait/

WalTRIG
Counter 1 ", DO-TRIG
10Mha g|JLIL
¢ | Timer Pacer
Data to
External

Bus Mastering 16KW FIFO i ;
DA w— Device

T —

Operation Theorems 41

As the data output in the internal clock mode, the DOREQ signal could be use
as the output strobe to indicate the output operation to the external device. The
timing diagram of the DOREQ is shown as follows:

v

4 tc_‘.l'l:

DOREQ | |

Dutpl.lt _’| th |._ e
Data - Valid Data =

‘| t, t,=250r 50ns t=10ns t =50ns

DOREQ as output data strobe

4.11.2 Digital Output DMA in Handshaking Mode

For digital output, through DO-REQ output signal and DO-ACK input signal,
the digital output can have simple handshaking data transfer.
The operations sequence of digital output in handshaking mode are listed:

1. Define the input configuration to be 32-bit, 16-bit or 8-bit data width.

2.Enable or disable the active terminators.

3.Define the output clock mode as handshaking mode. Connect the
handshaking signals of the external device to output pin DO-REQ and input
pin DO-ACK.

4. Define the starting mode to be NoWait, WaitTRIG, WaitFIFO, or WaitBoth

5. Digital output data is moved from PC’ s system memory to output FIFO by
using bus mastering DMA.

6. After output data is ready. A DO-REQ signal is generated and sent the
output data to the external device.

7. After aDO-ACK signal is gotten, the step 6 and step 7 will be repeated again

42+ Operation Theorem

The operation flow is show as below:

11T L p NoWait
- Conrol I WaitTRiG
DO-REQ DO-TRIG
b g
DO-ACK Timer pacer P Flop

Data to
1 External

Bus Mastering 16KW FIFO 5, Device

—

—— I — =

The timing diagram of the DOREQ and DOACK in the DO handshaking mode
is shown as follows:

F_tz_'*_tag'r

DOREQ |
DOACK | |
Qutput - : .

Datt:. ' Valid Data < Y

H t,=10ns t,:25ns t :=50ns

DOREQ & DOACK Handshaking

Note: DOACK must be deserted before DOREQ asserts, DOACK can be asserted any
time after DOREQ asserts, DOREQ will be reasserted after DOACK is asserted.

Operation Theorem s 43

4.11.3 Digital Output DMA in Burst Handshaking Mode

The burst handshaking mode is a fast and reliable data transfer protocol. It
has both advantage of handshaking mode, which is reliable, and the
advantage of internal clock mode, which is fast. When using this mode, the
sender has to check the availability of receiver indicated by the DO-ACK signal
before it starts to send data. Once the DO-ACK is asserted, the receiver has to
keep the DO-ACK signal asserted before its input buffer becomes too small.
When the DO-ACK is de-asserted, indicating the receiver’ s buffer has not
much space for new data, the sender is still allowed to send 4 data to the
receiver, and the receiver has to receive these data. The following figure
illustrates the operation of the burst handshaking mode:

U to A samples ae allowed io iranste
after the de.asartion of DO-ACK

The operations sequence of digital output in burst handshaking mode are
listed:

1. Define the input configuration to be 32-bit, 16-bit or 8-bit data width.

. Enable or disable the active terminators.

3. Define the output clock as burst handshaking mode and decide the timer
pacer rate to be 20Mhz, 10Mhz, or the output of 82C54 timer 1.

4. Connect the handshaking signals of the external device to output pin
DO-REQ and input pin DO-ACK.

5. Define the starting mode to be NoWait, TrigWait, WaitFIFO, or WaitBoth

6. Digital output data is moved from PC’ s system memory to output FIFO by
using bus mastering DMA.

7. After output data is ready. DO-REQ signals are generated and sent the
output data to the external device when the DO-ACK is asserted.

N

44 « Operation Theorem

The operation flow is show as below:

R anAn_nnn
- Timing [m'lmﬂ—
—p Control DO-TRIG
: T8 A B
DA CHK
[comertir— QAN TR
—Te o g,) - o Dﬂtﬂtﬂ‘
B :Ma 1m;;(:i:rFIFD =TS
us Mastering -\
Bk a Device
ST — [

Notes: When the DMA function of digital output starts, the output data will transfer to the
output FIFO of cPCI/PCI-7300A when PCI bus is available. If the speed of translation
from the FIFO on board to the external device is higher than that from system memory to
the output FIFO or the PCI bus is busy for a long time, the FIFO become empty and
under-run situation occurs after the next data being read from the output FIFO. Users
should check the under-run status to see whether the under-run occurs or not. Some
output data will repeat when the output FIFO is under-run.

Notes: To avoid the under-run of output FIFO when digital output starts and PCI bus is
still busy, it is highly recommended to set the starting mode to be WaitFIFO. The higher
the timer pacer rate is the larger amount of almost empty threshold should be set to
prevent the under-run situation.

4.11.4 Pattern Generator

The digital data is output to the peripheral device periodically based on the
clock signals occur at a constant rate. The digital pattern are stored in the
cPCI/PCI-7300A’ s on-board FIFO with the length of pattern less than or equal
to 16K samples.

The operations sequence of pattern generator are listed:

1. Define the input configuration to be 32-bit, 16-bit or 8-bit data width.

2. Enable or disable the active terminators.

3. Define the output timer pacer rate to be 20MHz, 10MHz, or the output
82C54 timer 1. The timer pacer controls the output rate.

4. Set the output patterns into the output FIFO by direct FIFO access

5. Start the pattern generator function.

6. The pattern generator function will not stop until users stop the process

Operation Theorem s 45

l DO-TRIG

Counter 1 e
10Mhz =|JLIL
E Timer Pacer Fila Flop >
20Mhz = Data to
External
16KW FIFO Device

Direct FIFO Access

I —

4.12 Auxiliary DIO

The cPCI/PCI-7300A also includes four auxiliary digital inputs and four digital
outputs, which can be applied to achieve the simple 1/O functions. Users can
refer to the functions 5.8 ~5.11 for the detailed information.

46 « Operation Theorem

S

C/C++ Libraries

This chapter describes the software library for operating this card. Only the
functions in DOS library and Windows 95 DLL are described. Please refer to
the PCIS-DASK function reference manual, which included in ADLINK CD, for
the descriptions of the Windows 98/NT/2000 DLL functions.

The function prototypes and some useful constants are defined in the header
files LIB directory (DOS) and INCLUDE directory (Windows 95). For Windows
95 DLL, the developing environment can be Visual Basic 4.0 or above, Msual
C/C++ 4.0 or above, Borland C++ 5.0 or above, Borland Delphi 2.x (32-bit) or
above, or any Windows programming language that allows calls to a DLL. It
provides the C/C++, VB, and Delphi include files.

5.1 Libraries Installation

Please refer to the “Software Installation Guide” for the detail information
about how to install the software libraries for DOS, or Windows 95 DLL, or
PCIS-DASK for Windows 98/NT/2000.

The device drivers and DLL functions of Windows 98/NT/2000 are included in
the PCIS-DASK. Please refer the PCIS-DASK user' s guide and function
reference, which included in the ADLINK CD, for detailed programming
information.

C/C++ Libraries « 47

5.2 Programming Guide
5.2.1 Naming Convention

The functions of the NuDAQ PCI cards or NulPC CompactPCl cards’ software
driver are using full-names to represent the functions' real meaning. The
naming convention rules are:

In DOS Environment :

_{hardware_model}_{action_name}.e.g. _7300_Initial ().
All functions in PCI-7300A driver are with 7300 as {hardware_model}. But they
can be used by PCI-7300A, cPCI-7300.

In order to recognize the difference between DOS library and Windows 95
library, a capital "W is put on the head of each function name of the Windows
95 DLL driver. e.g. W7300_I nitial ().

5.2.2 DataTypes

We defined some data type in Pci_7300.h (DOS) and Acl_pci.h (Windows 95).
These data types are used by NuDAQ Cards’ library. We suggest you to use
these data types in your application programs. The following table shows the
data type names and their range.

Type Name Description Range
us 8-bit ASCII character 0 to 255
116 16-bit signed integer -32768 to 32767
Ul6 16-bit unsigned integer 0 to 65535
132 32-bit signed integer [-2147483648 to 2147483647
u32 32-bit single-precision 0to 4294967295
floating-point
F32 32-bit single-precision |-3.402823E38 to 3.402823E38
floating-point
F64 64-bit double-precision |-1.797683134862315E308 to
floating-point 1.797683134862315E309
Boolean Boolean logic value TRUE, FALSE

48 « C/C++ Libraries

5.3 7300 Initial

@ Description

A PCI-7300A card is initialized according to the card number. Because the
cPCI/PCI-7300A is PCI bus architecture and meets the plug and play design,
the IRQ and base address (pass-through address) are assigned by system
BIOS directly. Every cPCI/PCI-7300A card has to be initialized by this function
before calling other functions.

Note: Because configuration of cPCI/PCI7300A is handled by the system, there is no
jumpers or DMA selection on the PCI boards that need to be set up by the users.

@ Syntax
Visual C/C++ (Windows 95)
int W7300_Initial (int card_nunber, int *pcic_base_addr, int
*| b_base_addr, int *irg_no, int *pci_naster)
Visual C/C++ (Windows 95)
W7300_Initial (ByVal card_nunber As Long, pcic_base_addr As
Long, |b_base_addr As Long, irq_no As Long,
pci _master As Long) As Long

C/C++ (DOS)
int _7300_Initial (int card_nunmber, int *pcic_base_addr, int
*| b_base_addr, int *irg_no, int *pci_master)

@ Argument

card_nunber: thecardnunber tobeinitialized, onlyfour cards
can beinitialized, the card nunber nmust be CARD 1,
CARD 2, CARD 3 or CARD 4.

pci c_base_addr:the I/ Oport base address of the PCl controller
on card, it is assigned by system Bl CS.

| b_base_addr: the 1/0O port base address of the card, it is
assi gned by system BI OS.

irg_no: systemwi | | give an avail abl ei nterrupt nunber to
this card automatically.

pci _master: TRUE: BI OS enabl ed PClI bus mmstering
FALSE: BIGS did not enable PCl bus nastering

@ Return Code
NoErr or, PCI Car dNunEr r
PCl Bi osNot Exi st PCI Car dNot Exi st
PCl BaseAddr Err

C/C++ Libraries « 49

5.4 7300 Close

@ Description

Close a previously initialized PCI-7300A card.
@ Syntax
Visual C/C++ (Windows 95)
int W7300_Close (int card_nunber)
Visual Basic (Windows 95)
W 7300_Cl ose (ByVval card_nunber As Long) As Long
C/C++ (DOS)
int _7300_Close (int card_nunber)
@ Argument
card_nunber: The card number of the PCl-7300A card.

@ Return Code
NoEr r or
PClI Car dNuner r
PCl CardNot I ni t

5.5 7300_Configure

@ Description
Set the port DI/O configuration, terminator control, and control signal polarity
for the PCI-7300A card.
@ Syntax
Visual C/C++ (Windows 95)
int W7300_Configure (int card_nunmber, int dio_config, int
termecntrl, int cntrl_pol)
Visual Basic (Windows 95)
W 7300_Configure (ByVal card_nunber As Long, ByVal dio_config As

Long, ByVal termcntrl As Long, ByVal cntrl _pol
As Long) As Long

C/C++ (DOS)
int _7300_Configure (int card_nunber, int dio_config, int
termecentrl, int cntrl_pol)
@ Argument
card_nunber: The card number of the PCl-7300A card.
di o_config: The port configuration

Di32: input port is 32-bit wide, PORIB is
configured as the extension of PORTA.
DO32: output port is 32-bit wide, PORTA is
configured as the extension of PORTB.

50« C/C++ Libraries

termecentrl:

cntrl _pol:

(1) DI REQ
(2) DI ACK
(3) DITRIG
(4) DOREQ
(5) DOACK

(6) DOTRI G

@ Return Code
NoEr r or
PCl CardNot I ni t

Dl 8DCO8: PORTAis 8-bit input and PORTBis 8-bit
out put

Dl 8DOL6: PCRTAis 8-bit input and PORTBis 16-bit
out put

Dl 16DO8: PORTAis 16-bit i nput and PORTBis 8-bit
out put

Dl 16DO16: PORTA is 16-bit input and PORTB is
16- bit out put

the term nator control

PACFF_PBOFF: PORTA term nator CFF, PORTB
term nator OFF

PACFF_PBON: PORTA termnator OFF, PORTB
term nator ON

PAON_PBOFF: PORTA term nator N, PORTB
term nator OFF

PAON_PBON: PORTAt ermi nat or ON, PORTB t er mi nat or
ON

(note: termecntrl is used to control the OV OFF
of the active termnators, not termnal power
out put: TERMPER)

The polarity configuration. This argunent is an
i nteger expression formed fromone or nore of the
mani f est constants defined in 7300. h. There are
si x groups of constants:

DI REQ POS: DIREQ signal is rising edge active
DI REQ NEG: DI REQsignal is falling edge active
DI ACK_POS: DI ACK signal is rising edge active
DI ACK_NEG: DI ACKsignal is falling edge active
DI TRI G_POS: DI TRIGsignal is rising edge active
DI TRI G_NEG DI TR Gsignal isfallingedgeactive
DOREQ POS: DOREQ signal is rising edge active
DOREQ NEG: DCREQsignal is falling edge active
DOACK_POS: DQACK signal is rising edge active
DOACK_NEG: DOACK signal is falling edge active
DOTRI G_POS: DOTRI Gsignal is rising edge active
DOTRI G_NEG: DOTRI Gsignal isfallingedgeactive

PCI Car dNunEr r
I nval i dDI OConfi gure

C/C++ Libraries « 51

5.6 7300 DI _Mode

@ Description

Set the clock mode and start mode for the PCI-7300A DI operation.
@ Syntax

Visual C/C++ (Windows 95)

int W7300_D _Mde (int card_nunber, int clk_node, int
start_node)
Visual Basic (Windows 95)

W 7300_DI _Mbde (ByVal card_nunber As Long, ByVal cl k_node As Long,
ByVal start_node As Long) As Long

C/C++ (DOS)
int _7300_D _Mde (int card_nunber, int clk_node, int
start_node)
@ Argument

card_nunber: The card number of the PCl-7300A card.

cl k_node: DI _CLK TI MER: use tinerQ output as input clock
DI _CLK_20M use 20MHz cl ock as input clock
DI _CLK 10M wuse 10MHz cl ock as input clock
DI _CLK_REQ wuse external clock (DI_REQ as i nput
cl ock
DI _CLK_REQACK: REQ ACK handshaki ng node
start_node: D_WAITTRIG delay input sanpling until DITR G
is active
DI _NO WAIT: start input sanpling imediately

@ Return Code
NoEr r or
PCI Car dNunEr r
PCl CardNot I ni t
I nval i dDI Ovbde

52 « C/C++ Libraries

5.7 7300 _DO_Mode

@ Description

Set the clock mode and start mode for the PCI-7300A DO operation.
@ Syntax

Visual C/C++ (Windows 95)

int W7300_DO Mbde (int card_nunber, int clk_node, int
start_node, int fifo_threshold)

Vi sual Basic (W ndows 95)

W 7300_DO Mdde (ByVal card_nunber As Long, ByVal cl k_node As Long,
ByVal start_node As Long, ByVal fifo_threshold As
Long) As Long

C/C++ (DOS)
int 7300 _DO Mode (int card_nunber, int cl k_node, int start_node,
int fifo_threshold)

@ Argument
card_nunber: The card number of the PCl-7300A card.
cl k_node: DO CLK TI MER use timerl output as output clock

DO _CLK_20M use 20MHz cl ock as output clock
DO CLK 10M wuse 10MHz cl ock as output clock
DO _CLK_ACK: REQ ACK handshaki ng
DO CLK TI MER_ACK: burst handshaki ng node by
using tinmerl output as output clock
DO CLK 10M ACK: burst handshaki ng nmode by usi ng
10MHz cl ock as output clock
DO CLK 20M ACK: burst handshaki ng node by usi ng
20MHz cl ock as output clock
start_node: DO WAIT_ TRIG delay output data until DOTRIGis
active
DO NO WAI T: start output data i medi ately
DO WAI T_FI FO del ay out put data until FlI FOi s not
al nost enpty
DO WAI T_BOTH: del ay out put data until DOTRIGis
active and FIFO is not al nost enpty.
fifo_threshol d: programmabl e al nost enpty t hreshol d of bot h PORTB
FI FO and PORTA FIFO (if PORTA is set as output).
It is avaliavle only when start_node is
DO _WAI T_FI FO

@ Return Code
NoEr r or
PClI Car dNumner r
PCl CardNot I ni t
I nval i dDI OMode

C/C++ Libraries « 53

5.8 7300 _AUX_DI

@ Description

Read data from auxiliary digital input port. You can get all 4 bits input data by
using this function.

@ Syntax
Visual C/C++ (Windows 95)
int W7300_AUX_DI (int card_nunber, int *aux_di)
Visual Basic (Windows 95)
W 7300_AUX DI (ByVal card_nunber As Long, aux_di As Long) As Long
C/C++ (DOS)
int _7300_AUX_DI (int card_number, int *aux_di)
@ Argument

card_nunber: The card number of the PCl-7300A card.
aux_di : returns 4-bit value fromauxiliary digital input
port.
@ Return Code
NoEr r or
PCI Car dNunEr r
PCl CardNot | ni t

5.9 7300 AUX DI _Channel

@ Description

Read data from auxiliary digital input channel. There are 4 digital input
channels on the PCI-7300A auxiliary digital input port. When performs this
function, the auxiliary digital input port is read and the value of the
corresponding channel is returned.

* channel means each bit of digital input port.

@ Syntax

Visual C/C++ (Windows 95)
int W7300_AUX DI _Channel (int card_nunber, int di_ch_no,
*aux_di)
Visual Basic (Windows 95)
W 7300_AUX_DI _Channel (ByVal card_nunber As Long, ByVal di _ch_no
As Long, aux_di As Long) As Long

int

C/C++ (DOS)

int _7300_AUX DI _Channel (int card_nunber, int di_ch_no,

int
*aux_di)

54 « C/C++ Libraries

@ Argument
card_nunber: The card nunber of the PCl-7300A card.

di _ch_no: the DI channel nunber, the value has to be set
within O and 3.
aux_di : return value, either 0 or 1.
@ Return Code
NoEr r or

PCI Car dNunEr r
PCl CardNot I ni t
I nval i dDI OChNum

5.10 _7300_AUX_DO

@ Description

Write data to auxiliary digital output port. There are 4 auxiliary digital outputs
on the PCI-7300A.
@ Syntax
Visual C/C++ (Windows 95)
int W7300_AUX_DI (int card_number, int do_data)
Visual Basic (Windows 95)
W 7300_AUX DI (ByVal card_number As Long, ByVal do_data As Long)

As Long
C/C++ (DOS)
int _7300_AUX_DI (int card_number, int do_data)
@ Argument
card_nunber: The card number of the PCl-7300A card.
do_dat a: valuewi || bewittentoauxiliarydigital output
port

@ Return Code
NoEr r or
PClI Car dNuner r
PCl CardNot I ni t

5.11 7300 _AUX DO _Channel

@ Description

Write data to auxiliary digital output channel (bit). There are 4 auxiliary digital
output channels on the PCI-7300A. When performs this function, the digital
output data is written to the corresponding channel.

* channel means each bit of digital output port.

C/C++ Libraries « 55

@ Syntax
Visual C/C++ (Windows 95)
int W7300_AUX DO Channel (int card_nunber, int do_ch_no, int
do_dat a)
Visual Basic (Windows 95)
W 7300_AUX_DO Channel (ByVal card_nunber As Long, ByVal do_ch_no
As Long, ByVal do_data As Long) As Long

C/C++ (DOS)
int _7300_AUX DO Channel (int card_nunber, int do_ch_no, int
do_dat a)
@ Argument
card_nunber: The card number of the PCl-7300A card.
do_ch_no: the DO channel nunber, the value has to be set
within O and 3.
do_dat a: either 0 (OFF) or 1 (ON).
@ Return Code
NoEr r or

PClI Car dNumer r
PCl CardNot I ni t

I nval i dDI OChNum
I nval i dDODat a

5.12 7300 _Alloc DMA_Mem

@ Description
Contact Windows 95 system to allocate a memory for DMA transfer. This
function is only available in Windows 95 version.
@ Syntax
Visual C/C++ (Windows 95)
int W7300_Alloc_DVA Mem (U32 buf_size, HANDLE *nemi D, U32
*| i near Addr)
Visual Basic (Windows 95)

W 7300_Al | oc_DVA Mem (ByVal buf_size As Long, nmem D As Long,
l'i near Addr As Long) As Long

@ Argument
buf _si ze: Bytes to al |l ocate. Pl ease be careful, the unit of
this argument is BYTE, not SAMPLE.
mem D: If the nenory allocation is successful, driver

returns the I Dof that menory in this argunent.
Use this nenory ID in W7300_DI_DVA Start or
W 7300_DO DMA Start function call.

|'i near Addr : The linear address of the all ocated DVA nenory.
You can use this linear address as a pointer in
C/ C++ to access (read/wite) the DVA dat a.

56 « C/C++ Libraries

@ Return Code
NoEr r or
Al | ocDMAMenfFai | ed

5.13 7300 Free DMA_ Mem

@ Description
Deallocate a system DMA memory under Windows 95 environment. This
function is only available in Windows 95 version.
@ Syntax
Visual C/C++ (Windows 95)
int W7300_Free_DMA_Mem (HANDLE nem D)
Visual Basic (Windows 95)
W 7300_Free_DVA Mem (ByVal neml D As Long) As Long
@ Argument

mem D: The menory ID of the system DVA nenory to
deal | ocate.

@ Return Code
NoEr r or

5.14 _7300_DI_DMA_Start

@ Description

The function will perform digital input by DMA data transfer.

It will take place in the background which will not stop until the N-th input data
is transferred or your program execute the _7300_DI _DVA_Abort function to
stop the process.

After executing this function, itis necessary to check the status of the operation
by using the function _7300_DI _DVA Status. The PCI-7300A Bus
mastering DMA is different from traditional PC style DMA. Its description is as
follows:

Bus Mastering DMA mode of PCI-7300A:

PCI bus mastering offers the highest possible speed available on the
PCI-7300A. When the function _7300_DI _DVA St art is executed, it will
enable PCI bus master operation. This is conceptually similar to DMA (Direct
Memory Access) transfers in a PC but is really PCI bus mastering. It does not

C/C++ Libraries « 57

use an 8237-style DMA controller in the host computer and therefore it is not
blocked in 64K maximal groups. PCI-7300A bus mastering works as follows:

1. To set up bus mastering, first do all normal PCI-7300A initialization
necessary to control the board in status mode. This includes testing for the
presence of the PCI BIOS, determining the base addresses, slot number,
vendor and device ID's, I/O or memory, space allocation, etc. Please make
sure your PCI-7300A is plug in a bus master slot, otherwise this function
will not be workable.

2. Load the PCI controller with the count and 32-bit physical address of the
start of previously allocated destination memory which will accept data.
This count is the number of bytes (not longwords!) transferred during the
bus master operation and can be a large number up to 8 million (2/23)
bytes. Since the PCI-7300A transfers are always longwords, this is 2
million longwords (2721).

3. After the input sampling is started, the input data is stored in the FIFO of
PCI controller. Each bus mastering data transfer continually tests if any
data in the FIFO and then blocks transfer, the system will continuously
loop until the conditions are satisfied again but will not exit the block
transfer cycle if the block count is not complete. If there is momentarily no
input data, the PCI-7300A will relinquish the bus temporarily but returns
immediately when more input data appear. This operation continues until
the whole block is done.

4. This operation proceeds transparently until the PCI controller transfer byte
count is reached. All normal PCI bus operation applies here such as a
receiver which cannot accept the transfers, higher priority devices
requesting the PCI bus, etc. Remember that only one PCI initiator can
have bus mastering at any one time. However, review the PCI priority and
"fairness" rules. Also study the effects of the Latency Timer. And be aware
that the PCI priority strategy (round robin rotated, fixed priority, custom,
etc.) is unique to your host PC and is explicitly not defined by te PCI
standard. You must determine this priority scheme for your own PC (or
replace it).

5. The interrupt request from the PCI controller can be optionally set up to
indicate that this longword count is complete although this can also be
determined by polling the PCI controller.

58 « C/C++ Libraries

@ Syntax
Visual C/C++ (Windows 95)
int W7300_ DI _DWVA Start (int card_nunber, HANDLE nenmi D, U32
count, int clear_fifo, int disable_di)
Visual Basic (Windows 95)
W7300_DI _DVA Start (ByVal card_nunber As Long, ByVal nmeni D As
Long, ByVal count As Long, ByVal clear_fifo As
Long, ByVal disable_di As Long) As Long

C/C++ (DOS)
int _7300_DI _DVA Start (int card_nunber, int node, U32 *buffer,
U32 count, int clear_fifo, int disable_di)
@ Argument
card_nunber: The card number of the PCl-7300A card.
mode (DOS) : CHAIN DMA: chaining DVA node. By using the

scatter-gather capability of PC -7300A, the
input datais put to several buffers which chai ned
t oget her.
NON_CHAI N_DMA: The i nput datais storedin ablock
of contiguous nmenory.

mem D(Wn-95): the nenory | Dof the al | ocat ed syst emDVA nenory.
In Wndows 95 environment, before calling
W 7300 DI _DVA Start, W7300_Alloc_DVA Memnust
be called to allocate a DVA nenory.
W 7300_Al |l oc_DVA Memwill return a menory I D for
identifying the all ocated DVA nenory, as wel |l as
the linear address of the DVA nmenory for user to
access the data.

buf fer (DOS): Wth non-chai ning node, thisisthestart address
of the menory buffer to store the DI data. Wth
chai ning-node (scatter-gather), this is the
address (pointer) of first DVA descriptor node.
**\Wth non- chai ni ng node, this nmenory shoul d be
doubl e-word al i gnnent. Wth chaini ng- node, this
address should be 16-byte alignnent. Also the
pointer of all DMVA descriptor nodes should be
16- byte alignment.

count: Wt h non-chaining node, this is the nunber of
digital input to transfer. The wunit s
doubl e-word (4- byte). The val ue of count can not
exceed 2721 (about 2 mllion). Wth chai ni ng node,
pl ease set this argunent to 0. The nunber of
digital input isdetermnedbytheinformationin
DMA descri ptor nodes.

clear_fifo: 0: retain the FIFO data
1: clear FIFO data before performdigital input
di sabl e_di : 0: digital input operationstill active after DVA

transfer conplete
1: disable digital input operation i mediately
when DMA transfer conplete

C/C++ Libraries « 59

@ Return Code
NoEr r or
PClI Car dNuner r
PCl CardNot I ni t
DMATr ansf er Not Al | owed
I nval i dDI OCount
Buf Not DWor dAl i gn
DMADscr BadAl i gn

5.15 _7300_DI_DMA_Status

@ Description
Since the _7300_DI _DMA_Start function is executed in background, you
can issue this function to check its operation status.
@ Syntax
Visual C/C++ (Windows 95)

int W7300_DI_DMA_Status (int card_nunber, int *status)
Visual Basic (Windows 95)

W 7300_DI _DVA_Status (ByVal card_nunber As Long, status As Long)
As Long

C/C++ (DOS)
int _7300_DI _DMA_Status (int card_number, int *status)

@ Argument
card_nunber: The card number of the PCl-7300A card.
st at us: status of the DMA data transfer

O (DMA_DONE): DMA is conpleted
1 (DMA_CONTINUE): DMA is not conpleted
@ Return Code
ERR_NoEr r or

PClI Car dNumer r
PCl CardNot I ni t

5.16 _7300 _DI_DMA_Abort

@ Description
This function is used to stop the DMA DI operation. After executing this
function, the DMA transfer operation is stopped.
@ Syntax
Visual C/C++ (Windows 95)
int W7300_DI _DMA_Abort (int card_nunber)

Visual Basic (Windows 95)
W _7300_DI _DMA_Abort (ByVal card_nunber As Long) As Long

60« C/C++ Libraries

CI/C++ (DOS)

int _7300_DI _DMA_Stop (int card_nunber)
@ Argument

card_nunber: The card nunber
@ Return Code

NoEr r or

PClI Car dNuner r
PCl CardNot I ni t

of the PCl-7300A card.

5.17 7300 _GetOverrunStatus

@ Description

When you use _7300_DI _DVA _Start toinput data, the input data is stored
in the FIFO of PCI controller. The data then transfer to memory through
PCl-bus if PCl-bus is available. If the FIFO is full and next data is written to the
FIFO, overrun situation occurs. Using this function to check overrun status.
@ Syntax
Visual C/C++ (Windows 95)

int W7300_GetOverrunStatus (int card_nunber,
Visual Basic (Windows 95)

int W7300_Cet OverrunSt atus (ByVal card_nunber As Long, overrun
As Long) As Long

int *overrun)

C/C++ (DOS)
int _7300_GetOverrunStatus (int card_number, int *overrun)
@ Argument
card_nunber: The card number of the PCl-7300A card.
overrun: 0: overrun sitation did not occur.

1: overrun situation occurred.

@ Return Code
NoEr r or

PCI Car dNun€Er r, PCl Car dNot I ni t

5.18 7300 DO _DMA Start

@ Description

The function will perform digital output N times with DMA data transfer. It will
takes place in the background which will not be stop until the Nth conversion
has been completed or your program execute _7300_DO _DVA_Abort
function to stop the process. After executing this function, it is necessary to

check the status of the operation by using the

function
_7300_DO DWVA St at us.

C/C++ Libraries « 61

@ Syntax

Visual C/C++ (Windows 95)
int W7300_DO DVA Start (int card_nunber, HANDLE neni D, U32
count)

Visual Basic (Windows 95)
W 7300_DO DVA Start (ByVal card_nunber As Long, ByVal mem D As
Long, ByVal count As Long) As Long

C/C++ (DOS)
int _7300_DO DVA Start (int card_nunber, U32 *buff, U32 count,
int repeat, DMA_DSCR *dma_dscr_ptr)

@ Argument

card_nunber: The card number of the PCl-7300A card.

mem D(Wn-95): the menory | Dof the al | ocat ed syst emDVA nenory.
In Wndows 95 environnment, before calling
W 7300 _DO DVA Start, W7300_Alloc_DVA Memnust
be <called to allocate a DVA nenory.
W 7300_Al | oc_DVA Memwi Il return a menory I D for
identifyingthe all ocated DVA nenory, as wel |l as
the linear address of the DVA menory for user to
access the data. So you should wite the output
dat a to this menory before cal ling
W 7300_DO DWVA Start.

buff (DOS): If repeat is set as 0, this is the start address
of the menory buffer to store the DO data. |f
repeat is set as 1, this argunment is of no use.
** This menory shoul d be doubl e-word al i gnnent

count: For non- chai ning node, this is the total nunber
of digital output datain doubl e-words (4-byte).
The val ue of count can not exceed 2”21 (about 2
mllion). For chaining node, please set this
argunent as 0. The nunber of digital output is
deternined by the information in DVA descri ptor
nodes.

repeat (DOS): 0: Use non-chaining node DMA transfer. The
digital output data is stored in buff,.
1: Use chaining node DVA transfer. The digital
output data is stored in several buffers. The
information of the buffers is stored in DVA
description nodes. Al description nodes are
chai ned together.

dma_dscr _ptr (DOS): the pointer to the first DMA
descri ption node. Sincethe DVAdescription nodes
are chained together, with giving this pointer,
data in all buffers will be transferred.

@ Return Code
NoEr r or
PClI Car dNuner r
PCl CardNot | ni t
DMATr ansf er Not Al | owed
I nval i dDI OCount

62 « C/C++ Libraries

Buf Not DWor dAl i gn
DMADscr BadAl i gn

5.19 7300 DO_DMA_Status

@ Description

Since the _7300_DO DVA Start function is executed in background, you
can issue the function _7300_DO _DVA_St at us to check its operation status.
@ Syntax

Visual C/C++ (Windows 95)

int W7300_DO DMA_Status (int card_nunber, int *status)

Visual Basic (Windows 95)
W 7300_DO DVA St atus (ByVal card_nunber As Long, status As Long)

As Long
C/C++ (DOS)
int _7300_DO DWMA Status (int card_number, int *status)
@ Argument
card_nunber: The card number of the PCl-7300A card.
st at us: status of the DMA data transfer

0O (DMA_DONE): DMA is conpleted
1 (DMA_CONTINUE): DMA is not conpleted
@ Return Code
NoEr r or
PClI Car dNuner r
PCl CardNot | ni t

5.20 7300 DO_DMA_Abort

@ Description

This function is used to stop the DMA DO operation. After executing this
function, the _7300_DO DVA_St art function is stopped.
@ Syntax
Visual C/C++ (Windows 95)

int W7300_DO DVMA Abort (int card_nunber)
Visual Basic (Windows 95)

W 7300_DO DMA_Abort (ByVal card_nunber
C/C++ (DOS)

int _7300_DO DMA_Abort (int card_nunber)

As Long) As Long

C/C++ Libraries « 63

@ Argument

card_nunber: The card nunber of the PCl-7300A card.
@ Return Code

NoEr r or

PClI Car dNuner r
PCl CardNot | ni t

5.21 7300 _DO_PG_Start

@ Description

The function will perform pattern generation with the data stored inbuff_ptr. It
will takes place in the background which will not be stop until your program
execute _7300_DO_PG_St op function to stop the process.

@ Syntax

Visual C/C++ (Windows 95)
int W7300 DO PG Start (int card_nunber, void *buff_ptr, U32
count)
Visual Basic (Windows 95)
W 7300_DO PG Start (ByVal card_nunber As Long, buff_ptr As Any,
ByVal count As Long) As Long

C/C++ (DOS)
int _7300_DO PG Start (int card_nunber, void *buff_ptr, U32
count)
@ Argument
card_nunber: The card number of the PCl-7300A card.
buff_ptr: the start address of the nenmory buffer to store

the output data of pattern generation.

** This nenory shoul d be doubl e-word al i gnnent
count: the total nunber of pattern generation sanples.

The size of the sanple depends on the port

configuration. For exanple, if port is set as DOB2,

each sanpl e contains 4 bytes; if port is set as

DI 16DO8 or DI 8D0O8, each sanple is 1 byte.

@ Return Code
NoEr r or
PClI Car dNumer r
PCl CardNot I ni t
DMATTr ansf er Not Al | owed
I nval i dDI OCount
Buf Not DWor dAl i gn
DMADscr BadAl i gn

64 « C/C++ Libraries

5.22 7300 DO _PG_Stop

@ Description

This function is used to stop the pattern generation operation. After executing
this function, the _7300_DO PG Start function is stopped.
@ Syntax
Visual C/C++ (Windows 95)

int W7300_DO PG Stop (int card_nunber)
Visual Basic (Windows 95)

W 7300_DO PG Stop (ByVal card_nunber As Long) As Long
C/C++ (DOS)

int _7300_DO PG Stop (int card_number)
@ Argument

card_nunber: The card number of the PCl-7300A card.
@ Return Code

NoEr r or

PClI Car dNuner r
PCl CardNot I ni t

5.23 7300 DI _Timer

@ Description
This function is used to set the internal timer pacer for digital input. Timer pacer
frequency = 10Mhz / CO.
@ Syntax
Visual C/C++ (Windows 95)
int W7300_DI_Tinmer (int card_number, Ul6 cO0)

Visual Basic (Windows 95)
W 7300_DI _Timer (ByVal card_nunber As Long, ByVal cO As I nteger)

As Long
C/C++ (DOS)
int _7300_DI _Timer (int card_nunmber, Ul6 cO)
@ Argument
card_nunber: The card number of the PCl-7300A card.
cO: frequency divider of Counter #0. Valid value

ranges from2 to 65535.

Note: Since the Integer type in Visual Basic is signed integer. It' s range is within -32768
and 32767. In Visual Basic, if you want to set cO as value larger than 32767, please set it
as the intended value minus 65536. For example, if you want to set c0 as 40000, please
set c0 as 40000-65536=-25536.

C/C++ Libraries « 65

@ Return Code
NoEr r or
PClI Car dNuner r
PCl CardNot I ni t

5.24 7300 _DO_Timer

@ Description

This function is used to set the internal timer pacer for digital output. Timer
pacer frequency = 10Mhz / C1.
@ Syntax
Visual C/C++ (Windows 95)
int W7300_DO Timer (int card_nunmber, Ul6 cl)

Visual Basic (Windows 95)

W 7300_DO Ti ner (ByVal card_nunber As Long, ByVal cl As | nteger)
As Long

C/C++ (DOS)
int _7300_DO Tinmer (int card_nunber, Ul6 cl)

@ Argument
card_nunber: The card number of the PCl-7300A card.
cl: frequency divider of Counter #1. Valid value

ranges from2 to 65535.

Note: Since the Integer type in Visual Basic is signed integer. It' s range is within -32768
and 32767. In Visual Basic, if you want to set c1 as value larger than 32767, please set it
as the intended value minus 65536. For example, if you want to set c1 as 40000, please
set c1 as 40000-65536 = -25536.

@ Return Code
NoEr r or
PClI Car dNuner r
PCl CardNot | ni t

5.25 _7300_Int_Timer

@ Description
This function is used to set Counter #2.
@ Syntax

Visual C/C++ (Windows 95)
int W7300_Int_Tinmer (int card_nunber, Ul6 c2)
Visual Basic (Windows 95)

66 « C/C++ Libraries

W 7300_I nt _Ti mer (ByVal card_nunber As Long, ByVal c2 As | nt eger)
As Long

C/C++ (DOS)
int _7300_Int_Timer (int card_number, Ul6 c2)

@ Argument
card_nunber: The card nunber of the PCl-7300A card.
c2: frequency divider of Counter #2. Valid value

ranges from2 to 65535.

Note: Since the Integer type in Visual Basic is signed integer. It' s range is within -32768
and 32767. In Visual Basic, if you want to set c2 as value larger than 32767, please set it
as the intended value minus 65536. For example, if you want to set c1 as 40000, please
set c1 as 40000-65536 = -25536.

@ Return Code
NoEr r or
PClI Car dNumer r
PCl CardNot I ni t

5.26 7300 _Get_Sample

@ Description

For the language without pointer support such as Visual Basic, programmer
can use this function to access the index-th data in input DMA buffer. This
function is only available in Windows 95 version.

@ Syntax

Visual C/C++ (Windows 95)
int W7300 Get_Sanple (U32 linearAddr, U32 index, u32
*dat a_val ue, U32 portW dth)

Visual Basic (Windows 95)
W 7300_Cet _Sanpl e (ByVal |inear Addr As Long, ByVal index As Long,
data_val ue As Long, ByVal portWdth As Long) As

Long
@ Argument

|'i near Addr : The linear address of the all ocated DVA nenory.

i ndex: The i ndex of the sanple. The first sanpleis with
i ndex 0.

dat aVal ue: The sanpl eretrieved. Thew dth of retri eved data
isdifferent withthe different portWdth val ue.

port W dt h: The port width of the digital input port. The

possi bl e values are 8, 16, or 32.

@ Return Code
NoEr r or

C/C++ Libraries « 67

5.27 _7300_Set_Sample

@ Description

For the language without pointer support such as Visual Basic, programmer
can use this function to write the output data to the index-th position in output
DMA buffer. This function is only available in Windows 95 version.

@ Syntax

Visual C/C++ (Windows 95)

i nt W7300_Set_Sanpl e (U321 near Addr, U32i ndex, U32 dat a_val ue,
U32 portW dth)

Visual Basic (Windows 95)
W 7300_Cet _Sanpl e (ByVal |inear Addr As Long, ByVal index As Long,
ByVal data_val ue As Long, ByVal port Wdth As Long)

As Long
@ Argument

|'i near Addr : The |inear address of the allocated DVA nenory.

i ndex: The position the data is witten to. The first
sanple is with index 0.

dat aVal ue: The data to put to output buffer. The data wi dth
isdifferent with the different portWdth val ue.

port W dt h: The port width of the digital output port. The

possi bl e values are 8, 16, or 32.

@ Return Code
NoEr r or

5.28 7300 _GetUnderrunStatus

@ Description

When you use _7300_DO_DVA St art to output data, the output data is read
from the FIFO on the cPCI/PCI-7300A. If the FIFO becomes empty and next
data is read from the FIFO, underrun situation occurs. Using this function to
check underrun status.
@ Syntax
Visual C/C++ (Windows 95)

int W7300_GetUnderrunStatus (int card_nunber, int *underrun)

Visual Basic (Windows 95)
int W7300_GetUnderrunStatus (ByVal card_nunber As Long,
underrun As Long) As Long
C/C++ (DOS)
int _7300_GetUnderrunStatus (int card_nunber, int *underrun)

68 « C/C++ Libraries

@ Argument
card_nunber: The card number of the PCl-7300A card.
underrun: 0: underrun sitation did not occur.
1: underrun situation occurred.

@ Return Code
NoEr r or
PCI Car dNun€Er r, PCl Car dNot I ni t

C/C++ Libraries « 69

Appendix A 8254 Programmable
Interval Timer

Note: The material of this section is adopted from
“Intel Microprocessor and Peripheral Handbook Vol. Il --Peripheral”

A.1 The Intel (NEC) 8254

The Intel (NEC) 8254 contains three independent, programmable, multi-mode
16 bit counter/timers. The three independent 16 bit counters can be clocked at
rates from DC to 5 MHz. Each counter can be individually programmed with 6
different operating modes by appropriately formatted control words. The most
commonly uses for the 8254 in microprocessor based system are:

programmable baud rate generator
event counter

binary rate multiplier

real-time clock

digital one-shot

vV V V V V VY

motor control

For more information about the 8254, please refer to the NEC Microprocessors
and peripherals or Intel Microprocessor and Peripheral Handbook.

A.2 The Control Byte

The 8254 occupies 8 1/0 address locations in the PCI-7300A /O map. As
shown in the following table:

Base + 0 LSB OR MSB OF COUNTER 0O
Base + 4 LSB OR MSB OF COUNTER 1
Base + 8 LSB OR MSB OF COUNTER 2
Base + C CONTROL BYTE for Chip 0

70+ 8254 Programmable Interval Timer

Before loading or reading any of these individual counters, the control byte
(Base + C) must be loaded first. The format of control byte is:

Control Byte: (Base + 7, Base + 11)
Bit 7 6 5 4 3 2 1 0
SC1 (SCO (RL1 [RLO | M2 M1 MO BCD

- SC1 & SC1 - Select Counter (Bit7 & Bit 6)

SC1 SCO COUNTER
0 0 0
0 1 1
1 0 2
1 1 ILLEGAL

- RL1 & RLO - Select Read/Load operation (Bit 5 & Bit 4)

RL1 RLO OPERATION
0 0 COUNTER LATCH
0 1 READ/LOAD LSB
1 0 READ/LOAD MSB
1 1 READ/LOAD LSB FIRST, THEN MSB

- M2, M1 & MO - Select Operating Mode (Bit 3, Bit 2, & Bit 1)

M2 M1 MO MODE
0 0 0 0
0 0 1 1
X 1 0 2
X 1 1 3
1 0 0 4
1 0 1 5

BCD - Select Binary/BCD Counting (Bit 0)

0 BINARY COUNTER 16-BITS

1 BINARY CODED DECIMAL (BCD) COUNTER (4
DECADEYS)

Note:
1. The count of the binary counter is from 0 up to 65,535.
2. The count of the BCD counter is from 0 up to 99,999.

8254 Programmable Interval Timere 71

A.3 Mode Definition

In 8254, there are six different operating modes can be selected. The they are:
. Mode 0: Interrupt on terminal count

The output will be initially low after the mode set operation. After the
count is loaded into the selected count register, the output will
remain low and the counter will count. When terminal count is
reached, the output will go high and remain high until the selected
count register is reloaded with the mode or a new count is loaded.
The counter continues to decrement after terminal count has been
reached.

Rewriting a counter register during counting results in the following:

(1) Write 1st byte stops the current counting.
(2) Write 2nd byte starts the new count.

- Mode 1: Programmable One-Shot.

The output will go low on the count following the rising edge of the
gate input. The output will go high on the terminal count. If a new
count value is loaded while the output is low it will not affect the
duration of the one-shot pulse until the succeeding trigger. The
current count can be read at anytime without affecting the one-shot
pulse.

The one-shot is re-triggerable, hence the output will remain low for
the full count after any rising edge of the gate input.

- Mode 2: Rate Generator.
Divided by N counter. The output will be low for one period of the
input clock. The period from one output pulse to the next equals the
number of input counts in the count register. If the count register is
reloaded between output pulses the present period will not be
affected, but the subsequent period will reflect the new value.
The gate input when low, will force the output high. When the gate
input goes high, the counter will start form the initial count. Thus,
the gate input can be used to synchronized by software.
When this mode is set, the output will remain high until after the
count register is loaded. The output then can also be synchronized
by software.

72« 8254 Programmable Interval Timer

. Mode 3: Square Wave Rate Generator.

Similar to MODE 2 except that the output will remain high until one
half the count has been completed (or even numbers) and go low
for the other half of the count. This is accomplished by decrement
the counter by two on the falling edge of each clock pulse. When
the counter reaches terminal count, the state of the output is
changed and the counter is reloaded with the full count and the
whole process is repeated.

If the count is odd and the output is high, the first clock pulse (after
the count is loaded) decrements the count by 1. Subsequent clock
pulses decrement the clock by 2 after time-out, the output goes low
and the full count is reloaded. The first clock pulse (following the
reload) decrements the counter by 3. Subsequent clock pulses
decrement the count by 2 until time-out. Then the whole process is
repeated. In this way, if the count is odd, the output will be high for
(N + 1)/2 counts and low for (N - 1)/2 counts.

In Modes 2 and 3, if a CLK source other then the system clock is
used, GATE should be pulsed immediately following Way Rate of a
new count value.

- Mode 4: Software Triggered Strobe.
After the mode is set, the output will be high. When the count is
loaded, the counter will begin counting. On terminal count, the
output will go low for one input clock period, then will go high again.
If the count register is reloaded during counting, the new count will
be loaded on the next CLK pulse. The count will be inhibited while
the GATE input is low.

- Mode 5: Hardware Triggered Strobe.
The counter will start counting after the rising edge of the trigger
input and will go low for one clock period when the terminal countis
reached. The counter is re-triggerable. the output will not go low
until the full count after the rising edge of any trigger.

The detailed description of the mode of 8254, please refer to the Intel
Microsystem Components Handbook.

8254 Programmable Interval Timere 73

Product Warranty/Service

Seller warrants that equipment furnished will be free form defects in material
and workmanship for a period of one year from the confirmed date of purchase
of the original buyer and that upon written notice of any such defect, Seller will,
at its option, repair or replace the defective item under the terms of this
warranty, subject to the provisions and specific exclusions listed herein.

This warranty shall not apply to equipment that has been previously repaired or
altered outside our plantin any way as to, in the judgment of the manufacturer,
affectits reliability. Nor will it apply if the equipment has been used in a manner
exceeding its specifications or if the serial number has been removed.

Seller does not assume any liability for consequential damages as a result
from our products uses, and in any event our liability shall not exceed the
original selling price of the equipment.

The equipment warranty shall constitute the sole and exclusive remedy of any
Buyer of Seller equipment and the sole and exclusive liability of the Seller, its
successors or assigns, in connection with equipment purchased and in lieu of
all other warranties expressed implied or statutory, including, but not limited to,
any implied warranty of merchant ability or fitness and all other obligations or
liabilities of seller, its successors or assigns.

The equipment must be returned postage-prepaid. Package it securely and
insure it. You will be charged for parts and labor if you lack proof of date of
purchase, or if the warranty period is expired.

74 « Product Warranty / Service

