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In this review I outline the principles of interferometry and describe how these
are put into practice in a range of modern interferometric telescopes. The basic
philosophy of the review is to emphasise a pictorial approach to the subject,
rather than delve into detailed mathematical derivations. Much more rigorous
treatment of interferometry can be found in Thompson, Moran & Swenson
(2001). In addition, the US National Radio Astronomy Observatory (NRAO)
hosts a lecture series every three years in interferometry, published in Taylor,
Carilli & Perley (1998).

Throughout, I concentrate on applications of interferometry to interferom-
eters at long (wave-regime) wavelengths, with occasional excursions into meth-
ods used in the new generation of optical interferometers. The final section
is an overview of current interferometers working in the metre-to-millimetre
band. The principles behind interferometers at all wavebands, however, are
very similar, including all of section 1 and most of section 2. A recent full and
complementary review of optical interferometry is given by Monnier (2003),
and other reviews in these proceedings cover the VLT interferometer in detail.

1 Basics: Young’s slits and Fourier transforms

1.1 Young’s slits

Interferometry begins with the Young’s slits fringe pattern (Fig. 1). With a
single point source emitting coherent radiation, interference fringes are ob-
served, with constructive and destructive interference observed as the relative
delay of the two interfering rays changes; the separation of the fringes is λ/d,
the wavelength of the light divided by the slit separation.

If the source is made wider (Fig. 1b), we can think of it as a sequence
of point sources each of which emit radiation which is uncorrelated with the
emission from the others. It follows that the total interference intensity pat-
tern is the sum of the individual patterns. Since an angular displacement in
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Fig. 1. Young’s slits in various situations. In each panel the source is shown on the
left, and on the right of the slit are shown the fringe patterns separately for each
part of the source and then the added fringe pattern. a: The basic two-slit pattern,
showing fringes an angular distance λ/d apart. b: The effect of increasing the source
size. An angular shift of the source position by θ shifts the fringe patterns by θ the
other way. Since the patterns come from mutually incoherent sources, the intensity
patterns add to give a pattern of reduced visibility. c: When the size of the source
reaches λ/d, the fringes add to give zero visibility. d: If the slit spacing is then
reduced, the fringe spacing increases, and the same size of source is still able to give
visible fringes: the source would need to be increased in size to λ/dnew in order to
wash out the fringes.

the source produces an equal angular displacement in the fringe pattern, as
the source size approaches λ/d the fringe patterns will add to give a constant
illumination (Fig. 1c). In this case, the fringe visibility (defined as the dif-
ference between maximum and minimum intensity, normalized by the sum of
maximum and minimum intensity) drops to zero. Conversely, when the angu-
lar size of the source is � λ/d, the fringe visibility is 1; this corresponds to
a situation in which the source size is smaller than the angular resolution of
the interferometer, and only an upper limit of order λ/d can be obtained on
it1.

Now suppose that the slit spacing d is decreased. For the same size of
source, this produces less “washing-out” of the fringes, because the same dis-

1In practice, the fact that the visibility function begins to decrease as soon as
the source extends significantly often allows some information to be derived down
to at least 0.5λ/d and in some cases further.



Principles of interferometry 3

placement of the source now produces much less displacement of the fringe
patterns as a fraction of the fringe separation λ/d (Fig. 1d). The smaller the
slit separation, the larger the source size that can be probed using interfer-
ometry.

The situation is summarised in Fig. 2. If we plot, for a given source dis-
tribution, the way in which visibility varies with slit separation, it can be
seen that for small sources the visibility remains high out to large slit sepa-
ration (in the limit of point sources, to infinite slit separation), whereas large
sources produce visibility patterns which fall off quickly as the slit separation
increases.

Intensity distribution
of source as a function
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Fig. 2. Relation between source brightness as a function of angular distance and
visibility of interference fringes as a function of slit separation (baseline length).

The relation between I(θ) and V (d) represented here is one which maps a
large Gaussian into a small Gaussian, and vice versa, and it is fairly obvious
that it is a Fourier transform2; this relationship is the basis of the whole
discussion that follows.

This relationship was applied early in the history of radio interferometers
to find the sizes of quasars, which were known to be exceedingly small. The
method adopted was to use one fixed telescope and one movable telescope,
and measure the visibility function using electronic combination of the signals

2This is known as the Van Cittert-Zernicke theorem. Readers requiring a more
rigorous derivation are referred to Born & Wolf’s (1975) classic textbook on optics,
or the interoduction to radio astronomy by Burke & Graham-Smith (2002).
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over baselines up to ∼150 km (Adgie et al. 1965). As the telescopes were
moved further apart, the visibility finally fell below unity at large separations,
allowing the angular size to be calculated as λ/d.

1.2 Application to real interferometers

The Young’s slit experiment discussed so far involves sampling two parts of a
plane wave generated a large distance away, delaying one wave with respect
to the other, and generating the interference pattern as a function of delay.
There are many situations in which exactly the same thing is being done. In
Fig.3, for example, a plane wave from a source at infinity is sampled by two
telescopes separated by a vector B. The path delay between the two waves is
given by B.s, where s is the unit vector in the direction of the source, and the
phase delay is therefore given by kB.s, where k ≡ 2π/λ.

s

σ

b
B.s

B

x

Fig. 3. Basic diagram of an interferometer with baseline vector B observing a source
in a direction with unit vector s.

Consider a point source. If the electric field received by the first telescope
is E, that received by the second is just EeikB.s, because of the phase delay.
We can combine these signals, in a way analogous to the screen in Young’s
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slits, by multiplying them together electronically3 or, in the case of optical
systems, by using a Michelson or Fizeau interferometer system to combine the
beams. If we then add the fringe patterns over different parts of the source,
we obtain the response of the interferometer R as

R =

∫

I(σ)eikB.(s+σ)dσ

where s+σ is the vector in the direction of a particular small part of the
source with an intensity I(dσ). Noting that σ is parallel to the projected
baseline vector b (Fig. 3) and so B.σ=b.σ, we then have

R = eikB.s

∫

I(σ)eikb.σdσ,

where the eikB.s term is solely dependent on the array geometry and has
therefore been removed from the integral.

What we therefore have is a series of fringes, whose amplitude is given by
the Fourier transform of the source intensity distribution. In practice, steps
are usually taken to get rid of the fringes using a phase rotation whose rate is
known (as both B and s are known). This is done in optical interferometers
by use of accurate delay lines to compensate for the path difference, and in
radio interferometers by the insertion of electronic delays. We are then left
with the Fourier transform response only, which conveys information about
the source. The response is a complex quantity which contains an amplitude
and a phase; both are interesting.

Because of the fact that the signal from an interferometer results from the
correlation of signals from two telescopes, interferometers have the advantage
of much lower sensitivity to interference because most interference does not
correlate. Thus the only interference which causes a serious problem is that
which saturates or disables the receiver. Such interference can be dealt with by
dividing the observing band into spectral channels and removing any channels
affected.

1.3 The u,v plane

A further step is to decompose both σ and b into Cartesian coordinates. The
decomposition of σ is easy, as it is just a vector in the sky plane: σ = σxi+σyj,
where i and j are unit vectors in the east-west and north-south directions
respectively. This then suggests a decomposition of b into ui + vj, so that
b.σ = ux + vy. The response after fringe stopping then becomes

3This is not exactly the same as the Young’s slits screen, which adds the electric
fields and then forms the intensity using I = (E1 + E2)

∗(E1 + E2), but the result is
almost the same apart from a constant offset term in the addition case. Not having
this term is useful because we do not have to worry about the offset term being
constant with time.
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R(u, v) =

∫∫

I(x, y)e2πi(ux+vy)dxdy,

a much more explicit 2-D Fourier transform. Note that u and v are defined in
units of wavelength, hence the k in the previous expressions has become 2π.

The physical interpretation of the decomposition of b is fairly straight-
forward. Imagine sitting on the source (Fig.4); then the projected baseline
vector appears as a line drawn on the earth. This can be decomposed into a
component parallel to the equator at its nearest point to the source, and a
component parallel to the line between this point and the north pole. These
components are u and v, and they change as the earth rotates. Specifically,
they trace out an ellipse in u, v space during one earth rotation (Fig. 4).
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Fig. 4. Schematic diagram showing the baseline between two telescopes as the earth
rotates. The E-W and N-S components of this vector give u and v. For an east-west
baseline, v=0 at source transit.

This change in u and v is useful, as we see if we consider how the response
function R(u, v) tells us what is on the sky. Fig. 5 shows the basic Fourier
transform relation in a diagram. A double source of separation 1 radian pro-
duces stripes in the u, v plane of separation 1 wavelength. Since the Fourier
transform gives an inverse relation between distances in the two spaces, a
double source of separation a arcseconds gives a series of stripes of separa-
tion 206265/a wavelengths. Superposed on this is the track of the u, v ellipse,
and over a day there are therefore variations in the interferometer response
as the interferometer follows the elliptical track over these stripes. Studying
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this variation in amplitude (and phase) response over the period, we could
work backwards to deduce the separation and orientation of the stripes, and
by taking the Fourier transform, recover the source structure.

Intensity on sky
y

x u

Interferometer       response
v

a arcsec

206265/a
wavelengths

R

t

Fig. 5. Diagram showing the interferometer response as a function of u and v for a
double source on the sky.

The u, v track has a semimajor axis in the u direction of L
λ cos δ, and a

semiminor axis in the v direction of L
λ cos δ sin D. 4 In these expressions L is

the baseline length, D is the declination of the source, and δ the declination of
the baseline; the latter quantity is the declination of the point on the celestial
sphere to which the baseline vector points.

The resolution of which a baseline is capable is given by the inverse of the
maximum extent of the u, v ellipse, namely λ/L. The point-spread function
of an image has dimensions which are the inverse of the spread in the u, v
plane of the images being used, which means that for sources close to the
equator (where D →0 and the ellipses collapse to straight lines) the point-
spread function of an interferometer is typically less ideal, although images of
the sky can be made with care. Fig. 6 shows the u, v tracks for the MERLIN

4Spherical trigonometry can be used to show that the ellipse is parametrised by
the equations: u = L

λ
cos δ sin(H − h), v = L

λ
(sin δ cos D − cos δ sin D cos(H − h))

(e.g. Rowson 1963). Here, H is the hour angle of the source and h the hour angle of
the point on the sky to which the baseline points. For a general baseline, the centre
of the ellipse is offset by L

λ
sin δ cos D from the origin in the v-direction.
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interferometer array, which contains baselines from 6 km to 250 km at a range
of orientations. Note the gradual change from circular u, v tracks to nearly
linear tracks as the source declination decreases.

80 60

30 0

Fig. 6. u, v tracks for the MERLIN interferometer for sources at four different
declinations: 80◦, 60◦, 30◦ and 0◦.

If many baselines are present, many simultaneous measurements can be
made in the u, v plane. The more completely the Fourier plane is filled, the
easier it is to obtain a faithful reproduction of the sky intensity distribution
in an interferometric image.

1.4 A cautionary tale

Interferometric (Fourier) imaging has important differences from direct imag-
ing. The most important difference can be deduced from going back to the
Young’s slits setup: long baselines record small-scale structure in the source
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very well, but are insensitive to large-scale structure, because once the source
becomes larger than λ/L the fringes wash out and do not return as the source
size increases. An example of this is shown in Figs. 7 and 8.

Fig. 7. Simulations of observations of a large Gaussian source with a set of short
baselines giving low resolution matched to the size of the source (top left, u, v cov-
erage, top right, resulting image) and a set of long baselines giving higher resolution
(bottom left, u, v coverage, bottom right, resulting image).

Fig. 7 (top panels) shows a simulated source of 12′′ extent, mapped using
an array whose u, v coverage gives a maximum baseline length corresponding
to a resolution of 3′′. The source structure is recovered reasonably well, as
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the range of baselines present cover spatial scales from the resolution up to
approximately 10 times larger scales. Now suppose that we get greedy, and
decide that we would like to observe at ten times higher resolution. This is no
problem – we move the telescopes to spacings ten times greater and repeat
the observation. This indeed gives a map with 300-mas resolution, on which
there is no sign of the source (Fig. 7, bottom panels).

Let us then try to smooth the image and recover the structure. If we try
this, what we actually recover is shown in Fig. 8. The awful realisation dawns
at this point that by using a long set of baselines, we have not recorded the
structure on large spatial scales at all, and have lost it irretrievably. The moral
is that interferometer arrays should be chosen carefully to match resolution
to the spatial scales required by any particular astrophysical problem5.

1.5 Field of view of interferometric images

Primary beam

Once again, we can go back to Young’s double slits to deduce the another
fundamental limitation of the interferometric image. If the slits are widened,
the aperture distribution no longer consists of two delta-functions, but of two
delta functions convolved with a single wide slit. It follows from the convo-
lution theorem that the interference pattern, being the Fourier transform of
the aperture distribution, consists of the original two-slit fringe pattern multi-
plied by the Fourier transform of a wide slit, namely a sinc function. The sinc
function has a width inversely proportional to the width (w) of the slits, and
the fringes disappear at delays greater than the width of the sinc function,
λ/w.

Now in an interferometer, going further away from the centre of the field
of view just corresponds to a different delay from that which obtains at the
centre. The width of the slits translates directly to the size of each interfer-
ometer element, and the field of view in radians is the wavelength of the light
being studied divided by the diameter of the elements.

Wavelength ranges

Again going back to Young’s slits, it is easy to see that other effects may
intervene before the primary beam limit is reached. The most serious of these

5In fact, using resolution higher than required often causes even worse prob-
lems. This is because for any given array, higher resolution demands observing at
higher frequencies, which in turn imposes penalties in source brightness for typical
steep-spectrum radio sources and in generally worse system performance at high
frequencies. Some interferometers, in particular the VLA, allow different resolution
images at the same frequency by regularly moving the telescopes between different
configurations, from compact to more extended.
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Fig. 8. Smoothed image of a long-baseline observation of a diffuse source. Nothing
is visible.

is that the radiation is not monochromatic. We can consider each single fre-
quency separately, and add the resulting fringe patterns which have different
separation (λ/d) between maxima. The result is that in the centre of the
fringe pattern, full-visibility fringes are seen, since here the delay is zero. At
larger values of delay, further up the screen, the interference fringes from dif-
ferent colours add in such a way as to reduce the visibility to zero even for a
point source. Once again, the effects at large delay translate directly to the
interferometer, and a range of wavelengths in the interferometer causes loss of
response at the edge of a field of view where the delay between the interfering
waves is different 6. If the bandwidth is ∆λ, then the field of view is given by

6For a large Gaussian-shaped bandwidth, the fringe response as a function of
angular distance from the centre is a small Gaussian, and for a small Gaussian-
shaped bandwidth, the fringe response varies as a broad Gaussian with angular
distance. This completes another “proof” of a Fourier transform relation between
these two quantities.
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∆θ = (λ/∆λ)(λ/L),

or the beam-size divided by the fractional bandwidth. In order to achieve rea-
sonable signal-to-noise, many interferometers use large fractional bandwidth,
implying a very restricted field of view. The solution is simply to divide the
signal into many frequency channels and correlate each separately. The cost is
greater complexity of the correlator and larger datasets, but in most modern
interferometer systems computing and hardware are advanced enough that it
is usually possible to image the full primary beam.

Other effects

Two other effects should be mentioned briefly; see Taylor et al. (1998) for
further details. The first is that a limitation on the field of view is imposed
by the integration time per data point, because the values of u and v change
during a finite integration time. This gives a roughly tangential smearing in
the u, v plane which becomes worse further out, which Fourier transforms into
a tangential smearing in the sky plane which becomes worse further out. The
result is that amplitude is lost at the edge of the field. The second effect is
that the sky is not flat, and that instead of using a 2-D Fourier transform
we should have used a 3-D transform, with an extra phase term of the form
√

(1 − x2 − y2) added to the transform. Unlike the bandwidth and integration
time effects, the effect of non-flatness is curable after the event by additional
processing.

2 Producing the image

2.1 Deconvolution

So far we have circumvented the major problem, which is that the interfer-
ometer response function has not been measured over the whole u, v plane.
To do this at a single frequency would require enough telescopes to provide
baselines at all possible separations and orientations, an expensive operation
with substantial planning implications. Lack of this information means that
the number of different images consistent with the data is infinite, since we
could in principle fill in the unmeasured parts of the u, v plane in an infinite
number of ways.

The basic problem is that we want the image I(x, y) resulting from the
full u, v response function I(u, v),

I(x, y) =

∫∫

I(u, v)e2πi(ux+vy)dudv

but instead have the “dirty image”
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ID(x, y) =

∫∫

I(u, v)S(u, v)e2πi(ux+vy)dudv

which results from the intervention of the sampling function S(u, v) which is
1 in parts of the u, v plane where we have sampled and zero where we haven’t.

We recognise the right-hand side of the last equation as a Fourier trans-
form, where the argument is the product of two functions I and S. We can
therefore use the convolution theorem to write

ID(x, y) = I(x, y) ∗ B(x, y)

where

B(x, y) =

∫∫

S(u, v)e2πi(ux+vy)dudv,

the “dirty beam”, is the Fourier transform of the sampling function. Since
we know where the telescopes are and can do spherical trigonometry and
Fourier transforms, the sampling function and hence dirty beam are accurately
known. Recovering the image I(x, y) is therefore a classical deconvolution
problem, in which we need to supply additional information in order to do
the deconvolution.

CLEAN

The first way to do this is the algorithm known as CLEAN (Hogbom 1974)
which amounts to a brute force deconvolution. The basic algorithm begins by
detecting the brightest point in the dirty map, shifting the dirty beam to this
point, and scaling and subtracting off the dirty beam7. At each subtraction,
the flux and position subtracted are noted, until the map from which the
dirty beams have been subtracted (known as the residual map) consists only
of noise. At this point, the subtracted fluxes are convolved with a restoring
beam selected by the user and added back into the field of noise to give a final
“CLEAN map” from which the sidelobes of the dirty beam have been removed.
The usual procedure is to make the CLEAN beam of the same dimensions as
the central spike in the dirty beam. This is a logical procedure, since the
dirty beam is the Fourier transform of the sampling function, and the further
out in the u, v plane the sampling function has non-zero values, the higher
the resolution we are justified in using. It is possible to use a CLEAN beam
smaller than the formal resolution (a process known as super-resolution) at
increasing risk of introducing incorrect structure in the map. Fig. 9 shows an
example of the CLEAN procedure in action.

An important decision in the CLEANing process is the weighting to be
applied to the data, as the recorded data is not uniformly distributed across

7In practice, a fraction – typically 5–10% – of the dirty beam is subtracted to
improve stability. This fraction is known as the ‘loop gain”.
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Fig. 9. CLEANing procedure applied to a radio source consisting of two point source
components observed with the VLA. All maps are contoured at the same level. Top
left: the dirty map. Top right: the residual map after 10 iterations of CLEAN, in
which a small amount of flux has been removed at each iteration. Bottom left: the
residual map after 100 iterations of CLEAN: note the removal of most of the dirty
beam structure. Bottom right: the CLEAN map after some further CLEANing,
formed by the addition of the point source components back into the final residual
map. Further CLEANing does not give significant improvement; although the basic
source structure is visible, there are some clear artefacts remaining. Their causes
and cure are addressed in section 3.
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the u, v plane and in practice is usually concentrated towards the centre. One
option is “natural weighting”, in which all data points are treated equally.
Statistically, this provides the best signal-to-noise in the final image, but be-
cause of the central concentration of the u, v data the sampling function is
more centrally concentrated, and its Fourier transform, the dirty beam in the
sky plane, is therefore more extended. The result is worse resolution in the fi-
nal map. An alternative option is “uniform weighting” in which equal weights
are applied to each u, v grid, giving increased resolution at the expense of
weighting down data at small u and v and degrading the signal-to-noise.

The additional information that has been supplied to the deconvolution
problem by CLEAN is the assumption that the sky consists of a finite number
of point sources, or alternatively that most of the sky is empty. Not surpris-
ingly, therefore, CLEAN works very well for simple sources, but can occasion-
ally fail on very large amorphous sources of low surface brightness.

Maximum Entropy

A second deconvolution method is altogether different in philosophy, and is
known as the Maximum Entropy Method, or MEM (e.g. Bryan & Skilling
1980). The starting point is to consider possible images of the sky, and prefer
those which are more likely. The most preferred image is a completely uniform
distribution, which gives the maximum entropy (or minimum information);
however, such an image is normally inconsistent with the data. If we consider
images which are progressively less likely to be produced by chance, sooner or
later we encounter an image which still occurs relatively often, but which is
nevertheless consistent with the data. The process therefore corresponds to a
joint minimization including the goodness of fit to the data and the maximum
effective smoothness (usually parametrised in forms such as Σpi ln pi, where
the pi’s are the individual pixel values).

2.2 Sensitivity

The sensitivity (r.m.s. noise) of a wave-regime (metre-centimetre) interferom-
eter is given by

S =

√
2kBTsys

Aη
√

nb∆νtint

where Tsys is the system temperature, A is the area of each antenna, η is the
aperture efficiency, nb is the number of baselines, ∆ν is the observing band-
width and tint is the integration time. The units are Wm−2Hz−1, but because
the Boltzmann constant kB is uncomfortably small the usual unit is the Jan-
sky, where 1 Jy≡ 10−26Wm−2Hz−2. For extended sources the sensitivity is
Janskys per beam area. The sensitivity of many modern interferometers after
a few minutes of integration is around 100µJy/beam.
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A couple of terms in the equation deserve comment. We can define “tem-
peratures” in this context in terms of the temperature of a black body which
would provide the equivalent received power of radiation at the observing fre-
quency8. The noise contribution to a radio interferometer is provided mainly
by the receivers (contributing typically 30-50K), spillover from thermal emis-
sion from the ground, and ultimately by the 3K contribution from the cosmic
microwave background. The aperture efficiency η can be varied according to
how the aperture is illuminated (i.e. the relative weight given to radiation
reaching the feed from different parts of the antenna).

In an optical interferometer the formulas are somewhat different, because
we are collecting photons. There are a number of detailed differences. The first
is that it is impossible to clone photons in the same way that electrical signals
can be reproduced indefinitely, so every time a beam is split, signal-to-noise is
lost. For example, if the array consists of eleven elements, the beam from each
element must be split ten times, losing signal-to-noise, if we wish to interfere all
of the beams to produce fringes on all baselines. Secondly, the practical limit
is always imposed by the fact that we need a reasonable number of photons
in one isoplanactic patch (the area over which the atmospheric corruption is
approximately the same) in one atmospheric coherence time (the timescale of
variation of atmospheric corruption). Third, optical interferometers typically
contain a large number of reflecting elements, with a some light loss at each
reflection.

Although it is probably fair to say that the problems have been more diffi-
cult than anticipated, major progress is now being made. The use of adaptive
optics on individual telescopes means that the wavefront can be corrected over
the whole aperture, increasing the coherence patch to the area of the telescope
diameter and hence increasing the potential signal. In an optimum site such as
that of the Very Large Telescope Interferometer (VLTI) on Paranal mountain
in Chile, images of 14th magnitude objects can be made. A list of current
optical interferometer systems is given by Monnier (2003).

3 Dealing with the atmosphere

Electromagnetic radiation travels to us for billions of years through a nearly
perfect vacuum as a nearly perfect plane wave. Unfortunately, the Earth’s
atmosphere intervenes in the last microsecond to convert a smooth wavefront
into a wavefront with phase corrugations which vary over small spatial scales
and on potentially small timescales. At some wavelengths, the amplitude of
the wavefront is affected as well as the phase.

There are a number of features in the earth’s atmosphere which corrupt
the wavefronts. At low radio frequencies, the problem is the ionosphere, con-

8In the wave regime, we are in the Rayleigh-Jeans part of the Planck spectrum,
and the specific intensity at a given frequency (in units of Wm−2Hz−1sr−1) can be
written as 2kBT/λ2
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sisting of a collection of charged particles capable of shifting phases below the
plasma frequency (typically a few hundred MHz) and which responds to solar
activity, producing most disturbance at times of solar maximum. At higher
radio frequencies, the problems are mainly due to water vapour, which pro-
duces phase rotations on “coherence timescales” of minutes above 10 GHz.
Successively shorter coherence times are seen as the frequency increases, until
not only the phase but also the amplitude is affected. Observations at higher
radio frequencies, such as the ≥30 GHz observations typically used to observe
the peak of the CMB radiation, are usually done from high mountains above
most of the water vapour; some experiments in this region are planned at the
South Pole where the water vapour is frozen out.

In the infrared and optical region of the electromagnetic spectrum, the
coherence times are typically much shorter. The transverse length scale of
phase fluctuations is given by the Fried parameter r0, and these atmospheric
fluctuations are blown across any given line of sight by tropospheric winds.
The resulting phase and amplitude fluctuations have characteristic timescales
of tens of milliseconds, requiring corrections to be applied on short timescales
which are now being achieved.

3.1 Closure quantities

Ignoring atmospheric phase fluctuations is not an option, as the response
function of the interferometer is directly affected by them and their effect is
to wipe out the fringes. The phase on any individual baseline is not a good
observable, since atmospheric errors e1 and e2 on two telescopes produce a
resultant of the form e1 − e2 in the response function when the signals are
correlated9.

We can observe, however, that if we have a triangle of three telescopes,
and if we measure the interferometer phase response on each baseline, we
obtain three phases responses containing the phase error terms e1−e2, e2−e3

and e3 − e1. These add to zero, leaving only information on the astronomical
structure. Although we have slightly fewer constraints, by modelling these
“closure phases” we can obtain constraints on the phases of the response
function in the u, v plane and hence deduce the source structure.

A similar quantity can be derived for amplitudes. Since amplitudes are
multiplicative, four telescopes are needed in order to use the baseline ampli-
tudes to form the quantity A12A34/A13A24. The error on A12 is the product
of the amplitude error terms, a1a2, and once again the errors cancel out.

Closure mapping has been used for many years. It has successfully been
used in optical interferometry, even from sites with considerable phase fluctu-
ations such as the situation of the COAST optical interferometer. Despite the
less than ideal atmospheric conditions, maps have been produced of bright

9Correlation involves an operation of the form < E1E
∗

2 >= A1e
iφ1A2e

−iφ2 , so
amplitudes multiply and phases add or subtract.
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stars such as Capella and Betelgeuse (Young et al. 2004). This gives a clue to
the main limitation, however; use of this method requires that the sources be
bright. This is because what is required is sufficient signal on the source in an
atmospheric coherence time to separate atmospheric and source phases.

3.2 Self-calibration

The assumption of closure mapping is that errors in amplitude and phase
are separable by telescope, and that no additional errors are introduced into
the response function of each baseline separately. This is not precisely true,
and in practice the biggest problem is usually mismatched bandpasses in the
correlator which gives baseline-dependent errors. Great care is usually taken
to minimise these, resulting in such errors being a few tenths of a percent.

The assumption of only telescope-based error is used in the procedure
known as self-calibration (Cornwell & Wilkinson 1981) which uses the data,
together with a guessed model, to determine the phase and amplitude correc-
tions on each telescope. Suppose we have visibilities Vij on baselines between
telescopes i and j, and we call the telescope complex gains gi and gj . Suppose
also that we have a model whose Fourier transform predicts visibilities V M

ij .
Then we write the equation

Vij = gigjV
M
ij

for all i,j, and use a least-squares solution to determine the gis. The process is
repeated by replacing the original data with Vij/gigj , mapping and CLEANing
the new data to produce a new model, Fourier transforming to give a new set
of model visibilities V M ′

ij , and repeating the process until it converges and the
gi corrections are close to 1.

At first sight this looks an uncomfortably incestuous procedure. A model
which may or may not look like the sky has been used to correct the visibil-
ity data, and we have then used a model derived from the corrected data to
determine further corrections. One answer is that the procedure works. Simu-
lated data can be created, phase and amplitude errors added and the original
sky map is recovered by self-calibration. The underlying reason for its suc-
cess is that the problem is overconstrained, because in any one integration
the number of unknowns is proportional to the number of telescopes, n, and
the number of constraints is proportional to the larger number of baselines,
n(n − 1)/2. Fig. 10 shows an example of self-calibration in action.

There are a number of caveats in practice. The most important is that
the source needs to contain a point source bright enough to be visible on all
baselines at > 3σ in one coherence time – for many interferometer arrays,
this means of the order of 10–20 mJy. The reason is that the least-squares fit
in which the gis are computed degenerates into a noisy mess if the Vijs are
noisy. Because the corrections change over a coherence time, it is not possible
to integrate for a long time in order to build up signal-to-noise to do the
correction.
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Fig. 10. The same radio source as in Figure 9. The left panel shows the deconvolved
map after CLEAN only. On the right is the same map after one iteration of phase
selfcalibration and further CLEANing. The maps are contoured at the same level,
but the impact of selfcalibration in removing artefacts due to phase corruption is
obvious.

A second caution concerns the order in which the phase and amplitude
corrections are built up. Since atmospheric effects on phase are nearly always
more major than amplitude effects, it is usually better to begin by computing
only the phase part of the complex gains, using a time interval shorter than
the phase coherence time, and only then to correct the amplitude part. This
halves the number of free parameters in the early part of the process and
thereby makes it much more stable. Once the phases are determined, the
amplitudes can be corrected over a longer timescale as (at least at a few GHz)
the amplitude corruption does not change as quickly. Indeed it is often a good
idea, particularly in sparsely filled arrays or for relatively weak sources, not to
use too short a correction time for the amplitudes. For most VLBI experiments
15-30 minutes is probably safe.

3.3 Phase calibration

A more direct way to correct the atmospheric phase corruption is to cali-
brate it directly, rather than sort it out after the event. In this approach,
a calibrator source of known structure is observed periodically. Because the
source structure is known, it can be Fourier transformed and removed from
the interferometer response function. Any residual phase structure must be
atmospheric and can be interpolated and removed from observations of the
target.

This approach is attractive because, provided the calibrator source is
strong enough to allow good signal-to-noise per baseline per atmospheric co-
herence time, there is in principle no limit on the brightness of the target
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source. Phase calibration, otherwise known as “phase referencing”, is there-
fore widely used. There are two caveats: first, the target source must be in
the same isoplanactic patch (that is, the target and phase calibrator must be
close enough that the atmospheric phase corruption is similar for both), and
the switching must be done with a period not greater than the atmospheric
coherence time.

4 Interferometers in practice

4.1 Very brief history

Much of the development of connected-element interferometry was done by
groups in the UK, USA, the Netherlands and Australia, and a Nobel Prize was
awarded to Martin Ryle in Cambridge for development of the technique. This
group used arrays of dipoles, and later connected dish antennas together form-
ing the One-Mile Telescope, to discover and investigate radio sources (Ryle
1962). The earliest large radio source catalogue, 3C, contained the first two
known quasars, 3C48 and 3C273. The successor to the One-Mile Telescope,
the 5-km Telescope (now known as the Ryle Telescope, Ryle 1972) was built
soon afterwards.

At the same time, other interferometer arrays were being built, including
the Westerbork Synthesis Radio Telescope (WSRT) in the Netherlands (Allen,
Hamaker & Wellington 1974), the Bologna Cross, arrays at Molonglo in Aus-
tralia and Ooty in India. The MERLIN six-telescope interferometer array,
based at Jodrell Bank, pioneered the extension of connected-element interfer-
ometers to longer baselines of around 200 km giving higher resolution (Davies
et al. 1980). Also in the late 1970s, the Very Large Array (VLA, Thompson et
al. 1980) was built. This instrument has 27 25-m diameter telescopes, giving
high sensitivity, and has a maximum baseline of 36 km. It is arranged in a
Y-shape, and the antennas can be moved to four different configurations with
baselines shorter by successive factors of 3.

4.2 More current and future interferometer systems

A brief overview of some long-wavelength interferometer systems follows (see
also Fig. 11). Again, the new optical systems, such as the VLTI, COAST and
Keck interferometers are covered by the article by Monnier (2003).

VLBI

An important subset of interferometer arrays are those operating on very long
baselines, known as VLBI (very long baseline interferometer) arrays. The orig-
inal such collaboration was the European VLBI Network (EVN) whose found-
ing member telescopes included the 76-m Jodrell Bank telescope in the UK,
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Fig. 11. Range of angular source size (set by the resolution) and brightness tem-
perature of sources, with the northern interferometer array suited to the observation
at 5 GHz. The lower limit to each range is set by resolution, and the upper limit
by the insensitivity of interferometers to sources larger than that visible to their
shortest baselines. The upgrades described in the text are included in the figure.
The strength of the sources is plotted as “brightness temperature” which is related
to flux density S in Jy by the equation S = 2kBTΩ/λ2, where Ω is the beam solid
angle. Reproduced from the MERLIN website www.jb.man.ac.uk/m̃erlin.

the WSRT in the Netherlands10, the 100-m Effelsberg antenna near Bonn,
Germany, the Onsala 25-m telescope in Sweden and the 32-m Bologna tele-
scope in Italy. Further telescopes now part of the EVN include the Torun
telescope in Poland, and further antennas in Italy, Spain and China. A 10-
telescope array, the Very Long Baseline Array (VLBA) was subsequently built
in the USA with somewhat higher resolution but lower sensitivity. It is possible
to combine the EVN and VLBA into a global VLBI array with high sensi-
tivity (about 10µJy/beam after 12 hours) and a resolution of 1 mas, about
50 times higher than that of the Hubble Space Telescope. It is also possible
to increase the baseline still further by launching a radio antenna into space.
This was done experimentally by use of the TDRSS satellite (Linfield et al.
1989) and later by the dedicated VLBI satellite VSOP/Halca, launched by
the Japanese space agency in 1997 and which observed until 2003. A larger
mission (VSOP-2) is currently funded, which will feature a larger telescope to
be launched in 2012.

10The WSRT is itself a connected-element interferometer, but it is possible to
insert phase delays into the arm of each element in such a way as to use the in-
terferometer as a single telescope with effective area of the sum of the individual
telescope areas (a process known as “phasing up”.)
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VLBI observations are usually not combined into visibilities at the time of
observation. Instead, they are often recorded on tape, together with accurate
time stamps from a maser clock, and shipped to a central processor for corre-
lating, usually the JIVE facility in the Netherlands or the NRAO correlator
in Socorro. Recently, with the availability of increased Internet bandwidths, it
has been possible to send the signals to the central correlator online, a process
known as e-VLBI. In principle, the only limit on this technique is the speed of
the correlator and the availability of the huge Internet bandwidths required.

GMRT

The Giant Metre-wave Radio Telescope (Swarup et al. 1991) is located in
India, near the city of Pune. It consists of 30 45-m antennas, and the resulting
large collecting area gives very high sensitivity between 50MHz and 1420MHz;
the frequency range is limited at the high end by the fact that the antennas
are of mesh rather than solid metal. It is particularly suitable for relatively
high-resolution, sensitive imaging at low frequencies including the redshifted
neutral hydrogen line.

ATCA

The Australia Telescope Compact Array is the most significant long-wavelength
interferometer system in the southern hemisphere. It consists of six 22-m an-
tennas over baselines of up to 6 km, with good high-frequency performance.

Fibres and sensitivity: EVLA and e-MERLIN

Important upgrades to Earth-based interferometers are currently under way.
The major programmes involve an increase in sensitivity by using higher band-
width. Currently signals are transmitted using transmission lines or microwave
links with a limited bandwidth, typically a few tens of MHz. Both MERLIN
and the VLA are being upgraded within the next few years (becoming, re-
spectively, e-MERLIN and the EVLA) by the addition of optical fibre links
between telescopes. These links can carry signals of ∼2GHz of bandwidth,
resulting in a factor of 5–10 in improvement in signal-to-noise, and in both
cases for a small fraction of the cost (in current dollars) of the original arrays.
The increased bandwidth has another benefit when observing a broadband
source, namely an improvement in u, v plane coverage. Since the u, v plane
is measured in wavelengths, a wide band means that for a given baseline, a
range of positions in the u, v plane are measured simultaneously. This means
that even an array with a small number of elements, such as MERLIN with
six telescopes, can cover essentially all of the u, v plane and thus deliver very
high image fidelity (Fig. 12). With complete aperture coverage, radio inter-
ferometers will be able to produce the same level of detail as in current direct
optical images.
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Fig. 12. The difference between u, v coverage of MERLIN, a six-telescope inter-
ferometer array, using a single frequency (left) and a 2-GHz bandwidth at 5 GHz
(right). The essentially complete coverage of the u, v plane allows extremely high
fidelity imaging of much more complex structure than hitherto possible. The pro-
cessing power needed is considerably greater, because of possible spectral index
gradients across the source, but this too is essentially a solved problem. The image
is reproduced from the e-MERLIN science case.

LOFAR and the MWA

At the low-frequency end of the radio spectrum, it is possible to increase
sensitivity using the fact that huge collecting areas can be achieved rela-
tively cheaply. This is being exploited by the Low Frequency Array (LOFAR,
Röttgering 2005) being built in the Netherlands, and by the Mileura Widefield
Array (MWA) currently undergoing demonstrator tests in Western Australia.
LOFAR will consist initially of about 50 elements, each consisting of a field of
50-m diameter filled with dipole antennas. This will give high sensitivity up
to 240MHz and a resolution of a few arcseconds, with a possibility of higher
resolution if long baselines are added. At such low frequencies, the field of view
is very wide and survey speeds are correspondingly high. It is also possible
to manipulate the phases applied to the antennas to form multiple beams on
the sky, effectively allowing the telescope to look in a number of directions
at once. The major science goals include the detection of the epoch of reion-
ization in redshifted neutral hydrogen, the production of sensitive wide-field
surveys and the monitoring of transient sources which becomes possible with
rapid sky coverage11. The difficulties include the large amount of process-

11Another widefield telescope at somewhat higher frequencies is the Allen Tele-
scope Array, currently being built at a site in New Mexico, USA. When complete it
will consist of 300 6-m dishes and have a large survey speed by virtue of the sensi-
tivity from the large number of elements combined with the large primary beam of
the small individual elements.
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ing power required, wide-field problems with removing sidelobes from bright
sources at large angles, and more seriously the calibration problems associated
with dealing with rapidly varying phase corruption from the ionosphere and
(particularly in the LOFAR case) the necessity for very efficient excision of
radio-frequency interference.

ALMA

At the other end of the frequency range, the Atacama Large Millimetre Array
(ALMA) is a new interferometer being built on the Chajnantor plateau in
Chile, a dry and high (5000-m) site close to the Bolivian border. The choice
of site is due to the effects previously mentioned of the water vapour in the
lower atmosphere on the amplitude of radio signals. ALMA will operate be-
tween 30 and 950GHz, in the windows permitted by the small quantity of
atmospheric water vapour which remains above it. Its strength lies in the
wide variety of molecular astrophysics and chemistry which can be probed at
these frequencies, due to the huge number of molecular lines in the millime-
tre and submillimetre bands; it will be able to probe areas of star formation
very sensitively, as well as detecting molecular gas on cosmological scales from
distant galaxies.

CMB observations

A specialised niche in interferometry is occupied by experiments which are
detecting structure in the Cosmic Microwave Background. These experiments
tend to use short baselines, because the power in the CMB fluctuations is
observed at significant strength on scales from arcminutes up to degrees, and
frequencies from a few tens of GHz upwards due to the fact that the CMB
radiation has a thermal spectrum with a temperature of 3K and a consequent
spectral peak at 300 GHz. Most, like ALMA, operate from high, dry sites such
as the Chajnantor plateau itself, the island of Tenerife or the South Pole.

Square Kilometre Array

After the bandwidth of interferometers has been increased to a maximum
(∆ν/ν ∼ 1) there is only one option for increasing sensitivity, namely increas-
ing the collecting area. In the wave regime, the noise level becomes better
as A−1 rather than the A−1/2 obtained by increasing the collecting area of
a photon collector, so increased telescope acreage is rewarded particularly
spectacularly in the low-frequency part of the electromagnetic spectrum.

The idea of a very large interferometric telescope arose fifteen years ago
(e.g. Wilkinson 1991) and is now under detailed design study with a view to
full-scale construction in either western Australia or South Africa in the mid-
dle part of the next decade. There are a number of technological challenges,
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which are being solved by various parts of the community using existing in-
terferometers, including large-area coverage, multiple beams and large-scale
data processing and correlation (e.g. LOFAR), transmission by long distances
along optical fibre (e.g. e-MERLIN, EVLA), the possibility of high-resolution
imaging using very long baselines and real-time correlation (e.g. eVLBI) and
the problems of high frequencies (e.g. ALMA).

Although the SKA is some years in the future, the scientific potential is
huge. For example, it will be able to see the faint emission of neutral hydrogen
at cosmologically significant distances, give precision tests of cosmology and
the star formation history of the universe by galaxy counts, resolve stellar
disks and protoplanetary systems, search for extraterrestrial intelligence, and
provide very sensitive tests of general relativity using pulsar studies.
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