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Abstract

Evidence for precession has been put forward in the case of the pulsar PSR

B1828–11 by Stairs et al. (2000). However, despite some evidence for precession

in, for example, B1642–03, the Crab pulsar and Her X–1, there has been no other

clear-cut evidence of precession in other pulsars.

In this thesis, a study into pulse shape changes characteristic of precession

in a number of pulsars is performed, using the Jodrell Bank profile database.

This is done using two techniques: a Lomb-Scargle periodogram and a Principal

Component Analysis. An attempt was made to link pulsars exhibiting possible

periodic shape changes with periodicities in their timing residuals.

We have confirmed precession in B1828–11 and also present a few further

interesting candidates have been identified from this study, namely B0740–28,

B0144+59, B0329+54.
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The number is certainly the cause. The apparent disorder augments

the grandeur, for the appearance of care is highly contrary to our ideas

of magnificence. Besides, the stars lie in such apparent confusion, as

makes it impossible on ordinary occasion to reckon them. This gives

them the advantage of a sort of infinity.

— Edmund Burke, On the Sublime and the Beautiful–Magnificence

Quod est ante pedes nemo spectat: coeli scrutantur plagas.

No one sees what is before his feet: we all gaze at the stars.

— Marcus Tullius Cicero, De Divinatione (II, 13)

You must carry a chaos inside you to give birth to a dancing star.

— Nietzsche
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Conventions and Abbreviations

The conventional abbreviations for SI units and astronomical quantities are used.

The following abbreviations have been used in this thesis:

ATNF — Australia Telescope National Facility

DM — Dispersion Measure

EPN — European Pulsar Network (and associated file type)

FFT — Fast Fourier Transform

FWHM — full-width half-maximum

MJD — Modified Julian Date

PCA — Principal Component Analysis

PSR — Pulsar

residual — residual profile: a profile with a template subtracted from it

RFI — radio frequency interference: real signal from sources other than the

target

RM — Rotation Measure

r.m.s. — root mean square
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Chapter 1

Introduction: Pulsars and their

Emission Mechanism

1.1 Discovery of Pulsars

1.1.1 Early History

Our view of pulsars, or “pulsating radio sources”, today is a result of several

decades of theory and observations. We now accept that the pulses we see are

beamed emission from rapidly rotating, highly magnetised neutron stars.

Baade & Zwicky (1934), first proposed that in the case of a core-collapse

supernova, the stellar interior could collapse into a star “consisting mainly of

neutrons”. Detection of these stars was then thought to be almost impossible, as

they would be small and not very luminescent.

Oppenheimer & Volkoff (1939) later calculated that they could have densities

of 1014 g cm−3, magnetic fields up to 1012 Gauss and a mass comparable to that

of the Sun, yet only be a few tens of kilometres across. Even now, this is be-

yond anything we can create in the laboratory, hence these stars have particular

scientific interest.
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1.1.2 Early X-ray Observations

Despite earlier predictions they would be invisible, in 1964 two papers by Zel’dovich

& Guseynov (1964), and Hayakawa & Matsouka (1964) proposed that accreting

compact objects, such as neutron stars, could produce X-ray emission from their

accreted ‘atmospheres’.

Early X-ray observations from rocket flights found X-ray sources from the

Crab Nebula, now known to harbour a pulsar; and from the source Sco X-1

(Giacconi et al. 1962), which found to have a spectrum consistent with a binary

system undergoing mass loss. Since this, a number of other pulsars have been

discovered with X-ray emission.

1.1.3 The Radio Discovery

Although intrinsically radio-bright sources, pulsars were not identified until 1967.

This can largely be attributed to the fact that pulsar emission, at first glance,

looks remarkably like interference from artificial sources. Fast sampling and re-

peated observations were needed to find what no-one expected — that rapidly

pulsing emission was coming from a celestial source.

This discovery famously goes to Jocelyn Bell, a research student working with

Antony Hewish, investigating interplanetary radio scintillation.

The pulsar, PSR 1919+21 was identified to be an extraterrestrial source due

to lack of parallactic motion. Soon, three more sources were discovered. Several

theories were put forward, one of which was that the pulses came from ‘little

green men’. Nevertheless, six months after the initial observations, a paper was

published in Nature (Hewish et al. 1968) stating:

“A tentative explanation of these unusual sources in terms of the

stable oscillations of white dwarf or neutron stars is proposed.”
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Indeed, the pulses are remarkably stable. Precision measurements can deter-

mine periods to an accuracy of less than one part in 1015 (Davis et al. 1985,

Kaspi 1995)

1.1.4 Linking Pulses with Neutron Stars

The connection with the observations came in the June following Hewish et al.’s

announcement, in two Nature papers by Gold (1968) and Pacini (1968).

This is not to say that there were no other theories regarding the origin of the

pulses. Prominently, theories were put forward involving emission from rotation

or oscillation of white dwarfs (e.g. Ostriker & Tassoul 1968, Durney et al. 1968

and Lawrence et al. 1967).

Melzer & Thorne (1966) had showed that a rotating or pulsating white dwarf

could account for pulses on a timescale of around a second, which would account

for PSR 1919+21. They also found that oscillations in a neutron star would have

timescales on the order of milliseconds. The discovery of the Vela (Large et al.

1968) and Crab (Staelin & Reifenstein 1968) pulsars, with periods of 89 and 33

milliseconds, respectively, proved white dwarf and oscillation theories incorrect.

When combined with the discovery that the period between pulses was increasing,

the logical interpretation was that the pulses were coming from rotating neutron

stars.

1.2 Pulsar Formation

1.2.1 The Stellar Life Cycle and Supernovae

Young, main-sequence stars maintain their stability against gravity via the radia-

tion pressure produced by fusing hydrogen nuclei into helium. Once the hydrogen

in the core is used up, high- and intermediate-mass stars begin to fuse helium
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nuclei in their cores, and hydrogen nuclei in a surrounding shell. Sufficiently

high mass stars (around eight solar masses) can go on to fuse successively heavier

elements, which maintain the star’s stability for successively shorter periods of

time. During this time, the outer atmosphere of the star expands and is gradually

blown away as the star expands to become a red giant star, eventually forming a

nebula around the star.

This process can continue until the star attempts to fuse iron atoms into

heavier elements. At this point, more energy is required to fuse the nuclei than

is obtained from the fusion process. Here, pressure support is lost and the stellar

core collapses (e.g. Burrows & Lattimer 1986). The rebound wave from this

produces a shock front, the emission from which is observed as a supernova. The

atmospheric material from this star interacts with the inter-stellar medium (ISM),

which both continue to emit radiation for many thousands of years. We see this

as a supernova remnant (SNR).

1.2.2 The Birth of a Neutron Star

The core of the star continues to collapse towards the electron degeneracy limit.

In white dwarfs, pressure support is restored at this point. However, in more

massive stars, there is sufficient gravitational pressure to fuse electrons with and

protons with the result that the star ends up composed almost entirely of neu-

trons, surrounded by a thin crust of heavy nuclei.

During this collapse, the angular momentum of the stellar interior is con-

served, with the result that a stellar core that had been revolving on a timescale

of days now revolves on a timescale of milliseconds. Magnetic flux is also con-

served, so the magnetic field is also strongly intensified, hence a star with an

initial field of 100 Gauss may reach field strengths of up to 1012 Gauss (Lyne
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& Graham-Smith 1990). This magnetic field is usually misaligned to the rota-

tion axis. Asymmetries in the supernova may also disrupt or break apart stars a

binary system (e.g. Hills 1983).

1.3 Emission Mechanism

1.3.1 Magnetic and Electric Field Structure

We now know that the pulses we observe are due to the rotation of the neutron

star. As the pulsar spins round, a beam of radiation, analogous to that of a

lighthouse, is emitted into space. If this beam illuminates the Earth, then we

observe a pulse coming from the direction of the pulsar.

Figure 1.1 shows a simplification of our understanding of the magnetic dipolar

field of a pulsar.

A quick calculation shows that, for charged particles, the magnetic force ac-

celerating particles out of the star vastly exceeds the gravitational binding force.

For an electron in a typical pulsar with g = 1012 Nkg−1, B = 1012 G, rns = 10

km and P = 33 ms (i.e. the Crab pulsar period), and for electronic mass me and

charge qe (c.f. Lyne & Graham-Smith 1990, section 2.4):

Fg = meg ≈ 10−18N, (1.1)

FB =
Bqerns

P
≈ 3× 10−5N. (1.2)

Clearly, the magnetic field dominates for electrons and most other charged

particles by many orders of magnitude, hence the distribution of particles near to

the star is governed by the magnetic field and the quadropole electric field that

is also set up, shown in Figure 1.2.

As a result, plasma is stripped from the neutron star and forced along the

field lines. Even at comparatively large distances from the pulsar, the particles

remain tied to the magnetic field lines, hence they co-rotate with the star.
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Figure 1.1: The magnetic field structure of a pulsar. Here, the magnetic field axis
B is inclined to the rotational axis ω. Charged particles are tied to the magnetic
field lines shown and co-rotate with the neutron star. The dotted lines denote
the velocity-of-light cylinder, where the co-rotation velocity equals the speed of
light. Highly relativistic particles can thus escape on magnetic field lines lying
outside the shaded area.
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Figure 1.2: The electric field structure of a pulsar. The quadropole structure of
the field leads to a plasma of positrons and electrons tied to the magnetic field
lines in quadrants as indicated by the plus and minus signs. The dark grey boxes
denote the outer magnetospheric gaps (see e.g. (Lyne & Graham-Smith 1990),
section 16.1), thought to be a source of high-energy emission.
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1.3.2 The Polar Cap

The fate of the particle largely depends on which field line it is on. We can define

the radius of the “velocity-of-light cylinder”

rlc =
c

ωns

(1.3)

for a pulsar with angular velocity ωns where the co-rotation radius reaches the

speed of light. Particles on lines which close within this radius remain trapped

and we can essentially define a stable area of plasma running in a loop from the

star (shaded region, Figure 1.1).

Particles traveling along field lines not closing inside the velocity-of-light cylin-

der cannot co-rotate with the star and must therefore decouple from the field lines.

The field lines on which this happens defines the ‘polar cap’.

Observational evidence suggests that the emission we receive comes from this

region, producing a circular ring of patchy emission (see Figure 1.3), whose fre-

quency depends upon the height above the pulsar’s surface from which it is emit-

ted (see e.g. Rankin 1983b, Rankin 1983a, Rankin 1993, Mitra & Rankin 2002),

with higher-frequency emission thought to emanate from closer to the surface.

The precise mechanism for this emission is unclear, as the magnetic field strengths

in this region are too strong for synchrotron emission to occur.

1.3.3 Polarisation and Determining the Shape of the Cone

Studies of polarisation data from pulsars have found that the angle of polarisation

largely depends on the impact parameter β and the angle of inclination of the

magnetic axis to the rotational axis α (see Figure 1.4). The angle of polarisation

lies parallel to the magnetic field lines, which, when looking towards the magnetic

pole, appear to radiate from the centre of the pulsar beam (e.g. Radhakrishnan

& Cooke 1969). A generalisation of the variation in polarisation of a pulsar
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Figure 1.3: Theoretical models used to interpret pulse profile shapes, based on
a figure from Handbook of Pulsar Astronomy (Lorimer & Kramer 2004). Left:
Nested cone structure (Rankin 1993; Gil et al. 1993). Right: Patchy beam
structure (Lyne & Manchester 1988).

over a pulse can be seen in Figure 1.4. We can see that there is a rapid switch

around the centre of the pulse. The rate of this switch and the difference between

polarisations points T and S can tell us information about β and α, the offset of

the magnetic axis from our line of sight.

The phase angle of the points T and S (often defined by peaks in intensity)

can tell us about the width of the beam. Hence, by observing how these change

with frequency (remembering that higher-frequency emission occurs closer to the

pulsar), we can determine the shape of the emission beam. Studies such as Phillips

& Wolszczan (1992) have shown this to be funnel-shaped, which is consistent with

the model shown in Figure 1.1.

Another feature that is observed is the circular polarisation. This polarisation

sometimes changes hand (from clockwise to anti-clockwise, or vice versa), often

near the middle of the pulse. As we expect the field strengths here to be too high

to produce synchrotron emission, there is difficulty in producing a working model

to account for this attribute. One theory that may account for this is that there

is some intervening birefringent media which converts linearly polarised light into

partially circularly polarised light (e.g. Melrose 1979).
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Figure 1.4: A view of the pulsar emission cone from an arbitrary angle to the
pulsar (left) and looking down the magnetic axis (right). The pulsar rotates,
bringing the observer’s line of sight through the arc TPUS. The polarisation
angle, ϕ (shown at the bottom-right) thus varies with the impact parameter β.
(Left-hand figure largely reproduced from Pulsar Astronomy)

1.4 Uses of Pulsars

The possible uses of pulsars are varied. Their most striking property is that they

represent the most accurate natural clocks in the Universe (Davis et al. 1985,

Kaspi 1995). If we intend to use them as such, it is therefore necessary to observe

timing variations in these pulsars, caused by effects such as precession.

Due to the nature of their birth, we can also use pulsars to study supernovae.

Details of neutron star make-up, the angle between the magnetic and rotational

axes and the proper motion of pulsars can tell us about the structure and asym-

metries present in supernovae. Studying the ages of pulsars (assumed from their

‘spin-down’ rate) can determine the rate of supernovae, and hence the history of

massive star formation in our galaxy.
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Pulses also exhibit a frequency-dependant delay in arrival time due to scatter-

ing interactions with electrons in the inter-stellar medium (ISM). We can define a

Dispersion Measure (DM) as the integrated column density of electrons between

the pulsar and our telescope (Lorimer & Kramer 2004, pp. 86–87). By observing

these DMs for a range of pulsars, we can also infer details about the ISM, such

as the density of the ionised component.

As previously stated, pulsars offer a unique view into ultra-dense matter. The

densities and pressures in the pulsar interior far exceed those creatable in our

laboratories, so studying these pulsars can give us an idea of how matter behaves

under extreme conditions. In particular, it has implications for the behaviour of

superfluids and superconductors, as we surmise that the neutron star interior con-

sists of a superfluid of neutrons infused with 5–10% of superconducting protonic

fluid.

Perhaps more topically, pulsars, especially millisecond pulsars, can be used as

detectors of phenomena such as gravitational waves (Bertotti et al. 1983) and

possible changes in the gravitational constant (e.g. Kaspi et al. 1994).

A final, very important use of pulsars is in testing General Relativity. A

comprehensive view of this is given in (Stairs 2003), which discusses the use of

pulsars for tests of equivalence principle violations and tests in strong-field gravity

cases.



Chapter 2

Free Precession

2.1 An Introduction to Free Precession

2.1.1 Causes of Free Precession

The concept of precession can perhaps most readily be understood in terms of a

spinning top. When a spinning top is allowed to rotate on a surface, its rotational

axis will trace out a circle. This is due to the misalignment between its angular

momentum vector and its symmetry axis. As a result, the rotational axis will

also be misaligned from the angular momentum vector. Both the symmetry axis

and the rotation axis will therefore precess around the angular momentum vector.

Specifically for a magnetic object, such as a pulsar, the magnetic moment vector

will also precess around the symmetry axis. This is shown diagrammatically in

Figure 2.1.

2.1.2 Effects of the Pulsar’s Structure

In order to understand precessional effects in neutron stars, we must take into

account that the neutron star is not an infinitely-rigid, solid object. Figure 2.2

shows the model cross-section of a typical neutron star.
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Figure 2.1: Geometric precession of a biaxial neutron star in the inertial frame.
Reproduced from Link & Epstein (2001), who provide the following description:
The body’s symmetry axis is denoted by ê3, the angular momentum by L, and the
angular velocity by ω; the three vectors always span a plane as shown. The angle
θ, θ′, and α are constant, with θ′ ≈ εθ ¿ θ for small oblateness ε. The vectors
ê3 and omega rotate about L at nearly the spin frequency ω. A dipole moment m
fixed in the body, and taking an angle χ with respect to ê3, rotates in a retrograde
sense about ê3 at frequency ≈ εω.
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Figure 2.2: Typical cross-section of a neutron star, reproduced largely from Lyne
& Graham-Smith (1990) with additions from Pasachoff (1977). Note that the
atmosphere is most likely only present on accreting neutron stars, and the solid
core may not be present and the outer layers more extended in low-mass neutron
stars.

As was illustrated in Figure 2.1, a rotating superfluid neutron star will adjust

its shape into that of an oblate spheroid, as will any freely rotating fluid object,

with an ellipticity dependant on its angular frequency (discussed in Chapter 6).

What is of key importance here, as in many other aspects of pulsar astronomy,

is the amount of pinning that occurs between the superfluid vortices in the pulsar’s

‘mantle’, the solid core and, more particularly, the solid crust. The superfluid

cannot precess, hence the amount of pinning will determine the amount by which

the precession is damped.

The problem comes in working out the timescale of this variation. Shaham

(1977) noted that precession would occur on timescales of order of milliseconds

and that it was expected to damp away within a hundreds or thousands of preces-

sional timescales, assuming the crust and ‘mantle’ were perfectly pinned. Later

work by Sedrakian et al. (1999a) showed that when pinning is strong, but imper-

fect, both the period of oscillation and the damping timescales were considerably
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increased, but were still damped away eventually.

2.1.3 Observational Evidence

There has always been a large amount of tentative evidence that appears to point

to precession-induced oscillations in the pulse arrival time of several pulsars. The

best known is the apparent 35-day quasi-sinusoidal oscillations in the timing

residuals of Her X-1 (e.g. Brecher 1975). Her X-1 is in a binary system and

it has been theorised that matter accreted from the companion star has excited

precession in the pulsar. It is undetermined whether this is free precession, or

whether it is geodetic precession — a precession of the rotational axis due to

relativistic spin-orbit coupling in a binary system.

However, the only substantial evidence for free precession in an individual

pulsar is that of PSR B1828–11 (e.g. Stairs et al. 2000). Here, sinusoidal oscil-

lations are seen with periods of order 250, 500 and 1000 days, which we surmise

are due to precession in an asymmetric pulsar (see Figure 2.3).

Scientifically, we are left with a problem: if PSR B1828–11 is the only pulsar

to exhibit free precession, why is its case so special, and if it is not the only

precessing pulsar, why have we not detected precession before?

This question underlines the need for a review of the timing and profile histo-

ries of all known pulsars in an attempt to find precessional effects in historically

recorded data, in order to find these missing ‘precessing pulsars’.

2.2 Detecting Precession

2.2.1 Visible Effects

The observed effects of precession in solitary pulsars could only come from what

is presently our only observable information source — changes in the radiation



CHAPTER 2. FREE PRECESSION 34

we receive from the emission cone.

The changes we would expect to observe are changes in both the shape of the

observed profile and the time of arrival of the pulses. Changes in the shape of the

profile would be expected as the impact parameter β shown in Figure 1.4 changes,

meaning a change in the cut our line-of-sight makes across the emission cone.

Changes in the time of arrival of the pulses reflect changes in the rotation period

of the neutron star, determined by changes in the spin-down torques produced by

the precessional effects. Thus, for us to be able to say that precession occurs, we

should see changes in both features, otherwise it is likely that some other process

is occurring.

2.2.2 Measuring Changes

2.2.2.1 Changes in Period

Finding changes in period is a comparatively trivial one. Although individual

pulses from pulsars are quite varied, average profiles, summing over a few hun-

dred pulses yields remarkably consistent results. For each observing run, we can

therefore identify the precise arrival time of the pulse peak and find its deviation

from a recorded ephemeris, using a given period, P , and spin-down rate, Ṗ .

Deviations from this can be quite clear. In the case of PSR B1828–11 (see

Figure 2.3), the accumulated pulse time offset over a complete precessional period

amounted in 1995 to around 20–50 ms and was quite clear from the observations.

Changes in the rotation period, or spin-down rate, could be accurately calcu-

lated to within a nanosecond, with good fitting. Changes in this spin-down rate

themselves were also identified, and a reasonable fit could still be made to the

observations.

Given how clear-cut these period changes are, they should be observable in

any bright pulsars that exhibit them, provided they are not obscured by other
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Figure 2.3: The change in arrival time, ∆t, change in period ,∆P , change in
period derivative ∆Ṗ and “shape parameter”, < S >, for B1828–11, reproduced
from Stairs et al. 2000, showing clear pseudo-sinusoidal variations coherent with
a model of a precessing pulsar.

factors.

2.2.2.2 Changes in Pulse Profile

Quantifying changes in pulse profile is a much more difficult task. For these, we

lack a single, quantifiable number with which to represent changes in the profile

we observe. For example, we could expect to see changes in the phase difference

between the two conal components, changes in the relative amplitudes of both

the core and conal components, changes in the overall brightness of the pulsar,
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along with a myriad of other effects.

The advantage of using a single parameter is that it makes finding periodicities

in changes in the profiles far easier. Using multiple parameters would require

coherently finding periodicities in some or all of these, making it more difficult

to determine whether the periodicity is noise or inherent change. With a single

parameter, however, a simple power spectrum of periodicities in the data can be

made, and any strong periodicities found easily from this.

Several methods could potentially be used in order to determine an absolute

value for shape changes in a pulsar. These methods can either take into account

some or all of the inherent variables. Models which fail to take into account all

the variables could miss variations which are important. Models which take into

account all the variables risk where two variables can cancel each other out risk

missing the identification of profile changes.

2.2.2.3 Single-Variable Profile Analysis

Using a single parameter to model changes in the complex profile of a pulsar

pulse can be achieved to varying degrees of success by using a number of models.

Some possibilities are listed here.

Firstly, we could investigate the variation within a model. Simple models

using this could investigate changes in the separation of the profile components.

Observed changes in these are quite readily identifiable, given sufficient enough

time resolution, but could be confused with other phenomena, such as mode

switching, or variations of sub-pulses (see later).

Another more advanced approach would be to assume a model of cone emis-

sion, likely based on a ring of emission and a central component, and try to fit

changes in the profile to different cross-sections through this model. This would
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have the danger of using a model to fit the data, which may completely misrep-

resent the emission cone in reality.

A different method would use an observed parameter change which is not

necessarily expected to change, such as changes in the ratio of the amplitudes of

the conal components. As with most other simple attempts to identify variations,

this could also be confused with other phenomena, such as mode switching (see

e.g. Backer 1970).

Taking this model a step further, two different pulse profiles, each representing

two extremes of variation, could be used and matched to other observed profiles

using a weighted, scaled addition of the two extremes. By doing this, we are

effectively placing each observation on a scale between one extreme and another.

This approach encounters difficulties if the modulation is more complex, or the

change is highly non-linear.

2.2.2.4 Multiple-Variable Profile Analysis

A more comprehensive analysis of profile changes would seek to incorporate every

variability in the data, then reduce the observed changes down to a single quantity.

This approach tends to bring about other problems, however.

Perhaps the easiest approach would be to use some combination of the above

techniques and either sum their results, either directly, or summing their squares.

Firstly, the problem then arises of how and if we should attach weights to these

parameters. A second problem is that this should work well if we are looking

for deviations from an equilibrium position (which may still be applicable here),

but is not particularly satisfactory when it comes to analysing changes between

one state and another, where one quantity may increase and one simultaneously

decrease.



CHAPTER 2. FREE PRECESSION 38

A similar situation is encountered using the more complex method of prin-

ciple component analysis. This involves representing each observed profile as a

weighted sum of constituent profiles. These constituent components could be as

complex as entire profiles or as simple as Gaussian peaks. The difficulty comes

once the weights of each component have been determined. How do we reduce

this set of weights into a single number?

Traditional principle component analysis methods would then reduce the num-

ber of variables by identifying linear relationships between two variables and re-

ducing them to one number representing the coefficient of the relationship. Thus

this process can reduce the parameter set down to one number.

The problem with this method is that situations can again occur when the

effect of one change cancels out another, hence variability could occur but not be

observed. Practical tests carried out by Michael Kramer [private communication]

found that this traditional method is not particularly effective in the case of PSR

J1022+1001.

2.2.3 Other Factors Mimicking Timing Changes

2.2.3.1 Data Pre-processing

It is important to remember that a lot of data pre-processing is done automati-

cally before timing residuals are found. The details of this can be found in Lyne

& Graham-Smith (1990) (p.165–167). This pre-processing removes the effects of

dispersion introduced by the ISM by determining a DM; a constant time deriva-

tive, Ṗ ; and classical and relativistic effects of the Earth’s rotation and (elliptical)

orbit around the solar system barycentre.

This is a well-practiced science, and for many pulsars with good signal-to-

noise this can be done with great accuracy. However, if Ṗ changes for any reason,

a parabolically increasing offset will be introduced to the timing residuals.
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It has also been found that, for an average pulsar, the dispersion measure

(‘DM’) can change by ∆DM ≈ 0.0002
√

DM cm−3 pc yr−1 (Hobbs ). For a fast-

moving pulsar in a clumpy region of the ISM, this could introduce small timing

errors.

Both of these errors should produce non-repeating changes in timing noise.

Changes in Ṗ will not affect the pulse shape at all, and changes in DM are unlikely

to affect it to any great extent. Hence, we are not greatly concerned about the

effects these could have on our data.

2.2.3.2 Orbiting Bodies

If a pulsar is in an orbit with another body, motion along the orbit will lead

to variations in the arrival time of pulses, both due to Doppler and relativistic

effects. An orbiting body could be a normal star or neutron star, such as in the

case of PSR B1913+16 (Weisberg & Taylor 1984), or another pulsar, such as

PSR J0737–3039; in both cases gravitational radiation must also be taken into

account, which will slowly decrease the period of the orbit.

Alternatively, the pulsar could be orbited by planets, as with PSR B1257+12

(Wolszczan & Frail 1992; Rasio et al. 1992; Wolszczan 1994), which would give a

sinusoidal variation similar to that seen with precession in PSR B1828–11 (Stairs

et al. 2000); however, in the case of a precessing pulsar, we expect to see regular

profile shape changes as well, which are not observed in B1257+12, and are only

likely to occur if precession is taking place, or, perhaps, if the orbiting body

interacts with the pulsar’s magnetosphere.

2.2.3.3 Timing Noise

Another major complicating factor in determining precessional effects is distin-

guishing them from timing noise present in pulsars. Timing noise is thought to
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arise from irregularities in the pinning of the crust to the neutron superfluid below

it. This results in phase jitter, slow variations in the pulsar’s period and period

derivative, etc., occurring over on a timescale of months to years.

Timing noise can often create signatures in the timing residuals which look

remarkably like precessional effects (e.g. Helfand et al. 1980). The amplitude of

this noise correlates fairly well with pulsar age, with older pulsars showing less

of an effect (Cordes & Helfand 1980). Well-timed pulsars can exhibit deviations

on the order of milliseconds, and less-well-timed pulsars on the order of tens of

milliseconds (Gullahorn & Rankin 1982, (Hobbs 2002)). We can discriminate

most easily between the two by looking again at the pulse profiles: timing noise

should not produce any profile changes, but precessional effects should.

2.2.3.4 Glitches

Glitches are readily identifiable in timing residuals as a sudden jump in period

(e.g. Radhakrishnan & Manchester 1969, Reichley & Downs 1969), which will

correspond to a rapid increase in timing residuals. These are usually followed by

a fairly exponential recovery (e.g. Krawczyk et al. 2003a). Looking at the data,

it is clear that a glitch is not attributable to precession (again, it does not create

any profile changes), but if we look for periodicities in timing data, if a glitch

were to occur in a precessing pulsar, the periodicity of the oscillations would not

necessarily be picked up.

2.2.3.5 Tkachenko Oscillations

Tkachenko oscillations are oscillations set up in a rapidly rotating superfluid

(Tkachenko 1966). For a typical neutron star, these are theorised to be on a

timescale on the order of months (Stairs et al. 2000) — the same timescale

we would expect precessional effects to occur on. Being stable oscillations, these
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should produce well-defined sinusoidal variations in the timing residuals, but

again these should not affect the pulse profile, so by examining both we can rule

out this effect.

2.2.4 Other Factors Creating Profile Changes

2.2.4.1 Mode Changing

Mode changing occurs when a pulsar switches from one meta-stable mode of

emission to another meta-stable mode. Pulse profiles of pulsars in which this is

observed show two or more distinct profiles, with the pulsar switching between

them in an largely unpredictable fashion. This is discussed extensively by Rankin

(1986). Profile changes appear to occur mostly in pulsars with triple or multiple

profile components, although this could be due to the fact that this makes it

easier to see profile changes, as in a single component system, one may not see

more than a brightness change. Rankin also stresses that, although previously

it was thought that mode changing occurred in older pulsars, a larger sample of

objects does not support this conjecture.

Mode changing has the complicating effect of producing pulse profile changes

in pulsars. However, these changes are, for our purposes, instantaneous. This

should theoretically make them easy to separate from the gradual changes in

profile we would expect from precession.

Mode changing can also affect the timing results, as different components can

become dominant, or an addition of one component to a noisy profile could make

changes in the way a cross-correlation function would fit a template to the data.

It does not affect the actual rate of rotation of the pulsar itself. Again, due to

the sudden change between modes, this should be easy to separate from gradual

changes in timing residuals due to precessional effects.
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2.2.4.2 Sub-pulse Drifting

Sub-pulse drifting is also considered by Rankin (1986). In pulsars in which this

occurs, small pulses within the conal emission of the main pulse drift either

forwards or backwards in pulse phase. The pulse profile will, accordingly, reflect

this change. As with any change in pulse profile, this can lead to a small change

in pulse timing, as fitting the cross-correlation function to the data accurately

relies on a reasonable pulse profile match.

It is not thought that sub-pulse drifting will affect any searches for precessional

effects. The reason for this is that this drifting appears to occur on timescales of

between 2 and 100 times the pulse period — i.e. on the timescale of seconds to

minutes. On a sufficient timescale (Helfand et al. 1975), these sub-pulses will

‘smear out’ over the profile and any variability will be lost. This limits the time

resolution with which we can search (this limit is well below the Nyquist limit

imposed by our data), but given the timescales of 250 days for PSR B1828–11

(Stairs et al. 2000) we do not expect to have to use timescales of this length

anyway.

2.2.4.3 Pulse Nulling

Also covered by Rankin (1986) is pulse nulling. Here, all pulsed emission from

the pulsar either completely ceases, or is reduced to an insignificant fraction

(< 10−3) of its average power. It was previously suggested (e.g. Ritchings 1976)

that this was a precursor to the pulsar ‘switching off’, but Rankin argues that it

is a phenomena observed in pulsars of all ages and is instead a feature of pulsars

with conal elements to their profile.

Hesse & Wielebinski (1974) split nulling profiles into three groups according

to their power histograms: type I, showing a distribution of power around a value

(‘always on’); type II, showing an exponential distribution; and type III, showing
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a bimodal distribution, combining types I and II.

The nulling process appears to represent the shutdown of the magnetospheric

production of radiation. Rankin’s review shows this nulling can occur on any

timescale up to several minutes or hours.

The effect of nulling on discovering precession is minimal, although it could

add some noise to the data. Nulling does not appear to affect either the pulse

profile or the timing residuals. Any variations due to switching on or off as we

observe the pulse will be averaged out, as we are dealing with average profiles.

At most, this process is expected to represent partial loss of data during an

observation, or perhaps the complete loss of the occasional data point. This

should not have any great bearing on our results.

2.3 Discussion

From the previous section, the main observing tolerance on detecting precession

in timing residuals appears to be timing noise, although the other effects may

be important. Detecting changes in the profile shape remains a difficult task,

with no single completely satisfactory means of quantifying the profile shape in

a general way.

The data for B1828–11 shows clear variations in the timing data, which should

be easily detectable above timing noise, even in poorly timed pulsars. Variations

in the shape parameter do indicate periodicities, but they are much less clear.

A key problem, therefore, is to find a suitable method of identifying changes in

profile shape.

The remaining question is whether there are changes out there to be ob-

served. We must ask what would cause a misalignment between the axes, and as

to whether B1828–11 is special in this case. For example, we could hypothesise

that precession is linked to core-crust coupling in some way, perhaps through
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glitches, in which case we would expect many more pulsars to be precession. Al-

ternatively, we could envisage a more unlikely scenario, perhaps precession could

be excited if B1828–11 was hit by another body, causing chaotic motion, in which

case we would not expect to find precession in many, if any, other pulsars. An-

other possibility is that the periodicities we see due to some effect other than

precession, such as orbiting bodies or an orbital disc interacting with the magne-

tosphere. The archives at Jodrell Bank Observatory contain a history of pulsar

data stretching back to 1970, so there is sufficient data for us to find precession

in most other pulsars that we have discovered if they precess on timescales (and

width amplitudes) comparable to B1828–11.

As described in, e.g., Jones & Andersson (2001), the amplitude of any preces-

sional variations will depend on the amount of deformation the neutron star has

undergone. These deformations are distinct from centrifugal deformation, and

must be non-axisymmetric, ‘mountainous’ deformations on the crust in order to

induce precession.

Precession in pulsars with small deformations will be more difficult to detect,

as there may not be sufficient data to find strong enough periodicities in recently

discovered pulsars, although it remains to be seen what the effects of precession

on a completely triaxially symmetric star would be (Link & Epstein 2001).

We must accept that until more definite evidence for other precessing pulsars is

found, B1828–11 remains the one pulsar among hundreds that shows precessional

effects. Finding only one object in such a large dataset with these properties is of

concern. It may be that B1828–11 precisely satisfies some conditions that allow

either precession or an effect with very similar visible identifiers. Thus we can

imagine that one of the following scenarios could be true: firstly, that precession

exists, but has not been identified; secondly, that the scales or methods with which

we look for precession are unsuitable (c.f. the unexpected finding of numerous
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‘Hot Jupiters’ instead of ‘Cold Jupiters’, e.g. Schilling 1996); or thirdly, that

precession exists, but is masked from detection by some other feature.

In conclusion, we have strong evidence for precession in the case of B1828–11.

The task ahead is therefore to find if this behaviour is repeated in other pulsars,

and if not, why not. For precession to be identified, regular, sinusoidal changes

in both pulse shape and pulse timing ought to be identified. If B1828–11 is a

typical example, then there should be sufficient good data to find this effect in

other pulsars, if it exists.



Chapter 3

The Computer Software

3.1 Introduction and Principals

As part of this thesis, it was required to produce software capable of detecting

changes in profile shape that could be attributable to precession. This chapter

describes how this software works and its limitations.

The software is designed such that it can run independently of machine and

with minimal user input, yet retain complete functionality and versatility. All

the software was written in FORTRAN 77 and consists of the following mod-

ules: READDB, which reads in the profiles as EPN files (Lorimer et al. 1998);

MAKEPROF, which alternatively creates artificial profiles using a cone model;

DORESID, which subtracts the template from the profiles to produce ‘residual’

profiles; LOMBPERIOD, which performs a Lomb-Scargle Periodogram on the

residual profiles; and PCATEST, which runs a Principal Component Analysis on

the residual profiles.

The program is designed to be run as a single unit, with components that can

be switched and off, and parameters that can be altered, as the user requires.

This is done in one of two ways. Firstly, the user can edit the parameter file.

This is a permanent file containing the parameters for the entire program, and

46
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allows semi-permanent changes to be made to the way the program runs, which

is useful for setting up global parameters for a run through a database using

a script. Secondly, the user can enter parameters from the command prompt,

allowing changes to be made for that run only, allowing scripts to run through

a catalogue of pulsars, or explore how varying a set of parameters alters the

program output.

Global parameters set in the parameter file include the activation state of each

stage (i.e. whether to run a particular module or not), which plots to display at

runtime and which directories the input and output files are to be contained in.

3.2 READDB

3.2.1 Function and Parameters

The function of the READDB subroutine is to read data from an EPN archive

file. The EPN standard (Lorimer et al. 1998) was chosen to allow portability

between archives. EPN filetypes are easily created from the Jodrell Bank archive

using the PSRPROF software package.

The READDB subroutine contains a number of parameters. Most obviously,

the input file can be changed, along with the messages file. There is also an

option to set the template. More on the generation of templates is discussed later.

Additional parameters can be changed, namely the allowed range of frequencies,

the signal-to-noise rejection level, the method of template generation, the seed

template (see below) and the date range of profiles to accept.
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3.2.2 Method

READDB works as follows: firstly, the EPN header is read from the database

input file. The profile length is then set to one pulse period, based on the pa-

rameters contained in the header. The program then begins a loop in which it

reads in the profile, first by scanning the header for the relevant timing and fre-

quency information, then it reads in the profile data. The profile is then accepted

or rejected based on a frequency and an optional signal-to-noise test (discussed

in Chapter 4). The frequency test checks whether the observation falls within

the specified range of frequencies. The signal-to-noise test compares the peak

intensity with an iterative, sigma-clipped median1 of the profile, and rejects it if

the ratio is too low. If the profile is accepted, it is written out to a file and the

observation time recorded.

The frequency test is necessary as the profile from any particular pulsar is

liable to dramatic changes in shape and amplitude between frequencies (e.g.

Rankin 1983b, Rankin 1983a). The signal-to-noise test allows more careful se-

lection of the quality of input to be controlled. This comes as a mixed blessing.

On the one hand, it is possible to completely remove profiles where the signal is

not detected, or only weakly detected. This works to our advantage when data

weighting is not possible, such as when performing Fourier analysis. However,

one can envisage a scenario where precession is causing the beam to be brighter

and dimmer as our line of sight cuts through different parts of it. In this case,

a signal-to-noise cutoff which is too severe could result in the fainter profiles be-

ing dropped, hence variations in pulse shape not being detected. Therefore, care

must be taken when setting the signal-to-noise cutoff that it is significantly lower

than the signal-to-noise of the clearest pulses.

1This process calculates the median of the data, removes all data lying more than a user-
specified number of standard deviations away from the median (here the default is 3), then
iterates a user-specified number of times (here the default is 8). This is used here as it allows
RFI and any pulsed emission outside of the pulse window to be removed to find a true baseline.
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3.2.3 Template Generation

Once the profile database has been read, the program creates its own template

using a variety of different methods, selected using the tempmethod parameter,

which can range from 0–8. Part of this generation occurs within the READDB

subroutine, and part in the main module. Regardless of tempmethod, once

READDB has read the profile database, it estimates the full-width half-maximum

(FWHM) of each template as the number of bins above the half-maximum inten-

sity level.

For the tempmethod = 0 option, the program keeps the template it had

previously been using. For tempmethod = 1, a profile is read from a database

file using the same method described above, with the profile’s position within the

file given by the templateno parameter.

Option tempmethod = 2 creates a template using an average of all the profiles

in the dataset. It cross-correlates each profile against this average using the

DORESID subroutine, then creates an average of the cross-correlated profiles.

This method only works if the timing model is sufficiently accurate that the

timing residuals (which determine the phase of the pulse peak of a profile in the

database) are of the order of the width of a phase bin, which is not the case for

many pulsars. Consequently, this option is largely redundant and was superseded

towards the end of coding by the tempmethod = 7 option (see below).

Option tempmethod = 3 takes a user-supplied Gaussian pulse profile and fits

it to the data. Here, the user can control the FWHM and location (in phase bins)

of the Gaussian using the tempgaussian parameter. Options tempmethod = 4–6

also use this method, but centres the pulse in the profile and use the maximum,

minimum and average FWHM found by READDB, respectively. While these
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methods, and in particular tempmethod = 6, work for pulsars with Gaussian-

shaped profiles, the majority have distinctly non-Gaussian profiles, or with pro-

files with multiple components, that cannot be modelled, or are inaccurately

modelled by this technique.

We found tempmethod = 7 to be the most effective method of creating a tem-

plate in this program in terms of results and processing power. To begin with, it

runs as does the tempmethod = 6 option, producing a Gaussian template based

on the average FWHM of the profiles read from the database. The program then

cross-correlates the profiles with this Gaussian profile using DORESID. Having

done this, it then creates an average of these profiles and uses this as the tem-

plate. This allows a representation of the pulsar’s intrinsic profile to be used as

a template.

There are scenarios where the above method will not work — for example,

where there are two unresolved components and a third, resolved component.

Variations in the unresolved components would upset the cross-correlation and

hence smear the template out. This can be minimised by running the above

process iteratively, as is done in the final method — tempmethod = 8 — but this

greatly increases the processing power needed and tests on both real and fake

datasets suggest that there is not much room for improvement on tempmethod =

7. As a consequence, tempmethod was set to seven in all our data tests. Possible

effects of this will be discussed later.

The template generation routines also estimate the on-pulse window. This is

done by moving outwards from the pulse peak, and setting the limits of the on-

pulse window to be the first bin in the template to the left and right of the peak

which falls below a threshold value, set by the user (for our analysis it was set

to 10% of the peak intensity). This is not always ideal, as there are pulsars with

multiple components with near-zero emission between the components; however,
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for most bright pulsars, setting a sufficiently low threshold value will pick out

the pulse window well. The pulse window is mostly used for off-pulse noise

calculations.

3.3 MAKEPROF

3.3.1 Function and Parameters

The MAKEPROF sub-package is designed to test the detection software and

allow modelling of the pulsar profile changes. It comprises of two main sets of

software: MAKEPROF itself, which is modified from code developed by Michael

Kramer, and MAKEMODEL, which is a related piece of software based on the

same code. The purpose of both subroutines is to create fake profiles based on

a set of input parameters; the difference between them being that MAKEPROF

relies on a set of Gaussian peaks with randomly changing position, width and

amplitude, whereas MAKEMODEL relies on a set of pseudo-Gaussians produced

by taking a slice through a cone model, as described below.

User-defined controls in this section are: the number of profiles to create, the

fractional level of artificial noise to add onto the profiles and the number of phase

bins in each profile. MAKEPROF also has the additional choice of the input file

containing the initial Gaussian components that make up the simulated profile.

By its nature, MAKEMODEL requires a number of extra parameters. These

are the radii, full-width half-maxima, amplitudes and angle offsets of the cones

used (r, w, a, x and y as defined in Figure 3.1); the variation and mean value of

the impact parameter (β and σβ in Figure 3.1); the period of this variation and

the sampling timescale (tvar and tsamp).

There is also the option to use the observation times of the previous dataset.

This is useful in determining whether an object is real, or an artifact created by
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the sampling of the observations.

3.3.2 Method: MAKEPROF

MAKEPROF begins by loading a template from a pre-existing, user-specified

file containing the widths, amplitudes, and positions of Gaussian components. It

then produces a profile by adding those components, which it normalises. A user-

specified level of Gaussian-distributed noise is then added. The profile is written

to a file, then the widths, amplitudes and positions are modified by multiplying

them by a random variable taken from a Gaussian distribution. This process is

carried out iteratively for each profile.

3.3.3 Method: MAKEMODEL

The MAKEPROF subroutine is not suitable for simulating precessing objects,

as no periodic variations can be induced. It was therefore decided to create a

subroutine that would simulate the profiles observed from a precessing object.

To do this, it was necessary to assume a two-dimensional model for the emission

from the pulsar, as the impact parameter, β, would vary depending on the phase

of the precessional cycle.

For this process, it was decided to base our model on the nested cone structure

of Rankin (1993) and Gil et al. (1993), partly since it is easier to simulate, and

partly because the results are more meaningful in this context. Using the para-

meters file, the user inputs the parameters required to make up emission cones as

shown in the left panel of Figure 1.3. These parameters are defined in the above

section and in Figure 3.1.

MAKEMODEL works in much the same way as MAKEPROF : the cone pa-

rameters are read in by the main module and passed down to it. It then creates

a profile based on these parameters, which it normalises and adds noise to. The
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Figure 3.1: The cone model used to create profiles in the MAKEMODEL sub-
routine, showing the inputs to be given by the user. The emission is modelled as
a number of cones, with axes perpendicular to the line of sight, modelled by the
radius r, half-maximum width w, amplitude a, and offset (x, y) from the emission
centre. Our observed profile is a slice taken a distance β away from the origin,
which varies by σβ over the precessional cycle.

profile is written to a file, the observation time advanced, and the process begins

again for the next profile.

The calculation of the profile, v is performed as follows. The line-of-sight cut

through the beam can be represented as a horizontal line through an X-Y plane,

such that, for any particular phase bin i:

xi = 2π
i

M
(3.1)

yi = β + σβ sin
(

tobs

2πtvar

)
= constant, (3.2)

where M is the number of phase bins in the profile and tobs is the observation

time, given by Ntsamp, where N is the profile number.

Assuming a flat beam (in reality the beam will be a section of a sphere, but

this difference is not important here), the distance, d, of a particular phase bin,
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i from a particular emission cone, n, can be given by:

d2
n =

(
rn −

√
(xi − xn)2 + (yi − yn)2

)2

, (3.3)

for a cone centre offset of xn, yn.

Thus, the profile amplitude, vi, for phase bin i will be:

vi =
N∑

n=1

an exp

(
− d2

n

2w2
n

)
, (3.4)

for N emission cones.

3.4 DORESID

3.4.1 Function and Parameters

The DORESID function has two main, related purposes. The first is to cross-

correlate the observed profiles from the database with the template, which allows

it to perform its second task of producing residual profiles.

The above processes are fairly intuitive procedures, therefore the only parame-

ters required are the output filenames. An option is provided to smooth the data

in phase to remove white noise, but this was found to have a detrimental effect

on the data and is retained only to be used should the subroutine be required for

other purposes — it is not used in any of the results of this thesis.

3.4.2 Cross-correlation

Arguably one of the more important routines in this analysis is the cross-correlation

routine. Any precession hitherto undiscovered is likely to involve very small

changes in profile shape, thus a very accurate fit is required. Our data is binned

to 400 or 512 bins per profile, with the pulse window corresponding to only a

few bins. To obtain a sufficiently accurate fit, we must therefore have a cross-

correlation routine capable of working in fractions of a bin. For this reason, we
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use the routine LINEUP, provided by Michael Kramer, to ‘rotate’ the phase of

the observations until the profile peak aligns with the template peak. LINEUP

takes an input offset, rotates the data by an integer number of bins, then uses

a spline function to interpolate the data to rotate the data in by a fraction of a

bin.

Of course, the key value here is the input offset. In the course of this investi-

gation, we used a number of different methods to best determine this. We found

that, while simple test profiles with low signal-to-noise were successfully lined up

using all the routines tested, more complex profiles taken from our database were

not able to be lined up successfully.

First of all, a frequency-domain fit was implemented, using the FFTFIT sub-

routine (Taylor 1992). This was found to be inadequate, as the profiles we were

using did not have a sufficient number of bins for frequency-domain fitting to work

well. A simple time-domain search was then implemented, using a parabolic fit

to a chi-squared minimum to find the offset to a fraction of a bin. Again, this

was deemed unsuitable, as multiple-peaked and ‘square’-shaped profiles could not

be fit well. After extensive experimentation, a time-domain fit was used in the

final analysis. Rather than cross-correlating the profile and template directly,

a modification was made to cross-correlate the third power of the derivative of

each.

This approach reduces the problems caused by low-frequency noise in the data,

which can occur when white noise is interpolated. The majority of pulse peaks

have at least one well-defined edge and usually two. Taking the derivative allows

the edges of the peak to be lined up, while taking the third power accentuates

the main peaks, while reducing peaks due to noise on profiles of sufficiently high

signal-to-noise.
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3.4.3 Method

DORESID begins by reading in the template, produced/read above, from a file.

It then smooths this template if required (see above), then performs an FFT on

the template to prepare it for the cross-correlation subroutine. DORESID then

begins a loop over the database profiles, reading each one in turn; smoothing it, if

required; cross-correlating it with the template as described above; lining up the

profile with the template using LINEUP (also see above); scaling and removing

the template, if set to create residual profiles; zeroing the resulting profile and

normalising the peak intensity to unity; and writing the profile out to a file,

plotting a graph of the profile if requested.

The penultimate stage — the zeroing and normalising — is done to avoid DC

offsets and unfair biases when it came to processing the results. This is done by

calculating an iterative, sigma-clipped median, using the same subroutine as in

READDB and subtracting it from the profile. The profile is then normalised by

dividing it by the maximum value in the profile.

3.5 LOMBPERIOD

3.5.1 Function and Parameters

The LOMBPERIOD subroutine is the first of the two main analysis sub-packages

included in the software. Its purpose is to perform a Lomb-Scargle periodogram

on the data, using the Numerical Subroutines subroutine FASPER (Press et al.

1992).

LOMBPERIOD allows a number of options to be set, aside from the standard

naming of the output files. Firstly, it can be run on either the cross-correlated pro-

files, or the cross-correlated residual profiles (hereafter ‘profiles’ and ‘residuals’)

created in DORESID. Secondly, the data can either be smoothed or re-binned,
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depending on the user’s preference (although these have not been used in our

analysis). Also set are the hifac and ofac parameters in FASPER, discussed be-

low. Thirdly, the number of bins used in the histogram and the tolerance with

which the program finds the probability factor, m, (also discussed below) can be

set. Fourthly, a number of plotting options can be set; and finally, the statistical

output can be limited to periods less than a value proportional to the range of

observations.

As with DORESID, it is advised that smoothing is turned off for the intended

purpose of the program. Binning can be used to condense the dataset to reduce

running time, but is primarily useful in finding periodicities, especially in weak

pulsars, that occur over a wide bin range.

An advantage of the Lomb-Scargle periodogram is that the data can contain,

in principle, any number of bins and any number of profiles, subject to mem-

ory constraints. This is not the case with the Principal Component Analysis

subroutine PCATEST, as described below.

3.5.2 Method

Due to the complexity of options involved, LOMBPERIOD is quite a complex

program. It also requires a significant amount of memory in order to run at a

reasonable speed.

LOMBPERIOD works as follows. First, the program reads in the observation

times for the profiles from disk. It then reads in the profile data into a two-

dimensional array, with an element for each phase bin of each profile. Having done

this, it begins a loop over the range of bins specified, re-binning or smoothing

the data as required as it goes. The data for the working bin is then passed

through the FASPER subroutine, which performs a Lomb-Scargle period analysis

(Press et al. 1992) and returns a list of powers over a range of frequencies. This
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power spectrum is optionally plotted, then written to file. Once this has been

calculated for all bins in the range, the program calculates the probability factor

m using the GETM and FINDM subroutines (as explained below), and draws

a two-dimensional grey-scale plot of the power as a function of pulse phase (bin

number) and frequency.

Once the plotting subroutine has been called, the plot size is adjusted, either

as defined in the user settings, or reduced to a 512 × 512 pixel array, in order

to avoid overflows in the PGPLOT subroutines used for plotting. Each bin can

then be normalised with respect to its maximum value, and/or presented on a

log-scale, with a user chosen base, in order to improve clarity. Depending on

whether the user has chosen to pause the program when a graph is output, the

plot is halted, allowing the user to output a GIF or PS file, or zoom in on a

specific region of the plot.

Having created a plot, the program then calculates the r.m.s. of the power

array, then sorts the array by power in descending order, to determine the bins

and frequencies showing a maximum in power, which corresponds to a strong

periodicity. It writes the first 1024 records out to a file for viewing or plotting.

3.5.3 The FASPER subroutine

The FASPER subroutine is one of the Numerical Subroutines subroutines (Press

et al. 1992). It allows a spectral analysis to be performed on data with uneven

sampling — as is usually the case with observational data. Aside from input

arrays of data and observation times, it requires two parameters: ofac, an over-

sampling factor, and hifac, the high-factor ratio. Details on the use of these are

both included in depth in the Numerical Subroutines documentation. They com-

bine to give the number of frequencies output from the subroutine. Typically,

these are set to 4.0 and 0.99 for our purposes, although hifac can be increased
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to allow sampling at frequencies greater than the Nyquist frequency of the data,

which is possible since our data are significantly unevenly sampled.

FASPER also returns an estimated probability for the data, but this critically

depends on the factor, m, found using the method below; hence the probabilities

given directly by FASPER are not used.

3.5.4 Signal Significance

It is obviously important that we establish whether any results from FASPER

are significant. The probability, P , that a periodicity of a given power, z, is due

to noise is given by (Press et al. 1992):

P (> z) = 1− (1− exp(−z))m (3.5)

where the power m depends on the number and regularity of the sampling of

the data points. m can be found through Monte-Carlo simulations. However, we

can obtain an independent estimator of m from our off-pulse data, which is of

the same sampling and should be entirely composed of noise. Having found this

m, we can therefore estimate the likelihood that a periodicity detected in due to

noise or a real signal.

Finding m from our off-pulse data is comparatively simple, as the pulse win-

dow is defined using the template creation method described under READDB.

Taking the periodicity with the highest power for each bin, GETM then forms a

cumulative histogram of power for the entire off-pulse data, then FINDM fits a

value of m using equation 3.5.

For evenly sampled data, m should be equal to the number of data points.

However, as the data points become more and more ‘clumped’ in time, m de-

creases. We find that, for a typical sample of 400 profiles, m tends to be roughly

100.
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3.5.5 A Note on Memory

The LOMBPERIOD sub-package requires a considerable amount of memory to

run. An intrinsic problem of Fortran 77 is the lack of re-allocating memory to

an array that has already been declared in order to change the size. Certain

compilers also have issues with allocating an amount of memory that is found

during run-time to an array. This practice has been kept to a minimum, but

is required for certain arrays to conserve memory. If this step had not been

taken, the amount of memory required for a full analysis would run into several

gigabytes. We therefore have limited the number of processable profiles to 4096

throughout the program, each with a maximum of 4096 bins. Therefore, to store

our input data alone, we require 128MB of memory for an eight-byte REAL array.

The size of the frequency and power arrays calculated by FASPER is given by:

ndim = 2 · nfreq, (3.6)

where nfreq is the power of two immediately greater than nfreqt, which is given

by:

nfreqt =
ofac · hifac ·MACC · nprof

2
, (3.7)

where MACC is the number of points per quarter frequency (see Press et al.

1992), and is set to 4; nbins is the number of bins (after re-binning); and hifac

and ofac are as described above. Our power array must therefore take up nbins×
ndim × 8 bytes. Typically 25.6 MB is required for 400 profiles at 400 bins each,

although this can increase up to around 4 GB for 4096 profiles at 4096 bins and

hifac = 8. For this reason, the memory for this array is allocated at the start of

POWERPLOTTER (an extension to LOMBPERIOD).

A further ndim× nbins× 8 bytes must be available twice over in the statistical

analysis for sorting purposes.

All told, the program will require several hundred megabytes, and possibly
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several gigabytes, of memory to run. This is not usually a problem on modern

computers, although the swap file size must be sufficiently large.

3.6 PCATEST

3.6.1 Function and Parameters

The PCATEST subroutine is the second of the two main analysis procedures

encompassed by this software. Its purpose is to perform a Principal Component

Analysis test on the cross-correlated database profiles.

Due to its purely mathematical nature, the only options defined for this sub-

routine are the names of the output files it produces, and whether or not to try

to reproduce the original data from the principal components as a check that the

subroutine has performed as expected.

In this routine, we use a method similar to that set out in the PhD thesis of

Michael Blaskiewicz (1991).

3.6.2 Theory

Principal Component Analysis, commonly used in image compression, relies on

the basis that a residual pulse profile, δvj, can be thought of as a real vector

quantity of nbins dimensions. Thus, each vector can be thought of as comprising

of nbins different, orthogonal vectors, E, of nbins dimensions, such that:

δvj =
nbins∑

j=1

Ej (Ej · δv) . (3.8)

The choice of vectors E is made such that, for a particular vector, k, Ek·Ek = 1

and σ2
k is maximised, where:

σ2
k =

nprof∑

j=1

wj (Ek · δvj)
2 , (3.9)
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for profile j. The solutions to this are the eigenvectors of the covariance matrix

of the data, i.e.:
nbins∑

j=1

CijEjk = σ2
kEik, (3.10)

where Cij is the covariance between bins i and j, given by:

Cij =

∑nprof

k=1 wj ∗ δvki ∗ δvkj

nprof − 1
, (3.11)

Thus, the eigenvector matrix, E, is the component matrix. By sorting these

components in decreasing order, according to their eigenvalue, we can identify the

principal components, i.e. those which contribute most to the residual profiles,

as being the eigenvectors with the lowest index (corresponding to the highest

eigenvalue).

A new dataset, rv, can then be obtained by performing a vector multiplication

of the original residual profiles with the sorted eigenvector matrix, Es:

rvj(k) =
nbins∑

i=1

δvikE
s
ij. (3.12)

This matrix will be the residual profile matrix in terms of the principal compo-

nents, e.g. rvj(1) will be the amplitude of the first (principal) component in the

jth profile.

3.6.3 Method

To begin with, PCATEST reads in the profiles, v, created using DORESID, into

an array of size nbins by nprof . It then reads in statistical weighting data for the

profiles, w. In our analysis, we use uniform weighting, but a weighting based on,

for example, signal-to-noise ratio could theoretically be used instead. For each

bin, a mean value (v̄) is calculated and subtracted from the data, leaving a data

array of ‘residual’ profiles, δv, with a mean of zero. Thus for each profile, j:

δvj = vj − v̄. (3.13)
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PCATEST then calculates the covariance between each pair of bins and forms

a matrix, C, as satisfied by equation 3.11. The eigenvectors of this matrix, E,

and their corresponding eigenvalues, henceforth denoted e, are then found. To

do this, we use the Numerical Subroutines subroutine JACOBI (Press et al.

1992). JACOBI also has the added advantage of returning the eigenvectors as

unit-length eigenvectors.

These eigenvectors are then sorted in descending order, according to the mag-

nitude of their corresponding eigenvalue, to form a new eigenvector matrix, Es,

using a modified version of the Numerical Recipes subroutine SORT2. This sorted

eigenvector matrix contains the principal components, in descending order of sig-

nificance. PCATEST then performs the transformation described in equation

3.12 to find the significance levels of the principal components.

The conversion from having data in terms of principal components to the

original dataset is easy, and one that is optionally done here as a method of

checking that the subroutine has worked correctly. The conversion is simply

given by:

vij =
nbins∑

k=1

Es
ikrvkj. (3.14)

The new dataset is then written to file.

PCATEST then calls FASPER (as used in LOMBPERIOD above) to perform

a spectral analysis on the amplitude of the principal component over all profiles

(rv1j). FASPER yields an array of powers for a range of frequencies; the highest

power corresponding to the most significant periodicity. This allows us to find

the regular changes in pulse shape associated with precession.

3.6.4 Restrictions of PCATEST

A major restriction of PCATEST is the number of profiles that can be analysed.

This must not exceed the number of bins in the profile. A further complication is
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that, strictly speaking, a number of bins should be cut from the profile in order

to find an independent estimate of the noise level of the profiles in order to find

the significance of the components, as described below.

If a number of profiles greater than the number of bins used in the analysis is

used, it will require a greater number of eigenvectors to represent them. It there-

fore cannot be guaranteed that all principal components will be represented. By

passing an increasing number of profiles through PCATEST, then reconstructing

them using the eigenvectors, it can be seen that the profiles represent the data

less and less accurately as we increase the number of profiles beyond the number

of bins.

On the other hand, if the number of profiles used is less than the number of

used bins, then principal component analysis will still be able to reproduce the

dataset with nbins non-zero, orthogonal components.

Despite this substantial drawback, principal component analysis has one unique

advantage over the direct Lomb-Scargle periodogram used in LOMBPERIOD : it

also gives the user information, not only on the strength and period of the varia-

tion, but on exactly how the profiles vary over time, allowing detected periodicities

due to factors other than precession to be weeded out.

3.6.5 Finding the Significance Levels of Components

The significance level of the components is found by comparing the first two

principal components with a Gaussian noise model of the same width.

To do this, we represent the two most principal components, denoted rv1

and rv2, as a two-dimensional plot. We then calculate the mean and standard

deviation for both rv1 and rv2. For pulsars that are not precessing, we expect

a plot of rv1/rv2 to be purely noise, hence distributed as a Gaussian. We then

use the Numerical Recipes (Press et al. 1992) subroutine ks2d1s to perform a
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Kolmogorov-Smirnov test to compare our rv1/rv2 plot with a Gaussian model

of the same centre and standard deviation. ks2d1s returns an estimate of the

significance of a match between our dataset and the noise model, which can be

interpreted as a probability that shape changes are not occurring in the pulsar.

3.6.6 Additional Tests

3.6.6.1 The Output of PCATEST

Of course, identifying change in principal components is only the first stage. Find-

ing one or more significant components only means that we know the pulse profile

is changing. This could be due to a variety of factors, such as those explained in

Chapter 2. To identify precessing pulsars from pulsars exhibiting profile shape

changes for other reasons, we need to know how the profile is changing. There

are several further tests we can subject the data to in order to do this.

3.6.6.2 rv1 vs. Time

One useful plot we can make is of rv1, the contribution of the most principal

component to the data, as a function of time. Using this, we can see the primary

variations in the pulse profile one would expect from interference such as changes

in instrumental errors, long-term moding, etc., and separate them from those we

would expect to find from precession.

For a precessing pulsar we would expect to find a sinusoidal, or at the very

least pseudo-sinusoidal, variation in the rv1/time plot, although this may be com-

plicated by other, less significant principal components, or by systemic changes in

our receiver setup. Changes in instrumental errors could occur on long or short

timescales, hence could manifest themselves as either white noise (which could

form co-incidentally to appear to be periodic for large enough samples), or as

step functions or similar patterns, respectively.
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3.6.6.3 rv1 vs. rv2

More information can be gleaned from the rv1− rv2 plot — i.e. plotting the con-

tributions of the first two significant components against each other. By doing

this, we can tell how the profile is changing between its extrema. For a moding

pulsar, we should expect to see two or more large ‘islands’ in this plot, corre-

sponding to the different modes. For a precessing pulsar, these islands would be

connected be a weak bridge as the profile moves (pseudo-)sinusoidally between

two extrema. For noise and most instrumental effects (including insufficient inte-

gration time for noisy pulsars, or pulsars moding on short timescales), one would

expect to find a noisy, Gaussian-like rv1 − rv2 plot.

This plot can be used in conjunction with the rv1 – time plot in order to

identify true variations from statistical noise by matching visual variations in

periodicity observed in the rv1 – time plot with islands observed in the rv1− rv2

plot. For complex changes in pulse profile, an rv1 – rv2 – rv3 plot, in three

dimensions, can also be useful.

3.6.6.4 Lomb-Scargle Periodogram of rv1

Naturally, for precessing pulsars, one of the key features is that the pulsars are

periodic in the nature of their profile changes. By constructing a Lomb-Scargle

periodogram of rv1, we can identify periodicities in the principal component. If

we suspect that a pulsar is varying periodically, we can use this to identify at

what rate the variation is taking place.

This stage is performed automatically by PCATEST. We again use the Nu-

merical Recipes subroutine FASPER (Press et al. 1992).

For this plot, as for the above plots, it may also be instructive to plot successive

components, e.g. a periodogram of rv2 and rv3, etc., to identify secondary changes

in pulsar profile, which could be due to a combination of factors, such as precession
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on multiple periods, or moding superimposed on precessional change, or similar

factors.

3.6.7 Note on Analysis

We expect that pulsars that exhibit precession should show concurrent periodic-

ities using both LOMBPERIOD and PCATEST. We also expect them to show

periodic (or quasi-periodic) changes of one or more principal components over

time. In addition to this, we also expect the timing residuals of the pulsars

to show (pseudo-)sinusoidal variations, which we can again test with FASPER.

Therefore, in order to be certain that precession exists we must find changes in

all of the above.



Chapter 4

Application and Results

4.1 The Data

4.1.1 Jodrell Bank Pulsar Database

Jodrell Bank’s pulsar database contains timing and profile data for all the pulsars

observed at Jodrell Bank using the Mk I Lovell, Mk II and 42-foot telescopes as

far back as 1978. This unique dataset provides the basis for a major study of

precessing pulsars in the Northern (and a significant part of the Southern) Sky.

The database covers several hundred pulsars down to a declination of about

−30, thus covering three-quarters of the sky. The majority of these pulsars are

concentrated in the Galactic Plane and near the Galactic Centre. Although this

is a true concentration, due to the shape of the galaxy and our location in it, it is

enhanced by the fact that search surveys, such as the Parkers survey, concentrate

in this area. This is a potentially important selection effect.

The data is stored in an internal format, which can be converted to the EPN

format (Lorimer et al. 1998) used in the program using the program PSRPROF.

This allows a concatenated EPN file containing all the information on profile

changes to be created.

68
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4.1.2 Our Analysis

Our analysis covered 644 pulsars from the database, each with several years of

data from the Mk I Lovell and Mk II telescopes at Jodrell Bank (the vast majority

of these are from the Lovell telescope, with the Mark II telescope being used to

‘fill-in’ during the upgrade of the Lovell telescope). A total of 15 of these pulsars

also had data taken on a near-daily basis using the 42-foot telescope, also at

Jodrell Bank.

Since periodicity searches require a statistically significant number of profiles

in order to produce convincing results, a criterium was put in place that a full

analysis was only performed on pulsars with (arbitrarily) 15 or more “suitable”

observations. In this context, suitable means that the profiles are in the correct

frequency range and of sufficient signal-to-noise. The frequency criterium was

necessary as pulse profiles are known to change dramatically with frequency. The

majority of the observations available were taken in the L-band; thus, a range of

1400 ± 100 MHz was deemed acceptable. The exception to this was the 42-foot

data, for which a range of 600 ± 50 MHz was used. The signal-to-noise criterium

was put in place to avoid including non-detections and observations contaminated

by RFI. Here, a signal-to-noise ratio (peak to r.m.s.) of 12 or more (again chosen

somewhat arbitrarily, see below) was required to ‘pass’ a profile.

A total of 281 pulsars passed these selection criteria and ran successfully

through the program for the Lovell/Mk II data, as well as nine pulsars for the 42-

foot data. There was insufficient memory to cover the Crab Pulsar (B0531+21)

on the Lovell/Mk II data, and B1929+10, B0950+08, B1133+16, B1933+16,

B1642−03 and B0329+54 on the 42-foot data. For that reason, the data for these

pulsars were split into 1000-day sections and each section analysed separately.

A brief analysis was also done of the timing residuals for the most significant

pulsars. While all the available data was used in our profile shape analysis, the
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timing residual data extends over a greater period of time, and does not require

such a high signal-to-noise to fit a timing point. We have therefore used this data

to better corroborate (or refute) any significant frequencies we have found.

4.1.3 Excluded Data

During initial trials of the program, we found a number of periodicities present

around 4000 days in a significant proportion of the pulsars. Further inspection

of the data found that they were caused by changes in the filterbanks used. Due

to the dispersion of the signal by the interstellar medium (see Chapter 1), the

increased bandwidth caused an extra ‘smearing’ of the signal in the time-domain,

resulting in a wider (hence differently shaped) profile.

From the observation log books at Jodrell Bank, we identified changes from

a 32 × 1 MHz filterbank to a 40 × 1 MHz filterbank and back between around

5th August 1988 and on 18th August 1989. A similar change was noted to a

32× 3 MHz filterbank between roughly 4 November 1997 and 21st August 1999.

Several other changes were noted, in particular a major hardware upgrade in

December 1988 – January 1989. A multi-beam receiver, which uses X and Y

linear polarisation, instead of L and R circular polarisation, has also been used

on the telescope from time to time. Additionally, prior to the 1997 changeover,

the filterbank used a four-channel L, R, Q and U polarisation input, whereas

afterwards a L, L, R, R polarisation input has been used. In this study, we

only deal with intensity measurements, so polarisation should not affect our data

unless the gains of the polarised receivers are incorrect at the time of observation.

However, as can be seen in individual cases in Chapter 5, the differences between

the pre-1997 and current filterbanks are sufficient to make a substantial difference

to some pulsars, which is reflected in our data.

The solution to this problem was to exclude the data during the periods in
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which the 32×1 MHz filterbank setup was not used, this data consequently ranges

from approximately MJD 50760 to 51415, and from MJD 47380 to 47760.

4.2 Lomb-Scargle Periodogram Results

4.2.1 Effectiveness from Monte-Carlo Simulations

Monte-Carlo simulations were performed using the fake profile generator (MAKE-

MODEL, see Chapter 3) to assess the effectiveness and limitations of the analysis

used. Our tests used models optimised for maximum detectability in order to set

lower limits on what we can expect to detect.

For these simulations, we used a model of the emission cone of an B1828−11 -

type pulsar. For this model, we created 500 profiles of 512 bins with varying signal

to noise. We modelled the emission cone as a nested cone structure, comprising

of a hollow cone with a central component. This is unlike the single component

of B1828−11, but it is easier to detect changes in this system, as normalisation

of the profiles does not result in losing changes in flux density. The beam was

characterised by a Gaussian central component with a full-width half-maximum

(FWHM) of 3◦, and a second, hollow component with a cone radius of 9◦.9 (typical

for a pulsar with the period of B1828−11), a 3◦ FWHM and an amplitude 20%

of the central component. A line-of-sight cut was taken 1◦ from the centre of this

beam. The variation in this can be seen in Figure 4.1.

Precession was simulated by inserting a sinusoidal variation into the offset of

the line-of-sight cut from the centre of the beam. Tests were conducted with dif-

fering amounts of white noise added to the profiles, to simulate differing signal-to-

noise (S/N) ratios. These are presented in Figure 4.2. Tests were also conducted

for different amplitudes of sinusoidal variation, representing different amounts of

precession. These are presented in Figure 4.3. The precession period used in
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Figure 4.1: The variation of profiles in our Monte-Carlo simulation can be seen
in the above plot. This shows two profiles, representing a change in our line of
sight of 0◦.5 from a beam characteristic of an 1828-11 -type pulsar.

these tests was 250 days, with a varying sampling time between 9.5 and 10.5

days. ‘Clumping’ of data was avoided to maximise detection to allow lower limits

to be set, and S/N was taken to be constant; which is true to first order for an

unchanging receiver setup, providing the pulsar maintains constant flux density

and neglecting scintillation.

Detection was measured using the ‘probabilities’ given by the FASPER sub-

routine (Press et al. 1992). This is described as the approximate probability that

a detection is due to random variations and is not inherently real, also referred to

as a ‘null probability’. For convenience, a scale of ‘detectability’ was used, given

by:

Detectability = − log(NullProbability). (4.1)

Limits in computing accuracy mean that low probabilities are not always calcu-

lable. In these cases, the detectability has been set to 16.7, which is above this
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Figure 4.2: This figure shows how the effectiveness of Lomb-Scargle varies as the
signal-to-noise ratio is changed, as obtained from Monte-Carlo simulations. The
‘plus’ signs represent detections and their corresponding ‘probabilities’ as inferred
from the power obtained using LOMBPERIOD (see Chapter 3); the crosses rep-
resent the highest ‘probability’ value of false detections (over 5% different from
true period). For an B1828–11 -type pulsar with 500 suitable profiles, we can
see the detections are comparable to noise below about a fractional noise level of
0.03-0.035, corresponding to a S/N level of 29-33. Refer to the text for details of
the model used and for a full description of the ‘probabilities’ found.

As can be seen from Figure 4.2, even under these near-ideal conditions, Lomb-

Scargle requires a S/N ratio of at least ˜30 to detect a 0◦.5 precession of our model

pulsar. There are a number of situations, however, where a lower S/N ratio should

still produce good periodicities. Such circumstances could include more complex

emission cones, or cones that show patchy emission, or pulsars whose flux density

(and hence S/N) varies with precession angle. There appears to be little harm

in adding low S/N profiles to otherwise high S/N data; thus, to account for this

and to allow for more complex profiles that may have patchy emission or other

more readily changeable structures, while ensuring that RFI (radio frequency
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Figure 4.3: This figure shows how the effectiveness of Lomb-Scargle varies as the
amount of precession is changed. The symbols are as in the previous figure. This
simulation assumes a varying cut through a hollow emission cone as characterised
by an 1828-11 -type pulsar, as described in the text. We can see that detection
‘probabilities’ become comparable with false detection ‘probabilities’ between 0.3-
0.4 degrees of precession.

interference) and other noise sources were kept to a minimum, a S/N limit of 12

was set for our results using the database.

We can also see from this Figure that, regardless of the S/N, the false detec-

tion level remains roughly constant. The mean level of false detections is at a

probability of 10−3.2, with a 95% confidence level at 10−4.5. While this may be

simplified, it gives us a rough cutoff for estimating significant results at a prob-

ability level of 10−4 to 10−5. It is worth noting that most of the false detections

that are found at high powers are attributable to harmonics or sub-harmonics

of the precession period, with most of these being at twice the input precession

period.

For a pulsar with a typical flux (such as 1828-11: 1.4 mJy at 1400 MHz), we
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can expect an average S/N ratio of around 50. In Figure 4.3 we have plotted the

detection probabilities for the test scenario for varying amplitudes of precession.

We can see that, even for favourable conditions, clear evidence of precession only

presents itself for pulsars with greater than 0◦.6 precessional amplitude, with the

detection limit being around 0◦.3.

Again, it must be stressed that this is a simplified model. For pulsars with

higher signal-to-noise, it should be possible to detect lower amounts of precession,

and vice versa. Figure 4.2 shows that detectability is roughly a linear function of

the fractional noise component. It will also depend on a number of other factors,

such as the number of profiles available, the ‘clumping’ of the data, the number

of precessional cycles observed, along with many other factors.

These tests also gave an indication as to the accuracy of the periodicities

found. The accuracy was found to vary as a weak, approximately linear function

of fractional noise, having an uncertainty of around 2.5% at a S/N ratio of 50

and 2% at a S/N ratio of 100 in the above tests. Independent tests also found it

to be a function of the number of observed profiles, varying as roughly (number

of profiles)−1/2. It is useful also to note that the periods of the false detections

are usually close to the sample rate of the data.

4.2.2 Results from the Database

4.2.2.1 Significant Pulsars

Of the 281 pulsars examined from the Lovell/Mk II database, 37 show periodicity

detections more significant than our estimated 95% confidence level. These are

presented in Table 4.1. The rough uncertainties in the periods given in this table,

and in the rest of the Lomb-Scargle analysis, are given by:

δp =
1

4

p

np

(4.2)
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where p is the period detected, np is the number of these periods covered by the

data.
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While individual cases will be dealt with in the next chapter, it is worth

emphasising here that, due to the sensitivity and timescale of the measurements

we are making, it is certain that not all of the above periodicities are attributable

to precession: many will be caused by instrumental changes, such as the filterbank

changes described above, or by processing artifacts to do with the timespan of

the available data, while others will be caused be real effects in the pulsar, such

as moding.

4.2.2.2 Data from the 42-foot Telescope

Significant results were also found from data taken using the 42-foot telescope.

The changes in configuration over the last 20 years have been minor, so this

should represent an accurate source of data for changes in pulse profile shape.

The data for several of these pulsars is too large to be analysed in one run,

so the data for each pulsar was split into 1000-day segments and each segment

analysed separately. The results are shown in Table 4.2.
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4.2.2.3 Statistical Properties of the Significant Pulsars

Information about the observed pulsars was taken from the ATNF pulsar cata-

logue (Manchester et al. 2005)1.

At first glance, there appears to be very little separating the aforementioned

pulsars from the general population, and to a large extent, this is true. The only

disparity between the ‘periodic’ and ‘non-periodic’ sets are in the flux received,

the inferred pulsar luminosity, the estimated rate of energy loss (Ė), the rate

of change of period (Ṗ ) and the inferred age (t) of the pulsars. Naturally, the

first three values are directly related, and it is expected that the fourth and fifth

should be also.

As a comparison, the median values of pulsar flux at 1400 MHz are 100.62±0.55

mJy and 100.32±0.47 mJy for the ‘periodic’ and ‘non-periodic’ datasets, respec-

tively, and similarly 101.64±0.66 mJy and 101.30±0.52 mJy at 400 MHz; the median

inferred luminosities at 1400 MHz are 101.62±0.80 mJy kpc2 and 101.37±0.74 mJy

kpc2; the median Ė are 1033.6±1.2 ergs/s and 1032.6±1.3 ergs/s; the median Ṗ are

10−14.2±1.6 and 10−14.6±1.3; and the median ages are 106.1±1.2 yr and 106.6±1.1 yr

(all values given are median values with standard deviation).

From the above data, we conclude that the pulsars identified in the ‘periodic’

dataset are, by and large, representative of the dataset as a whole. There is a

slight bias towards younger, brighter pulsars, but not enough to warrant concern.

A full statistical analysis would be required to determine whether this bias is real,

or a random bias in a small dataset. Since we do not necessarily believe many of

the ‘periodic’ pulsars are precessing, this process is covered later in more detail.

We must therefore assess whether these periodicities are due to precession or

not. As shown in the Monte-Carlo tests, most of the false detections happen at

a period close to the sampling frequency, as can be seen in both tables 4.1 and

1Web Address: http://www.atnf.csiro.au/research/pulsar/psrcat
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4.2, there are a number of very short periodicities, particularly in the latter case.

There are also many longer periods, which could be part of a general trend, which

is more linear than periodic in nature. In these cases, we must be very careful

when assessing whether this is periodicity or not. The cases above are described

individually in Chapter 5 and in the Appendix.

4.3 Principal Component Analysis Results

4.3.1 Effectiveness from Monte-Carlo Simulations

4.3.1.1 Simulation Data

Using the same Monte-Carlo simulations done for the Lomb-Scargle periodogram

search, we have tested the efficiency with which our Principal Component Analy-

sis software picks up variations in pulse profile. The results for this analysis are

presented in Figures 4.4 through 4.9.

Figures 4.4 and 4.5 show how the strongest periodicity changes with changing

signal to noise and precession amplitude for the system used in the Lomb-Scargle

analysis. A fairly sharp cutoff can be seen in both cases. It could be that,

at this point, the principal component is no longer the precessional variation,

but a noise term instead, with the precessional variation being moved to a ‘less

principal’ position, or being split among the noise terms.

Figures 4.6 and 4.7 show the corresponding detection levels, as given by the

null probability. A clear cutoff can also be seen in these plots between the cor-

rectly found periods and the false detections, corresponding to a probability of

around 10−3 to 10−4. This gives a limit on how much we should believe any

periodicities we obtain from Principal Component Analysis from the database.

Figures 4.8 and 4.9 show the probability of the departure of the rv1/rv2 plot
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Figure 4.4: Detected periods as a function of fractional noise level for an input
period of 250 units and a sample time of 5 units. Periodicities are correct up to
around a fractional noise level of 0.015, corresponding to a S/N ratio of 67. An
increasing spread of periods can be seen up to this point, with periods generally
clustering towards the sample time beyond it.
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Figure 4.5: Detected periods as a function of precessional amplitude in degrees.
Low amplitudes result in clustering around the sample time, as seen in Figure
4.4. Only for amplitudes greater than around 2◦.6 is the true period picked up.
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Figure 4.6: Periodicity strength, given as a function of null probability, or ‘de-
tectability’ (see text). This figure accompanies Figure 4.4. The corresponding
‘probability’ cutoff for background noise is approximately 10−3 to 10−4.
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Figure 4.7: As Figure 4.6. This figure corresponds to Figure 4.5. The cutoff can
again be seen at approximately 10−3 to 10−4.
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Figure 4.8: Null probabilities from a Kolmogorov-Smirnov test of the first two
principal components as a function of fractional noise. An effective zero null
probability can be seen for fractional noise levels of less than approximately 0.02.
This gradually increases, then, remarkably, decreases again. The cause for this
decrease is unknown.
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Figure 4.9: Null probabilities from a Kolmogorov-Smirnov test of the first two
principal components as a function of precessional amplitude. Low amplitudes
result in relatively high null probabilities, as can be seen between amplitudes of
0◦.3 to 0◦.7. Further tests were done (see figs. 4.5 and 4.7) at higher amplitudes,
but these result in zero null probabilities, so are not plotted.
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(as described in Chapter 3, a plot of the contributions of the first two prin-

cipal components for each profile against each other) from a two-dimensional

Gaussian fit. Generally, the probability shows a decrease as the precession be-

comes stronger, either through reduced noise or increased amplitude. However,

there is a perplexing drop at low S/N as the probability tends once more to zero.

It is not known why this is present.

The rv1/rv2 probability is only useful to tell us that profile changes are taking

place, but not whether they are periodic or not. Thus, it gives us an more of an

insight into the existence of long-period moding, which in itself is useful, rather

than precession.

4.3.1.2 A Comparison with the Lomb-Scargle Periodogram Method

Of interest to further searches is the relative sensitivity of the two methods. It is

interesting to note that, in this particular case (although this cannot necessarily

be said in general), the Lomb-Scargle periodogram correctly identifies periods to

roughly twice the fractional noise level of the Principal Component Analysis, or

alternatively about 1
6
–1

9
times the amplitude of precession, making the Lomb-

Scargle method clearly advantageous.

This is interesting, as the Principal Component Analysis is the tool most

widely used to search for profile changes in the pulsar community, and let to the

conclusive evidence that B1828–11 was precessing (Stairs et al. 2000). However,

it seems, at least in this implementation, that the Lomb-Scargle method will be

able to test better for precession.
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Pulsar Noof Detected Null log(Null
Name profiles period Probab- Probability)

used (days) ility [‘Detectability’]
J1713+0747 171 4458 1.35×10−16 15.87
B1828–11 531 249.3 3.31×10−15 14.48
B0144+59 209 310.6 8.27×10−9 8.08
B1830–08 264 5342 1.36×10−8 7.87
B0355+54 407 2459 4.44×10−6 5.35

J0631+1036 202 877.1 1.43×10−5 4.85
B1826–17 158 5778 1.53×10−5 4.82
B1805–20 115 106973 1.53×10−5 4.81
B2035+36 56 3191 3.07×10−5 4.51
J1835–1031 53 2077 8.26×10−5 4.08
B1834–04 131 106892 1.24×10−4 3.91
B1913+10 265 5349 2.60×10−4 3.58

J1022+1001 181 4113 2.64×10−4 3.58
J2043+2740 63 1103 3.15×10−4 3.50

Table 4.3: Periodicities derived from a Principal Component Analysis of the
Jodrell Bank pulsar database, along with the strength of the periodicity detected
by a Lomb-Scargle periodogram analysis of the most principal component, as
given by their null probability (see text).

4.3.2 Results from the Database

4.3.2.1 Significant Pulsars

Of the 281 pulsars examined from the Lovell/Mk II database, 14 show periodicity

detections more significant than our estimated cut-off level. These are presented

in Table 4.3.

For the Principal Component Analysis (PCA), a period limit was not set.

This produces some artifacts, such as those seen in B1805−20 and B1834−04

— clearly these periodicities are not detectable in a 4000-day observation set.

We must also view the other longer periodicities, such as those of J1713+0747,

B1830−08, J1022+1001 and B1913+10 with suspicion (see next Chapter). Again,

we must be careful of instrumental changes and other factor which can pose as

precession.
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4.3.2.2 Data from the 42-foot Telescope

The 42-foot telescope data was analysed using the Principal Component Analysis

routines in the same way, and using the same segmentation as in the Lomb-Scargle

analysis. The results are presented in Table 4.4.

There are three pulsars here which make it above the detection threshold,

namely B1929+10, B0740−28 and B0950+08. In the case of B1929+10, the

periodicity observed is very close to the sampling time, so we should be wary of

this. Pulsar B0740−28’s periodicity does not give any cause for concern, nor does

B0950+08’s, although it is close to the detection limit. All three cases will be

discussed in more detail in the next Chapter.

4.3.2.3 General Profile Changes

Another question we can ask is whether the pulsar profiles are changing in general,

rather than periodically. This should find pulsars which exhibit moding on long

timescales, and precessional effects that might not exhibit periodic behaviour,

such as the 3–7 year periodicities observed in B1642−03 (see Shabanova & Urama

(2000) and Shabanova et al. (2001)). What it will not pick up is pulsars which

mode on timescales shorter than the length of the observation used to create the

profile.

We can obtain these by plotting the two most significant eigenvectors (or

‘principal components’) from the PCA against each other, in an ‘rv1/rv2 plot (or

subsequent plots for subsequent eigenvectors), as done in the Monte-Carlo trials.

For unchanging profiles, these should represent a Gaussian distribution, but will

become increasingly non-Gaussian for profile changes. By measuring this amount

of change, and representing it as the probability that this could occur randomly

(the ‘null probability’ or ‘detectability’ described in the Lomb-Scargle analysis),

we can find the probability that the pulse profile is changing.
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Start Pulsar Noof Detected log(Null
Date Name profiles period Probability)

(MJD) used (days) [‘Detectability’]
’000s
48 B0329+54 774 26.29 0.03
49 B0329+54 899 15.64 0.12
50 B0329+54 643 1.99 0.12
51 B0329+54 540 302.37 3.08
52 B0329+54 820 1464.00 2.12
53 B0329+54 477 244.66 0.02
47 B0950+08 83 576.22 2.15
48 B0950+08 506 612.88 4.53
49 B0950+08 618 1.88 0.09
50 B0950+08 404 808.88 0.11
51 B0950+08 389 609.94 0.01
52 B0950+08 517 190.64 1.48
53 B0950+08 304 350.78 0.00
47 B1133+16 61 4264.10 0.00
48 B1133+16 578 2.38 0.72
49 B1133+16 600 346.05 0.42
50 B1133+16 406 50757.41 0.00
51 B1133+16 435 256.79 0.29
52 B1133+16 525 69.12 0.09
53 B1133+16 241 262.80 0.00
47 B1642–03 98 1464.86 0.00
48 B1642–03 722 1.71 0.14
49 B1642–03 814 100.68 0.02
50 B1642–03 586 41.31 0.31
51 B1642–03 517 2.18 0.00
52 B1642–03 698 18.57 0.01
53 B1642–03 413 215.87 0.00
47 B1929+10 32 5643.82 0.13
48 B1929+10 407 1010.25 37.11
49 B1929+10 218 809.47 0.00
50 B1929+10 129 447.18 0.00
51 B1929+10 181 454.12 0.00
52 B1929+10 197 787.99 1.09
53 B1929+10 119 447.52 0.00
48 B1933+16 623 2.49 0.00
49 B1933+16 828 6.16 0.03
50 B1933+16 592 2.28 0.74
51 B1933+16 525 1.59 0.15
52 B1933+16 750 29.59 0.67
53 B1933+16 436 166.09 0.00

B0740–28 410 156.88 14.62
B0355+54 63 52953.73 0.01
B1508+55 29 3627.57 0.55

Table 4.4: Periodicities derived from a Principal Component Analysis of the
Jodrell Bank pulsar database, along with the strength of the periodicity detected
by a Lomb-Scargle periodogram analysis of the most principal component, as
given by their estimated null probability (see text).
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Table 4.5: General profile changes as inferred from a Principal Component Analy-
sis of the Jodrell Bank pulsar database, along with the strength of the change
as given by the null probability for the first four eigenvectors (see text). The
asterisked pulsars show pulsars known to be mode changing.

Pulsar log(Null Probabilities) or ‘Detectability’
Name rv1/rv2 rv2/rv3 rv3/rv4

B1933+16 50.00 50.00 50.00
B0329+54* 50.00 50.00 50.00
B1828–11 50.00 50.00 21.09
B0950+08 42.27 50.00 50.00
B0540+23 40.73 29.83 32.97
B0355+54* 37.11 43.95 40.16
J0614+2229 36.84 4.78 11.71

The difficulty in this case is knowing where to put the cut-off point. As can

be seen in the Monte-Carlo trials, the levels at which we find the null probability

for non-detections can be anything down to 10−40, or even 10−45. In Table 4.5,

we present the pulsars showing rv1/rv2 probabilities of less than 10−35.

It is fairly obvious that this method works quite well. Pulsars B0329+54 and

B0355+54 are known to be mode changing (Rankin 1986) and B1828−11 has

also been picked up well. The remainder of these cases will be discussed in the

next section.

4.4 Comparing the Two Methods

For all but the strongest few pulsars, the Lomb-Scargle periodogram method and

the Principal Component Analysis method do not appear to be complimentary.

As has been seen before, there is a wide range where Lomb-Scargle can pick up

periodicities where our PCA–Lomb-Scargle analysis cannot.

The success of Principal Component Analysis is our investigation relies on

the precessional change being represented in the Principal Component, rather

than subsequent components. A more complete analysis could be done of these
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subsequent components, and a Lomb-Scargle periodogram performed on these.

This is not included here, but may be the subject of a further study.

A case in point here is that of pulsar B1737-30. Lomb-Scargle results gave

very strong periodicities at 7214 days (not necessarily attributable to precession),

whereas a periodogram of the PCA results give essentially a zero strength peri-

odicity, with a 68% null probability. An asymmetry analysis of the eigenvectors

shows a weak asymmetry in rv1/rv2, but stronger asymmetries in rv2/rv3 and

rv3/rv4, suggesting a real profile change is actually in the third eigenvector. In

cases such as these, it may be that changes in the instrumentation are sufficient

to produce profile changes leading to the first and second eigenvectors, with the

real change in the pulsar profile then only represented by the third.

The fact that precession was correctly detected in B1828–11 using both meth-

ods in concurrence with other studies shows that both methods do indeed work,

which allows us to put a sensible limit on the number of pulsars exhibiting strong

precessional behaviour to perhaps no more than a handful and certainly to say

that it is only a minority of pulsars that exhibit strong precessional effects. The

accuracy of the results for strong detections (at least in the Monte Carlo simu-

lations) is similar for results where the periodicities were correctly determined,

with a standard deviation of 3.8 days for Lomb-Scargle and 4.2 days for PCA/L-S

in a 250 day period.

It should be remembered that, in addition to pulse profile changes, pulse

timing should also be affected by precession. Thus, we should also expect to see

a corresponding change in the pulse timing residuals as well. We must therefore

collate the results from the Lomb-Scargle periodogram analysis; the Lomb-Scargle

analysis and the asymmetry analysis of the Principal Component Analysis; and

the timing residuals for each pulsar. The results of this are presented in the next

Chapter.



Chapter 5

Individual Cases

5.1 Overview

In Chapter 4, a statistical overview of the results from our analysis was presented.

As stated, all the pulsars found using the periodicity searches described are not

necessarily precessing. There are a significant number of other factors, mostly

changes in instrumental configuration, which would cause apparent periodicities

in the data.

Changes of the filterbanks, which has led to some of the data not being in-

cluded in the analysis, are described in detail in Chapter 4 and, as noted there,

many problems due to changes in filterbanks still remain. A multibeam receiver

was also used on the telescope to collect some of the profiles used here. The re-

ceiver used is not expected to make a significant difference to the resulting profile.

However, this does depend on both left and right polarisations being used to form

total intensity with appropriate gain factors. If they are not, this could make a

significant enough difference in highly polarised pulsars to affect our results, as

the multibeam system is recording linear polarisation in contrast to the circular

polarisation used otherwise.

In order to find out which, if any, of the pulsars in our lists are precessing, we

96
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need to examine them on an individual basis, and collate the data from all our

sources — our Lomb-Scargle (L-S) periodogram results, our L-S analysis of our

Principal Component Analysis (PCA) results, our asymmetry tests on our PCA

results, and the timing residuals from the Jodrell Bank pulsar database.

In the following sections, we present the case for each pulsar in turn, beginning

with the prototype precessing pulsar, B1828–11, and examine the evidence for

each one.

5.2 B1828–11 — The Prototype

5.2.1 Literature

Since the discovery of profile shape changes and timing residuals consistent pre-

cession in B1828–11 by Stairs et al. (2000), there have been several follow-up

studies. Link & Epstein (2001) confirm Stairs et al.’s periodicities in the timing

residuals of 250, 500 and 1000 days and go on to imply a 3◦ amplitude, or ‘wobble

angle’ “if the star’s dipole moment is nearly orthogonal to its symmetry axis”,

and suggest that the beam has an ‘hourglass’ shape. This is significantly larger

than the 0◦.3 estimated by Stairs et al. (2000).

Jones & Andersson (2001) find that the wobble angle should be 2◦ for a near-

orthogonal beam (χ > 89◦). Rezania (2003a) gives another model which finds

that for a 3◦ wobble angle, the second (500 day) and fourth (250 day) harmonics

are dominant. In Rezania (2003b), he goes on to suggest a dumbbell-shaped

beam, which is closer to the standard cone model.

Cutler et al. (2003) find that the precessional period is shorter than expected,

and go on to suggest that the crust is under considerable magnetic stress to

produce this precession. Wasserman (2003) follows this by stating that, in this

scenario, precession should not be damped considerably.
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However, consensus on the free precession model for B1828–11 and other

pulsars is not entirely agreed upon. Qiao et al. (2003) suggest that an accretion

disc with its axis misaligned to the pulsar’s rotation axis could also produce profile

changes due to gyroscopic precession. What is agreed on, though, is that 250 and

500 day periodicities are visible in the profile changes and 250, 500 and 1000 day

periods are visible in the timing residuals.

5.2.2 Lomb-Scargle Results

Figure 5.1 shows the L-S periodogram results for B1828–11, showing the strength

of periodicities as a function of phase and frequency over the full profile. Stairs

et al. (2000) modelled the varying beam shape of B1828–11 to be a weighted sum

of two Gaussian profiles of different widths. We therefore expect that both sides

of the profile should be showing these periodic changes, which is born out by the

high periodicities we see in these regions.

We observe the 250 and 500 day (0.004, 0.002 d−1) periods found by Stairs

et al. (2000), and measure them at 247 and 493 days. From our Monte-Carlo

simulations we estimate errors on these values of ± 4 and ± 8 days, respectively.

We also find periodicities at 119±2 and 157±3 days, which presumably correspond

to the eighth and sixth harmonics.

We also find two other noteworthy periodicities. A weak periodicity exists

at 1210 ± 15 days, which, due to its spread in the frequency domain (i.e. noisy

structure) evident from the figure, is likely instrumental. More interesting, how-

ever, is a stronger periodicity at 227±4 days, which is the strongest frequency

visible in a number of seemingly resonant frequencies, each separated by roughly

a factor of 23
25

in the frequency domain. This may imply some sort of inherent

interference or secondary periodicity causing a beating effect, some unknown in-

strumental effect. More likely, however, is that it is a byproduct of the sampling
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Figure 5.1: Signal strength for B1828–11 from Lomb-Scargle periodogram analy-
sis. The greyscale represents periodicity strength from noise (white) to strong
periodicity (black). Contours are plotted at null probability levels of 5.73×10−7

n

for contour number n (c.f. background noise has a mean of 3 × 10−4). The
x-axis shows pulse phase and the y-axis shows frequency in units of 1

days
. Clear

periodicities can be seen at the expected 250 and 500 day periods. Also visible
are harmonics around 167 and 125 day periods, as well as substantial evidence
for periodicities at non-harmonic periods.



CHAPTER 5. INDIVIDUAL CASES 100

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08

P
er

io
di

ci
ty

 s
tr

en
gt

h 
(a

rb
itr

ar
y 

un
its

)

Frequency (1/days)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0  0.002  0.004  0.006  0.008  0.01

P
er

io
di

ci
ty

 s
tr

en
gt

h 
(a

rb
itr

ar
y 

un
its

)

Frequency (1/days)

Figure 5.2: Signal strength against frequency for B1828–11 from a Lomb-Scargle
periodogram analysis of the Principal Component Analysis. The right-hand plot
shows a zoomed-in version from frequencies of 0–0.01 days−1. Peaks can clearly
be seen at frequencies of 0.002 and 0.004 days−1 (500 and 250 days), along with
other, weaker frequencies described in the text.

of the observation times, combined with a high value of ofac, the oversampling

factor in the Lomb-Scargle analysis.

To test the last hypothesis, we performed a Monte-Carlo test similar to those

used in the previous chapter, but using the observation times for B1828–11. The

results show periodicities clumping around 3–8 days — near the sampling time,

as expected — at null ‘probability’ levels for around 10−3, which is towards the

top end of those expected for background noise. Thus, assuming the 227-day pe-

riodicity (and other associated periodicities) are not real, they must either be due

to processing artifacts, interference from instrumental effects (such as filterbank

changes, as seen later in other pulsars), or some other local phenomenon.

5.2.3 Principal Component Analysis Results

Figure 5.2 shows the periodicities obtained using a Lomb-Scargle Periodogram

analysis of the first eigenvector from the Principal Component Analysis (PCA).

Clear periodicities can be seen around 250±7 and 505±15 days. This is concur-

rent with the above Lomb-Scargle results and the works listed previously. Other



CHAPTER 5. INDIVIDUAL CASES 101

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

S
ec

on
d 

E
ig

en
ve

ct
or

 A
m

pl
itu

de

First Eigenvector Amplitude

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 47000  48000  49000  50000  51000  52000  53000

E
ig

en
ve

ct
or

 A
m

pl
itu

de

Modified Julian Date

Figure 5.3: The variation of the principal components (eigenvectors) from Prin-
cipal Component Analysis for B1828–11. The left-hand panel shows a plot of the
first and second most significant eigenvectors against each other (the dimensions
are set as a comparison to other pulsars shown later). For a static system, this
should represent a two-dimensional Gaussian. For a system precessing between
two states, a linear feature should be seen, which is clearly evident here. Outlying
points (here, and on similar plots later) are usually due to RFI in the profiles.
The right-hand panel shows the evolution of the first eigenvector over time, com-
parative to the ‘shape parameter’ used by Stairs et al. (2000). A definite variation
can be seen on scales of around 250 days.

periodicities can also be seen at around 667 days, 400 days and 220 days. The

157 day periodicity is picked up well, although at around 169±2 days, which is

closer to what would be expected. A periodicity at 118±2 days is also found, con-

sistent with the 119 day periodicity found from the phased-binned Lomb-Scargle

analysis above.

Figure 5.3 shows the variation the first two eigenvectors. A clear linear vari-

ation is visible when the two most significant eigenvectors are plotted against

each other, which is very distinctly different from the Gaussian one would expect

if there were no variation at all. This plot gives no evidence of precession, just

that consistent shape changes are taking place. The temporal evolution of the

principal eigenvector shows a clear variation unattributable to white noise and

is suggestive of a periodicity of around 250 days. Our data also reproduces the

broadening and narrowing of the pulse profile (Figure 5.4, as seen in Stairs et al.
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Figure 5.4: Possible profile changes from Principal Component Analysis of B1828–
11, showing profile extrema reconstructed from a mean profile and the two prin-
cipal eigenvectors. This plot shows the average profile, plus the first two compo-
nents at an amplitude of 0.4 and 0.3, respectively, for the solid profile, and at 0.7
and −0.25 for the dashed profile (c.f. Figure 5.3).

(2000).

5.2.4 Timing Residuals

Figure 5.5 shows the timing residuals from the Jodrell Bank database. These

were obtained from observations using the program PSRTIME. Much of the work

done on this pulsar has concentrated on the timing residuals, as these are easier

to obtain (and much more accurate) that shape change variations.

The residuals show a very distinct 500-day periodicity with other periods

superimposed on it. An analysis of these residuals is not done here, as they are

well-described elsewhere (e.g. Stairs et al. 2000).
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Figure 5.5: The timing residuals observed at Jodrell Bank for B1828–11 over the
last 20 years. The 500-day periodicity can be seen here very clearly.

5.2.5 Conclusions

Overall, the periodicities from L-S analysis of our PCA results appear to be

concordant with the phase-binned L-S results above. The only minor discrepancy

is that the periods determined by the two methods are slightly different, although

they are consistently short for the L-S and consistently long for the PCA/L-S and

within each others’ errors. Phase-binned L-S implies a fundamental periodicity

of 986±11 days and PCA/L-S implies a period of 1011±20 days.

The results from investigation of the eigenvector analysis shows a clear vari-

ation between two profile extrema. This has previously been characterised as

movement between two Gaussians of differing widths, which seems likely to cor-

respond to a varying cut through a standard hollow cone model. The timing

residuals also provide a clear periodicity at around 500 days.

This pulsar shows clear signs of precession-like behaviour in all the compo-

nents of our analysis — phase-binned L-S results, L-S analysis of PCA data,

consistent eigenvector variations in PCA data and periodic variations in timing,

all occurring on harmonics of the 1000-day timescale. We have not observed
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shape changes corresponding to the base frequency of this 1000-day period, but

have good evidence of having observed the second, fourth and sixth harmonics,

and may also have observed an eighth or ninth harmonic. We believe the 227-day

periodicity and its associated harmonics are not real.

5.3 B1642–03 — A Previous Timing Candidate

5.3.1 Literature

The main piece of literature involving B1642–03 as a candidate for precession

has been an investigation of timing irregularities performed by Shabanova et al.

(2001) and by Shabanova & Urama (2000).

In these works, the case for precession was presented based on pseudo-sinusoidal

behaviour. The study found cyclical changes in amplitude ranging in period from

three to seven years, clearly evident in the timing residuals. A power spectrum

analysis of the timing residuals found periodicities at 5000, 2500 and 1250 days,

approximately.

Earlier work was done on shape changes by Blaskiewicz (1991). This also

used a Principal Component Analysis and showed a periodic variation in the first

eigenvector on a timescale of around three years. However, this work used profiles

of only one linear polarisation. Polarisation data for this pulsar (Gould & Lyne

(1998), von Hoensbroech & Xilouris (1997)) show that the polarisation is not

negligible and varies over the profile. Thus, the profile shape is likely to change

depending on the parallactic angle, which in turn is dependant on the time of

day of the observation.
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Figure 5.6: The variation of the principal components (eigenvectors) from Princi-
pal Component Analysis for B1642–03. For a static system, this should be entirely
noise. The left-hand panel shows the evolution of the first eigenvector over time.
No clear variation or significant departure from a zero mean can be seen, and it
does not confirm the timing plots of Shabanova et al. (2001). The outlying points
mostly come from profiles with RFI not successfully removed during automatic
profile selection (see Chapter 3). The right-hand panel shows a plot of the two
most significant eigenvectors against each other (the dimensions of the plot are
identical to those used in B1828–11 and later examples), each point representing
a profile. For a static system, this is expected to be a two-dimensional Gaussian.
There is a statistically significant departure from this, but the uniformity of the
plot suggests this is due to a combination of two different datasets with different
signal-to-noise (e.g. Lovell and Mark II data).
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5.3.2 Results from the Lovell and Mark-II Telescope Data

The results from the analysis of B1642–03 show no correspondence between either

Blaskiewicz’s work or the clear periodicities in the timing residuals. In this case

Lomb-Scargle analysis would be ineffective (there are no significant periodicities

found) as the maxima in the timing residuals are separated by varying amounts

(presumably due to the addition of several harmonics). For such a system, we

would still expect to find periodicities in the principal components, or even a

non-Gaussian variation in them. Figure 5.6 shows that this is not the case. From

this it is assumed that either precession is not taking place in B1642–03, is taking

place in such a way that the pulse profile is not changing considerably, or is below

the detection limit of our software (although this is not thought to be the case,

given the large amplitude of the timing variations and the high signal-to-noise

ratio).

5.3.3 Results from the 42-foot Database

B1642–03 has also been observed with the 42-foot telescope due to its high bright-

ness. This allows us to do a further independent test of our null result. As de-

scribed previously, the data have been split up into 1000-day segments and each

analysed separately. When the amplitudes of the principal components are plot-

ted from these segments (see Figure 5.7) we once again find a very stable pulse

profile. The variations described by Blaskiewicz are on the same timescale as the

segment length, so longer period variations may not be easily detectable in the

42-foot data.

From our results from both the Lovell/Mark II and 42-foot databases, we

conclude that no profile changes are taking place for this pulsar. Hence, if the

variations seen by Shabanova et al. are due to precession, we expect it to be

occurring at a level below our detection threshold, and that it is possible that the
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Figure 5.7: This figure shows the variation of the principal components using
data from the 42-foot telescope. Since the data have been segmented into 1000-
day blocks, the eigenvectors for each segment are different. The discontinuities
between the segments reflect the fact that different principal (and other) com-
ponents have been assigned under the P.C.A. subroutine for each segment. This
data only includes the first 512 profiles from each segment due to restrictions in
the length of dataset for P.C.A. No significant changes can be seen in any of the
data segments which might correspond to a long-period profile variation such as
those described in Shabanova et al. (2001).

shape changes provided by Michael Blaskiewicz are due to the single polarisation

data used in that study.

5.4 J1022+1001 — A Millisecond Pulsar with

Profile Changes

5.4.1 Literature

J1022+1001 is known to exhibit profile shape changes, as described in Kramer

et al. (1999). It is also a ‘millisecond’ pulsar, with a period of 16.5 ms, orbiting
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an 0.87 solar mass companion (Camilo et al. 1996). This makes acquiring

sufficiently high temporal resolution data to detect profile changes difficult. The

pulsar is also very close to the ecliptic, with an ecliptic latitude of only −0◦3’50”,

meaning that it is liable to be affected significantly by the interplanetary medium,

which could produce profile changes on an annual basis, or potentially at other

periodicities, although Kramer et al. suggest that this is not the case here. The

timescales of changes given in the above reference are only on the order of hours,

which would appear as noise in our data — a periodicity search was conducted,

ranging in period from several hours to several months without success.

Ramachandran & Kramer (2003) also showed profile changes in this pulsar,

which are strongly dependant on frequency and time. J1022+1001 is strongly

polarised (Stairs et al. 1999), with the right-hand component being almost com-

pletely linearly polarised, and the left-hand component less so. The pulsar also

exhibits a considerable amount of circular polarisation. Kramer et al. found that

the profile changes were occurring in the left-hand, less-polarised component,

suggesting that this was not an instrumental effect due to poorly combined po-

larisations; however, their study used a narrow bandwidth. Hotan et al. (2004),

using a wide bandwidth (60 MHz) failed to show significant profile changes at all

beyond their instrumental errors of a few percent. As noted in Chapter 4, our

data were taken using a 32 MHz bandwidth before 1995, and a 64 MHz bandwidth

post-1997 (the intermediate data being excluded). The changes in profile over

time noted by Kramer et al. therefore seem to be due to a frequency-dependance

of the pulse profile and a modulation of the pulses by the changing scintillation

caused by the ISM.
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Figure 5.8: The variation of the second and third principal components (eigenvec-
tors) from Principal Component Analysis (the first characterising an instrumen-
tal variation caused by the change in filterbanks) for J1022+1001. The left-hand
panel shows the evolution of the first (solid) and second (dashed, offset by −1)
and third (dotted, offset by −2) eigenvectors over time. The first eigenvector ap-
pears to represent a difference in the dispersion of the profile, caused by the two
different filterbanks in use over the dataset (note the left-hand side is lower than
the right). The second term appears to represent the brightness of the bridge
between the two components and the third the ratio of the amplitudes of the
two components — the parameter used by Kramer et al. (1999). The right-hand
panel shows a plot of the second and third most significant eigenvectors against
each other (the dimensions of the plot are identical to those used in other exam-
ples), each point representing a profile. This appears to maintain a high degree of
Gaussianity, suggesting that the profile changes appear to be random in nature,
rather than a systematic change between two or more states.
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5.4.2 Results

Figure 5.8 shows the results of our Principal Component Analysis on the data

for J1022+1001. There is a very characteristic change visible between the ear-

lier (before MJD 51000) and later data. We suggest that this is an artificial

change, produced by the change in bandwidth of the filterbank. The Lomb-

Scargle analysis also picks up this change and interprets it as a periodicity at a

period of 3600–4900 days. The pulsar is of low DM (10.25 cm−3 pc), it is of very

short period, meaning the smearing caused by dispersion of the pulse is longer as

a fraction of the pulse period. No other significant periodicities were detected.

Significant changes do appear to be taking place in J1022+1001, with the pro-

file changing by up to 20%, based on the eigenvector amplitudes — significantly

larger than the 8.3% expected from our signal-to-noise limit. These changes do

not appear to be periodic or consistent, but instead appear to be random, both

in the nature of the change and the timescale it occurs on. We suggest that this

variation is due to problems caused by a small number of samples across the pulse

period (∼ 17), caused by its rapid rotation and our sampling time, rather than

the effects observed in previous literature or precessional behaviour.

5.5 J1713+0747 — A Binary Undergoing Pos-

sible Shape Changes

Pulsar fJ1713+0747 is a binary pulsar in orbit with a companion of around 0.3

solar masses with a period of 68 days (Splaver et al. 2005). It can be timed to very

high precision, with timing residuals of around 200 ns. A clear difference can be

seen in our PCA results (Figure 5.9) between data before and after MJD 51000.

This is likely due to changes in the bandwidth of the filterbank, the effects of

which can be seen in a number of other pulsars, such as J1022+1001. However,
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Figure 5.9: The variation of the principal components (eigenvectors) from Princi-
pal Component Analysis for J1713+0747. The panels are as described in Figure
5.6. In the left panel, changing the filterbank has resulted in a clear difference
that can be seen between the two observed periods. However, structure can be
seen in the data, particularly in the left-hand side, which we suggest is due to the
small number of bins across the profile. In the right panel, the eigenvector plot
largely represents a Gaussian, suggesting random variations, rather than varia-
tions between extrema. The group of outliers is likely due to bad observations.

trends can be seen, increasing in the left-hand region and possibly reaching a

minimum in the right-hand region.

If precession is occurring, it theoretically could be either free or geodetic

precession. However, the timescales on which geodetic precession would occur

are too long. The rate of geodetic precession (in radians per second) is given by

the following equation (Barker & O’Connell (1975), Boerner et al. (1975)):

Ωp =
(2π)

5
3 T

2
3☼mc(4mp + 3mc)

P
5
3

b (mp + mc)
4
3 (1− e2)

, (5.1)

where T☼ is a constant, given by the constant:

T☼ =
GM☼

c3
, (5.2)

where G is Newton’s constant of gravitation, M☼ is a solar mass, c is the speed of

light; mc and mp are the masses of the companion and primary stars, respectively,

in solar masses; Pb is the period of the binary and e is the eccentricity of the orbit.

Inserting values for J1713+0747, we arrive at a value of around 0◦.05 degrees per
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Figure 5.10: Signal strength for J1713+0747 from Lomb-Scargle periodogram
analysis. See Figure 5.1 for a full explanation. Periodicities are seen at 1760 days
and 2020 days for the left- and right-hand sides of the emission peak, respectively,
and at 4700 days for both sides. Not visible is a 53-day period at the level of
5× 10−5.
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year, or 0◦.4 over the entire range our data. Our Monte-Carlo data, suggests that

we cannot detect changes in this pulsar due to geodetic precession.

Our Lomb-Scargle results (Figure 5.10) also support a periodicity in our data,

but this is most likely due to the change in filterbank systems causing a slight

change in the pulse width, which corresponds to the change in pulse width seen

in the first eigenvector from our PCA results.

There appears to be no literature involving the case for precession in this

object before. We suggest that the changes we see are due to a combination

of the poor phase-binning of data of this pulsar (the pulse profile is about 5

samples wide) due to its rapid rotation and effects caused by changes in the

filterbanks used to obtain the pulsar profiles. More self-consistent, high-resolution

observations would be required to find whether J1713+0747 is precessing.

5.6 B0740–28

B0740–28 is a fairly short-period pulsar, rotating with a period of 167 ms (Hobbs

et al. 2004b), and is relatively bright with a flux density of 15 mJy at 1400 MHz

(Hobbs et al. 2004a). Due to its brightness, we have data from both the Lovell and

42-foot telescopes, which we can use as near-independent samples for studying

precession. The analysis of this pulsar was complicated by the presence of single-

polarisation profiles in the Lovell(/Mark II) data, which had been mislabelled

and could not be removed without extensive hand-editing of data.

Our data for B0740–28 shows a single pulse with an unresolved component on

the right-hand side. High-resolution profiles for this pulsar show up to six com-

ponents visible in this main pulse, with a possible seventh, unresolved component

also present (Kramer 1994). The pulsar appears highly linearly polarised (von

Hoensbroech & Xilouris 1997), with the left-hand (leading) four or five compo-

nents almost entirely linearly polarised, with polarisation decreasing slightly in
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the remaining right-hand (trailing) components.

Figure 5.11 shows the Lomb-Scargle results for both the Lovell and 42-foot

data. The Lovell data are by far the more noisy. We expect this is due to the

bad data, plus the Lovell/Mark-II data have fewer profiles than the 42-foot data

(261 versus 410). The 42-foot data also has a combination of a greater number of

profiles, a longer integration for each observation and a much more even sampling.

The key point, however, is that the periodicities found in our 42-foot Lomb-

Scargle results appear close to those found in the Lovell data. The 42-foot data

give periodicities at 152–174 days, 112–116 days and 327–355 days, in order of

decreasing significance; the Lovell data give periodicities ranging from 59.8–62.2

days and 126–134 days, as well as a periodicity at 97 days. A significant amount

of ‘beating’ is occurring, as was seen in B1828–11, which makes it difficult to

determine frequencies with any precision. This effect can come about if the period

of variation is not constant, for example if a glitch upsets the mechanism (though

none have been observed for this particular pulsar, this may be important later);

or if the body has a tri-axial asymmetry, which would cause a chaotic motion,

leading to a disruption of the periodicities. An interpretation of the above results

is that there is a fundamental period of around 360 days, and that we are seeing

the third and sixth harmonics in the Lovell data and the first, second and third

in the 42-foot data. Given the strength of the periodicity in the 42-foot data,

and its albeit fairly weak correspondence with the Lovell data, we suggest that

the effect may be real. It should be noted that, due to the infringing polarisation

profiles, we should take care what conclusions we reach involving the Lovell data.

The Lomb-Scargle results suggest that the main profile changes are occurring in

the ‘partially-resolved’ component (see above).

Unfortunately, the P.C.A. of the Lovell data appear to be more strongly af-

fected by the single-polarisation profiles in the database than the phase-binned
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Figure 5.11: The results from phase-binned Lomb-Scargle of B0740–28. For a
description of the figures see 5.1. The top plot shows data for the Lovell/Mark II
telescopes, based on 261 profiles over 8612 days. The bottom plot shows data for
the 42-foot telescope, based on 410 profiles over 5320 days, though mostly in the
range MJD 47900–48800. Both show strong periodicities between periods of 110
and 170 days. Additionally, the Lovell data also show a periodicity at 60 days.
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Figure 5.12: The variation of the principal components (eigenvectors) from Prin-
cipal Component Analysis for B0740–28 using 42-foot data only. The panels are
as described in Figure 5.6. The left-hand panel only contains data from our main
sampling period (the 44 profiles used from MJD 52400 onwards were not included
for clarity). A 160-day period is apparent at the beginning of the data (first peak
at around MJD 48000), but is less apparent in the later data. The first/second
eigenvector plot shows some non-Gaussianity, but lacks any correlation between
the first and second eigenvectors, forming a more linear structure, suggesting the
first eigenvector fully explains the stronger variations in the data.
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Figure 5.13: Periodicities from a Lomb-Scargle analysis of the Principal Compo-
nent Analysis of the 42-foot data (solid line) and Lovell/Mark II data (dashed
line) for B0740–28. Higher powers represent stronger periodicities. Peaks can be
seen around 160 days and 360 days in the 42-foot data, which is only analysed to
roughly 150 days. Less obvious peaks can be seen in the Lovell data at 120 and
60 days.
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Figure 5.14: Possible profile changes from Principal Component Analysis of
B0740–28, showing profile extrema reconstructed from a mean profile and the
first eigenvector. This plot shows the average profile, plus the principal com-
ponent at an amplitude of 0.5 (solid line) and −0.3 (dashed line) (c.f. Figure
5.12). This variation is likely due to contamination by bad data in the form of
single-polarisation profiles in the database.
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Lomb-Scargle data. Evidence for this comes from the change in amplitude of the

right-hand side of the profile with the first eigenvector (see Figure 5.14). Despite

this, we can see a strong periodicity in the main section of our 42-foot data (Fig-

ure 5.12) on a period of around 160 days. A Lomb-Scargle analysis was performed

of this and the contaminated Lovell data, and are presented in Figure 5.13. The

160-day periodicity is picked up well, along with a further periodicity at approx-

imately 360 days, although the maximum of this is very difficult to place. The

Lovell data also supports a periodicity at 60 and 120 days, but extreme caution

should be exercised here. In both cases, the rv1 - rv2 plot (right hand frame of

Figure 5.12) shows a distinct non-Gaussianity in the first eigenvector, suggesting

that profile changes are indeed taking place, with the first eigenvector describing

the changes completely. This change is found to correspond to a change in am-

plitude of the right-hand component (see Figure 5.14), in a similar way to that

seen in B1828–11.

Investigation of the timing residuals for this pulsar were also looked into,

shown in Figure 5.15. Initially a broad change in period can be observed on

timescales of thousands of days, with the possibility of a periodic structure around

4000 days. Closer examination reveals other waves superimposed on top of this.

Analysis of the Lovell data yields several possible periodicities at 130.1 ± 1.9

days, 200.2 ± 6.1 days, 253.2 ± 9.1 days, 296.5 ± 7.7 days, and 487 ± 41 days.

The 42-foot data, which has independent sampling, confirms periodicities at 296.5

± 7.7 days and 500 ± 23 days, also giving periodicities at 397 ± 12 days, and

632 ± 32 days. Independent studies by Hobbs et al. (private communication)

have shown a periodicity at 379.8 ± 4.2 days, along with further periodicities at

449 ± 7 days, 536 ± 13 days and 1430 ± 74 days above a null probability level

of 10−9. Hobbs et al. also found numerous other weaker periodicities, including

ones at 128.9 ± 1.0 days, 248.2 ± 2.1 days and 258.9 ± 2.3 days, which match
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Figure 5.15: The timing residuals of B0740–28. The upper-left plot shows the
residual data from the Lovell and Mark II telescopes with no fitting. A fit for
the period and its first two derivatives (P , Ṗ , and P̈ ) has been made to the left-
hand maximum and is shown in the upper-right frame. The lower frame is a fit
to the data after the right-hand maximum of the upper-left plot, but this time
using data from the 42-foot telescope, which has a better sampling frequency.
Periodicities are seen in both fitted plots at around 125 days and 700 days, plus
a possible 4000 day periodicity in the unfitted plot.
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up with periodicities determined from the Lovell data.

In summary, this pulsar shows many, if not all of the classic signs of precession.

While it has been difficult to determine periodicities exactly, the Lomb-Scargle

test, the timing residuals and possibly also the P.C.A. test all show variations

on a period of between 115 and 125 days. Shape changes may also be visible

on timescales of 160 days and 330–360 days. The proximity of the proposed

360-day periodicity to an annual periodicity is of concern, but recognised profile

shape changes and a high ecliptic latitude (−49 degrees) suggest that this is

not a terrestrial or solar system induced effect. This period may also tie in

as a harmonic of the 700-day periodicity in the timing residuals. It appears

possible that this pulsar could be undergoing precession, although which of the

components are varying and how is impossible to tell without higher-resolution

data.

5.7 B1830–08

B1830–08 is a relatively short-period pulsar, with a rotation period of 85 ms

(Hobbs et al. 2004b). It also has a high DM (411 cm−3 pc).

Examination of our Lomb-Scargle results (Figure 5.16 [left]) shows that there

is a periodic variation detected with a period of 5700 days. A slightly weaker

peak is also seen at 7120 days. The same beating effect that has been seen in

B1828−11 and B0740−28 may be present here, but the resolution of our data

is not sufficient to detect it. It is most likely that, in this case, a fundamental

frequency lies somewhere within this range. The plot also shows us that the

variations are largely in the width of the main component.

If we examine our P.C.A. results (Figure 5.17), we see what appears to be

either a bimodal or long-period wave-like structure in the first eigenvector evo-

lution (left frame), which is borne out by either a bimodal or linear plot in the
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Figure 5.16: Periodicities found in data for B1830–08. The left panel shows the
phase-binned Lomb-Scargle result (see Figure 5.1 for explanation), and the right
panel shows the periodicity analysis of the P.C.A. data (see Figure 5.2). In both
cases, periodicities are visible at 5500–7500 days and, more weakly, at around
1900 days.
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Figure 5.17: The variation of the principal components (eigenvectors) from Prin-
cipal Component Analysis for B1830–08. The panels are as described in Figure
5.6. The evolution over time of the first eigenvector shows apparent trends — a
slight increase towards MJD 51000 and a decrease to a minimum around MJD
53000 — the cause of which could be inherent behaviour on approximately a 7000-
day scale, or, more likely, instrumental variations due to the filterbank change.
The outlying profiles contain RFI contamination.
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Figure 5.18: Possible profile changes from Principal Component Analysis of
B1830–08, showing profile extrema reconstructed from a mean profile and the
two principal eigenvectors. This plot shows the average profile, plus the first two
components at an amplitude of 0.2 and 0.05, respectively, for the solid profile,
and at −0.3 and −0.05 for the dashed profile (c.f. Figure 5.17).

Figure 5.19: Timing residuals observed for B1830–08 over the last 15 years fol-
lowing a fit to the pulse period (P ) and its first two derivatives (Ṗ , P̈ ). A major
glitch was observed around MJD 48041, and only the data following this is shown.
A sinusoidal variation with a period of around 3000 days is present, along with a
weaker periodicity at 304 ± 5 days.
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first/second eigenvector plot (right frame). A Lomb-Scargle analysis of the first

eigenvector produces a strong peak at a periodicity of 5340 days, which appears

to correspond with the 5700 period from the original phase-binned Lomb-Scargle

analysis. We can also pick up a slight beating effect here. A less significant peak

in the power spectrum is also picked up at 1890 days, which corresponds very

closely to a fainter 1900-day periodicity in the phase-binned Lomb-Scargle analy-

sis. The profile changes here correspond to an increase in flux from the outlying

components, as can be seen in Figure 5.18, in contrast to the change found using

Lomb-Scargle analysis above.

Examining the timing residuals (Figure 5.19), we find a more complex picture.

A glitch with a short recovery period can be seen around MJD 48040 (Shemar &

Lyne 1996a). It is possible to fit a wave to the timing residuals with a period of

roughly 3000 days, which would be roughly double that found using shape change

tests. This suggests that there may be a real change going on in the pulsar, with

effects similar to those provided by precession. Determining, with any certainty,

if this is actually precession on a 3000- or 7000-day timescale would require a

much longer dataset. Another possibility is the movement of the polar cap as a

result of the glitch and later changes that mimic precession.

Several shorter periodicities also appear to be present in the timing residuals.

A smaller wave present at 304 ± 9 days, is also present with strong periodicities

at 636 ± 20 days, 1230 ± 130 and 1750 ± 140 days, all above a null probability

level of 10−4. Whether this has any relation to a weak periodicity (below our

imposed cut-off threshold) in our Lomb-Scargle data at 50 and 59 days at 20%

probability is open to debate. Independent analysis by Hobbs et al. (private

communication) confirms periodicities at 53.0 ± 0.3 days, 651 ± 18 days and

1340 ± 150 days, and also detects periodicities at 715 ± 27 days, 857 ± 62 days

and 1023 ± 47 days, again above a null probability level of 10−4.
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To summarise, B1830−08 may to show some evidence for aperiodic profile

variations which could be consistent with precession of a tri-axially asymmetric

pulsar. However, corroboration with the timing residuals is complicated by a

glitch. We put forward that it is possible that B1830−08 is undergoing real

variations, but these would be very small and our detection of them is complicated

by problems arising from hardware changes at Jodrell Bank, specifically changes

in the filterbank used.

5.8 B0144+59

B0144+59 is a moderately fast rotator, at 196 ms, though with a fairly low spin-

down rate of 2.57× 10−16 (Hobbs et al. 2004b). It is of fairly low luminosity, at

7.66 mJy kpc2 at 1400 MHz (compared to a median for our sample of 34.2 mJy

kpc2). High resolution data (Seiradakis et al. 1995) show the main component,

unresolved in the Lovell data, to be comprised of two distinct peaks, and at

low frequencies von Hoensbroech et al. (1998) showed there to be three resolved

components. Von Hoensbroech et al. pointed out that the pulsar has a high

degree of circular polarisation (see also Gould & Lyne 1998), which increases

with frequency, in contrast to expected depolarisation towards higher frequencies.

They also show that this pulsar has a significant amount of linear polarisation

and find a strong frequency development. It is therefore possible that the profile

of this pulsar will change significantly over the bandwidth used in this study.

Looking at our data, our phase-binned Lomb-Scargle periodogram picks up

a very definite 310-day periodicity in the data (Figure 5.20), which is reflected

in a periodogram (Figure 5.22) of the first eigenvector of our P.C.A. data. The

variation of the first eigenvector in Figure 5.21 shows rapid increases, then a

decay towards a negative contribution. This decay reflects a change in the pulse

profile, corresponding to an decrease in both the width of the profile and the
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Figure 5.20: Signal strength for B0144+59 from Lomb-Scargle periodogram
analysis. For an explanation of this plot, see Figure 5.1. A clear periodicity
can be seen at 310 days.
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Figure 5.21: The variation of the principal components (eigenvectors) from Prin-
cipal Component Analysis for B0144+59. The panels are as described in Figure
5.6. The first eigenvector (left panel) shows a variation on a timescale of around
300 days, particularly in the later data which, although not readily visible, is
found to a high significance in a Lomb-Scargle periodogram of the data, as shown
in Figure 5.22. A periodogram of this is presented in Figure 5.22. The first/second
eigenvector plot (right panel) shows a linear structure around the first eigenvector,
with the second eigenvector being mostly random, suggesting the first eigenvector
accounts entirely for the observed changes.
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Figure 5.22: Periodicities from a Lomb-Scargle analysis of the Principal Compo-
nent Analysis (see Figure 5.21) of B0144+59. Higher powers represent stronger
periodicities. A strong periodicity can be seen at a period of 310 days.
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Figure 5.23: Possible profile changes from Principal Component Analysis of
B0144+59, showing profile extrema reconstructed from a mean profile and the
two principal eigenvectors. This plot shows the average profile, plus the first two
components at an amplitude of 0.25 and −0.05, respectively, for the solid profile,
at −0.2 and 0 for the dashed profile and at 0 and 0.2 for the dotted profile (c.f.
Figure 5.21).
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Figure 5.24: The timing residuals of B0144+59 from the Lovell database. The
right plot shows an enlargement of the right-hand (latter) minimum, fitted for
period (P ) and the first two period derivatives (Ṗ and P̈ ). The timing residuals
show a wave-like structure with a possible periodicity of around 5000 days, with
a 330-day period superimposed on top of this, at an amplitude of around 200 µs.
A fit for position and proper motion does not remove this wave.
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amplitude of the leading (left-hand) component (see Figure 5.23). The changes

seem entirely described by the first eigenvector (also Figure 5.21), as the second

eigenvector shows a Gaussian distribution, while the first does not.

Examination of the timing data (Figure 5.24) shows a very strongly-varying

structure, possibly exhibiting a periodicity of around 3500 days. In our fitted

data, we find strong periodicities at 330 ± 11 days and at 1280 ± 150 days,

although the latter may be an artifact of the fitting process. Other periodicities

may also be present in the data, including one at 54 ± 2 days. It should be

stressed that the amplitude of all these variations is very small compared to the

∼ 4 ms FWHM of the pulsar peak (?)seiradakisetal:0144+59). Amplitudes on

this timescale could well be due to inaccuracies in the timing method caused by

template matching to profiles of a changing shape, or could be due to timing

noise, but we believe that the profile changes are small enough and the timing

variations regular enough that this is not the case.

Independent analysis of the timing residuals (Hobbs et al., private communi-

cation) confirms these periodicities as 329.5 ± 2.7 days and 1214 ± 27 days, and

also other strong detections at the following periods: 196.7 ± 0.6 days, 224.1 ±
1.1 days, 342 ± 2.1 days, 377.3 ± 4.1 days, 442.6 ± 5.6 days, 463.7 ± 4.7 days

and 613.5 ± 7.2 days, all with null probabilities below 10−6. It should be noted,

however, that these periodicities were only found when the hifac ratio (see Chap-

ter 3 and Press et al. 1992) in the Lomb-Scargle period search was increased to

50 to give sufficient time resolution.

With all our methods for detecting precession apparently pointing to a 310-

to 330-day periodicity in the data, we must conclude that it is possible that

precession is taking place. Two things, however, are remarkable. The first is the

very small amplitude of the variations in the timing data — only around 200 µs

for B0144+59 against several to tens of milliseconds for our other cases. The



CHAPTER 5. INDIVIDUAL CASES 130

second is the lack of harmonics in the data. There appear to be no harmonics,

nor subharmonics, above the noise level. The only possibilities are a 70-day (fifth

harmonic) periodicity and a 1820-day (sixth sub-harmonic) periodicity in the

Lomb-Scargle results, but these are both well below our imposed noise limit. A

further point of note is that the 310-day periodicity is consistent and well-defined

enough and far enough away from a 365-day periodicity for us to conclude that

it is unlikely to be either due to filterbank or receiver changes, or due to errors

in the pulsar position.

To summarise, there appears to be a real change in the pulse width of B0144+59

over a period of 310 days, which could be reflected in the timing residuals. How-

ever, this could be affected by variation of the pulse profile over the observed

bandwidth. For this reason, we suggest that it is possible that B0144+59 is un-

dergoing precession, but we cannot prove this conclusively at this point in time.

5.9 J0631+1036

J0631+1036 is a moderate period pulsar (288 ms — Hobbs et al. 2004b) and dis-

plays a pulse with four clearly-resolved peaks. We find good evidence for changes

in the second (both in phase and brightness) of these components. Whether these

changes are periodic, or constitute a precessional effect, we have not resolved.

Figure 5.25 shows the variation of the first eigenvector from our P.C.A. data

with respect to time (left) and with respect to the second eigenvector (right). The

right-hand panel of Figure 5.26 shows the power spectrum of the first eigenvector

with respect to time. Numerous peaks appear visible, in particular representing

the first six harmonics of a 3500-day period. The strongest of these appears to

be an 880-day period, which would represent the fourth harmonic, and may be

visible around MJD 53000 in Figure 5.25.
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The periodicities determined here are also reflected in our phase-binned Lomb-

Scargle results (left panel of Figure 5.26). These results show variations mainly

in the second component with some changes in the fourth components. This

corroborates with the profile changes from our P.C.A. data (Figure 5.27) — the

changes here seem largely confined to the second component with the first and

fourth components varying to a lesser extent. That we do not find any changes in

pulse width from any of the four components suggests that it is not a filterbank

issue. This change could be polarisation-related, but could well be real.

Analysis of the timing residuals (Figure 5.28) provide further clues. The pulsar

shows four glitches prior to MJD 50730 (Jodrell Bank Observatory Pulsar Glitch

Database (unpublished)), which are not shown on the plot for clarity. What is

interesting is the remaining data. Several arcs and a large glitch can be seen

(there are also two smaller glitches present, but they are not easily visible on the

scale shown). We speculate that the arcs may form part of a 3500-day period

wave which may have been occasionally interrupted. A power spectrum of the

timing residuals shows several weak (sub-millisecond amplitudes), yet statistically

significant periodicities at 249 ± 8 days, 137 ± 3 days, and 67.5 ± 0.8 days. Other

peaks exist at 384 ± 27 days, 620 ± 50 days and 1150 ± 160 days, but some or

all of these are likely present due to the glitches.

There appears to be substantial evidence that shape changes are occurring

in J0631+1036. Whether these are due to precession, glitch-related behaviour or

some other mechanism, we cannot determine.
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Figure 5.25: The variation of the principal components (eigenvectors) from Prin-
cipal Component Analysis for J0631+1036. The panels are as described in Figure
5.6. The evolution of the first eigenvector (left panel) shows a distinct downward
trend which could be independent of filterbank changes. A possible 880-day pe-
riodicity exists, especially around MJD 53000. The first/second eigenvector plot
(right panel) shows a fairly Gaussian-like appearance, apart from a ‘tail’ to the
lower-right, which represents the most recent few profiles, and a slight linear ten-
dency about the x-axis (first eigenvector). The direction of this tail shows that
both the first and second eigenvector are significant.
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Figure 5.26: Periodicities found in data for J0631+1036. See Figure 5.16 for an
explanation of the plots. A large number of periodicities have been found in this
data, both in the phase-binned Lomb-Scargle results and the P.C.A. periodogram.
Note also the ‘beating’ effect present.
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Figure 5.27: Possible profile changes from Principal Component Analysis of
B0631+1036, showing profile extrema reconstructed from a mean profile and the
two principal eigenvectors. This plot shows the average profile, plus the first two
components at an amplitude of 0.3 and −0.2, respectively, for the solid profile,
at −0.3 and 0 for the dashed profile and at 0 and 0.2 for the dotted profile (c.f.
Figure 5.25).
5.25

Figure 5.28: Timing residuals observed for J0631+1036. These data are for the
period of coherent timing only. Note a pseudo-sinusoidal period of around 1800
days which can be seen in several places and the (comparatively) small period
change at MJD 52740.
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5.10 B0329+54

5.10.1 Literature

B0329+54 is a long-studied pulsar that has been speculated to harbour a plane-

tary system (e.g. Demianski & Proszynski 1979). It is the brightest pulsar in our

dataset, hence one where we have the greatest signal-to-noise. It is moderately

close, with a parallactic distance of 1060 pc (Taylor & Cordes 1993) and has a

fairly long period (715 ms – Hobbs et al. 2004b). With a characteristic age of

5.53 Myr (Manchester et al. 2005), it is one of the older pulsars in our study,

hence if precession is occurring here, it should provide insight into the strengths

and abilities of any damping mechanisms present.

The first relevant study on B0329+54 was by Demianski & Proszynski (1979).

In this study, they made a claim for a periodicity in the timing residuals of the

pulsar with a period of 1105 ± 30 days. This was followed by a study by Bailes

et al. (1993) which confirmed a 1101-day period and found another 2370-day

period, despite having not been seen in other studies. A further periodicity at

6160 ± 60 days was reported by Shabanova (1995), along with a confirmation of

the 1105-day period. Most recently, Konacki et al. (1999) ruled out a reproduction

of the 3-year orbit in more recent data taken from the Effelsberg and Torun

databases.

B0329+54 is also known to mode-switch between four distinct modes (Rankin

1986). These manifest themselves predominantly in changes in amplitude of the

outlying components and a slight ‘shift’ of the main pulse from the beam centre.

5.10.2 Timing Residuals

We now present our own timing residuals from the Jodrell Bank database. Peri-

odicities can easily be seen by eye in the data. Figure 5.29 shows recent timing



CHAPTER 5. INDIVIDUAL CASES 135

residuals from the Lovell, Mark II and 42-foot telescopes. Both appear to show a

periodicity on a timescale of around 375 days — the Lovell/Mark II data at 377

± 3 and the 42-foot data at 374 ± 28. Interestingly, this shows up in the work of

Konacki et al. in their Torun data. It is also confirmed by Hobbs et al. (private

communication), who show a strong periodicity at 377.4 ± 3.9 days, as well as

strong periodicities at 443 ± 5 days and 1212 ± 28 days. As with B0144+59,

these latest periodicities only become present when increasing the hifac ratio on

the Lomb-Scargle period analysis (see also Chapter 3 and Press et al. 1992).

Our 377-day periodicity is very close to an annual variation, although a fit to

the data for position and proper motion cannot remove the wave successfully. We

therefore have concurrent data from four telescopes using two separate reduction

methods. Interestingly, the periodicity we find is almost exactly a third of that

found by Demianski & Proszynski.

With the apparent departure from the suggested 6160-day periodicity, the

loss of the 1105-day periodicity and now an apparent 375-day periodicity, it is

tempting to suggest that at least the latter two modes represent different modes

of precession that are being excited. However, it would be premature to suggest

this without presenting evidence for corresponding shape changes in the profile.

5.10.3 Principal Component Analysis Results

Unfortunately, our P.C.A. tests fail to reproduce any substantial periodicities. It

may be that the strength of the variations is not strong enough to be detectable

by our tests, or it may be that the variations are not there at all. Another possi-

bility is that P.C.A. picks up the mode-switching more readily than longer-term

changes. Examination of the eigenvector profiles shows that the first eigenvector

does appear to show longer-term changes not associated with moding, but that

the second and third eigenvectors represent moding changes.
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Figure 5.29: A section of the timing residuals observed for B0329+54 from the
Jodrell Bank pulsar database. Data from the 42-foot telescope (left — for clarity
shown without error bars) and Lovell/Mark II telescopes (right) are shown. These
have been fitted for the pulsar period and its first two derivatives (P , Ṗ , P̈ ).
Periodicities of around 375 days and 1500 days are seen in both sets of data, with
a 6000-day periodicity also seen in the Lovell/Mark II data.
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Figure 5.30: The variation of the principal components (eigenvectors) from Prin-
cipal Component Analysis for B0329+54. The left-hand panel shows the evolution
of the first eigenvector over time, similar to that of Figure 5.7 and the right-hand
panel shows a power spectrum of these data, similar to Figure 5.2. As with Figure
5.7, the discontinuities between the 1000-day segments are due to different princi-
pal components being assigned in different segments. Data from the Lovell/Mark
II telescopes are shown as “plus” signs on the left-hand plot and a continuous
line on the right hand plot. The 1000-day segments from the 42-foot telescope
data are shown in other styles. Various tentative periodicities were found using
a period search on this data, including several around 380 days, but nothing of
sufficient significance to be above our noise threshold.
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Figure 5.31: The variation of the first and second components (eigenvectors)
from Principal Component Analysis over time for B0329+54, as in Figure 5.3
and other Figures. The bimodal distribution of this plot reflects two distinct
modes of emission, corresponding to a change in the second eigenvector. A third
mode, corresponding to a change in the first eigenvector is present, but is not
clearly visible. This is distinct from the continuous variation seen in B1828–11
(Figure 5.3).

Tentative periodicities can be seen in the data by eye (see Figure 5.30), espe-

cially around MJD 51000 in the 42-foot data and MJD 52500 in the Lovell data,

both at a period approaching 380 days, but they are not strong enough to register

in our data with sufficient significance.

It is worth noting that, at these timescales, the resolution of the 42-foot data

periodogram may be insufficient to find periodicities of several hundred days (i.e.

40% of the length of the dataset). A 308-day periodicity was found in the MJD

51000–51999 segment, which may correspond to a weak 356-day periodicity found

in the Lovell data, which could in turn correspond to the 380-day periodicity

found in the timing residuals. However, this is highly speculative and far from

conclusive evidence at this point.
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Table 5.1: Possible harmonics and resonances from phase-binned Lomb-Scargle
Analysis of B0329+54, based on a 380-day fundamental period. The asterisked
entry marks the Lovell/Mark II data, the remainder are from the 42-foot telescope
data.

Date Detected Periods Harmonic Number Percentage Departure
(MJD) (days)
’000s
48 47.5 44.3 45.3 64.6 8 6 0.8% 11.4%
49 80.0 125.0 88.9 97.6 3 4 3.9% 10.6%
50 276.0 112.4 178.6 758.9 4/3 2 1/2 5.8% 12.8% 0.1%
51 291.7 583.4 89.8 86.4 4/3 2/3 4.1% 2.3%
52 74.1 363.7 571.6 190.5 5 1 2/3 2 12.9% 4.5% 0.3% 0.6%
53 199.5 498.6 51.1 199.5 2 2 9.5% 9.5%
? 54.3 127.9 123.1 325.3 7 3 3 0.7% 2.9% 8.7%

5.10.4 Lomb-Scargle Results

Our phase-binned Lomb-Scargle data produce strong periodicities for all periods

for the 42-foot data, and marginally significant periodicities in the Lovell data.

Although not shown here, all these strong periodicities occur close to the main

pulse peak, which would be concordant with shifting due to mode-switching, but

could also be indicative of other changes.

Table 5.1 shows the periodicities returned by our Lomb-Scargle tests for the

42-foot and Lovell(/Mark II) data. Many of these periodicities are very strong

(see Table 4.2), rivalling those found in B1828–11. The pattern here, however,

appears to be more complex. Following the 380-day periodicity in the timing

residuals, we also give possible harmonics in the data which may correspond to

this, and the percentage departure of the periodicities from them. Table 5.1 shows

that a number of periodicities fit the data very well, both for harmonics of this

period and sub-harmonics.
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5.10.5 Conclusions

It appears clear that periodic timing irregularities are present in B0329+54 —

this has been noted for decades. We find that a new periodicity may be present,

with several harmonics of this period possibly visible in our Lomb-Scargle analysis

of the data. This is highly suggestive of precession, although our P.C.A. results

cannot confirm this. If this were the case, the sub-harmonics suggest that the 380-

day periodicity is not the fundamental period. More likely, the original 1105-day

periodicity found by Demianski & Proszynski is the true fundamental period —

i.e. three times the 380-day periodicity found. Without fully concordant results

from P.C.A. data, it is far from certain that precession is happening in B0329+54,

but it may be a possible explanation for the behaviour of this source.

5.11 Other Possible Detections

The 39 pulsars deemed to be ‘significant’ in Chapter 4 were all studied in con-

siderable detail, including the nine examined above. The remainder of these

‘significant’ pulsars were subsequently found either not to be likely candidates

for precession, or are sources where the evidence is inconclusive. Table 5.2 states

reasons why individual cases were rejected. In cases of insufficient data, the rep-

etition period of the possible shape changes was deemed too long for us to be

certain of its presence. For cases of lack of consistency between the results of dif-

ferent techniques, we find periodicities in shape changes using only one method

(usually our phase-binned Lomb-Scargle technique), which are not present in the

timing residuals. More detailed information is available on specific cases to the

interested reader in the Appendix.
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Table 5.2: The remaining significant pulsars not analysed in this Chapter, along
with reasons for their rejection as candidates for precession in this study. More
information on individual pulsars in presented in the Appendix.

Pulsar Reason for Rejection
B1737–30 Insufficient data, timing disrupted by glitches
B1821–19 Insufficient data
B1933+16 No consistency between techniques, filterbank changes
B1930+22 Filterbank changes mimicking periodicities
B1913+10 Insufficient data, possible effects of filterbank changes
B1859+03 Filterbank changes mimicking periodicities
B1834–10 Filterbank changes mimicking periodicities
B1742–30 Filterbank changes mimicking periodicities
B0834+06 Timing disrupted by glitches, filterbank changes
B1838–04 No consistency between techniques, glitches, noise from sampling
B0919+06 Insufficient data
B0535+21 Insufficient data, timing disrupted by glitches
B1826–17 Insufficient data, possible periodic timing variations
B1822–09 Possible template matching errors, filterbank changes

J2043+2740 Data unclear, probably due to filterbank changes
B1620–26 Insufficient data
B1756–22 No consistency between techniques, filterbank changes
B1931+24 Lack of consistency, probably a sampling effect
B1929+10 Insufficient data
J1835–1031 Data sampling artifact
B0621–04 Insufficient data
B1133+16 No consistency between techniques
B0818–13 Insufficient data, probably due to filterbank changes
B2255+58 Filterbank changes mimicking periodicities, RFI
B2053+21 Filterbank changes mimicking periodicities
B1732–07 No consistency between techniques
B2020+28 Filterbank changes mimicking periodicities
B2045–16 Insufficient data, probably due to filterbank changes
B2035+36 Insufficient data
B0355+54 Possible template matching errors, no consistency between techniques



Chapter 6

Discussion and Conclusions

6.1 Summary of Possible Detections

A summary of our investigation into individual cases is presented in Table 6.1,

with their properties presented in Table 6.2.

Näıvely, we would be surprised to find evidence of precession in only six out of

the 281 pulsars we have studied, disregarding the results from previous studies.

However, we only find weak evidence of precession in all cases except B1828–11.

This suggests that what we are seeing is only the pulsars with the strongest pre-

cession, and that other pulsars may also show precession, but below our detection

limit.

6.2 Statistics of Possible Detections

Table 6.3 contains a list of statistics relating to the possible detections with

relation to those of the candidate sample. The immediately noticeable disparity

between the two datasets is the characteristic age of the pulsars. This in turn

leads to a typically shorter period, higher period derivative (Ṗ ), shorter pulse full-

width half-maximum and higher rate of energy loss than the rest of the dataset.

142
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Table 6.1: List of pulsars in which precession may have been detected by this
study.

Pulsar Precession detected? Precessional Period(s)
(days)

B1828–11 Yes 1000 (fundamental), 500, 250
possibly also 667, 400, 220, 157–169, 118

B0740–28 Probably 360, 160, 120, possibly also 60
B0144+59 Possibly 310
B0329+54 Possibly 1105 (fundamental), 380, many other harmonics
B1830–08 Unlikely 5500–7500, 1890–1900

possibly also 300, 50 and 59
J1022+1001 Unlikely
J1713+0747 Unlikely
B1642–03 No

All other pulsars No

Interestingly enough, however, the magnetic field of the two sets is identical.

6.3 Comparisons with Theory

6.3.1 Damping

Perhaps one of the most crucial differences between pulsar precession theory

and observations is the timescales on which precession would be damped. This

damping depends on the nature of the coupling between the pulsar’s superfluid

core and its solid crust, the strength of this coupling and the timescale on which

it occurs. While the details of this coupling remain unclear, much work has been

done with pulsar glitches in an attempt to investigate this coupling.

While there have been several studies into the possible damping effects of

precession, one of the most interesting studies (in that it allows precession to

exist on timescale sufficiently long for us to observe it, which we appear to do)

is that of Link & Epstein (2001) which states (after Sedrakian et al. 1999b) that
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Ṗ

*
6.

00
3
×

10
−

1
4

1.
68

2
×

10
−

1
4

8.
52

9
×

10
−

2
1

2.
56

8
×

10
−

1
6

2.
04

8
×

10
−

1
5

D
M

(c
m
−

3
pc

)
16

1.
50

(2
0)

73
.7

58
(8

)
15

.9
89

9(
6)

40
.1

11
(3

)
26

.8
33

(1
0)

R
M

(r
ad

m
−

2
)

47
(5

)
15

6(
5)

—
19

(5
)

-6
3.

7(
4)

F
W

H
M

(m
s)

3.
2

5.
4

0.
21

8
7

6.
6

S 4
0
0

(m
Jy

)
2.

1
29

6(
14

)
36

6.
6(

0.
5)

15
00

(2
00

)
S 1

4
0
0

(m
Jy

)
1.

40
(0

.1
5)

15
.0

(1
.5

)
3

2.
1(

0.
3)

20
3(

57
)

D
is

ta
nc

e
(k

pc
)

3.
58

1.
89

1.
12

1.
91

1.
06

L
1
4
0
0

(m
Jy

kp
c2

)
17

.9
4

53
.5

8
3.

79
7.

66
22

9.
74

E
st

.
A

ge
(M

yr
)

0.
10

7
0.

15
7

84
90

12
.1

5.
53

B
s
u
rf

(G
G

)
49

90
16

90
0.

2
22

7
12

20
Ė
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Table 6.3: Statistics of pulsars in which precession may have been detected by this
study compared to those of the sample set. (St. Dev. — standard deviation, Ṗ
— period derivative, DM — dispersion measure, FWHM — pulse full-width half-
maximum, S1400/L1400 — flux/luminosity at 1400 MHz, Bsurf — surface magnetic
field). ?Excluding J1713+0747, which is not thought to be undergoing free pre-
cession. Data taken from the ATNF pulsar catalogue (Manchester et al. 2005).

Property Median (st. dev.) of Median (st. dev.)
set of possible detections? of candidate set

Period (ms) 196 (253) 476 (598)
log(Period [s]) -0.707 (0.357) -0.223 (0.523)

log(Ṗ ) -14.04 (0.91) -14.60 (1.34)
log(DM [cm−3] pc) 1.87 (0.48) 1.85 (0.50)

FWHM (ms) 5.4 (1.5) 10.6 (28.5)
log (FWHM [ms]) 0.73 (0.13) 1.09 (0.44)
log (S1400 [mJy]) 0.56 (0.88) 0.32 (0.47)

log (L1400 [mJy kpc2]) 1.73 (0.60) 1.37 (0.74)
log (Age [yr]) 5.19 (0.99) 6.61 (1.10)
log (Bsurf [G]) 12.08 (0.49) 12.10 (0.86)
log (Ė [ergs/s]) 34.6 (1.4) 32.7 (1.3)

precession should be damped on timescales of:

τD ≈ 2πτf

P
, (6.1)

for a damping time τD in precessional periods, period P in seconds and a crust-

core coupling time of τf , also in seconds.

The uncertainty in this value is entirely down to the uncertainty in τf . This

has been estimated as being anywhere from > 10 seconds (Abney et al. 1996)

(based on the Vela Pulsar’s ‘Christmas’ glitch), through 60P (Epstein & Baym

1992) to 400–104P (Alpar & Saulis 1988). All studies thus far give τf À P ,

hence, to first order, we can assume that the crust remains uncoupled to the core,

allowing the crust to precess freely without influence from the liquid interior (at

least on short timescales).

Using these values, we can estimate a damping time for our pulsars. These are

presented in Table 6.4. We can see that only in the uppermost limit of the values

given in Alpar & Sauls is the damping period sufficiently long to allow precession
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on timescales near the characteristic age. From this, we can draw one of four

conclusions. Firstly, the estimated values of τf could be too low, the problem

being that this would then not tie in with the observations — if anything the

more modern values tend towards a lower value of τf ; another possibility being

that τf varies significantly between pulsars. Secondly, that damping occurs on

much longer timescales or does not occur at all, for some reason such as a longer

interval between crust-core coupling periods (glitches). In this case, why do we

not see precession in all pulsars below a certain age? Perhaps if the period of

precession was an order of magnitude or more shorter on average, this would

damp out more quickly. A third possibility could be that some kick mechanism is

present to excite precession, which raises the question of what this might be. It is

also possible that free precession is present in many more pulsars, but at a level

below our threshold sensitivity — this is a view substantiated by Cordes (1993)

(also Cordes, private communication), who suggests that much of the timing noise

observed in pulsars could be due to precessional effects too small to be detected

in pulse shape changes. Finally, we must also suggest may not be detectable at

all, and that what we have found is evidence of some other process.

6.3.2 Consistency with Models

Jones & Andersson (2001) formulate a free precession model against which we

can test our observations. In this model, we expect that:

ε0 > εfluid (6.2)

must be true for the neutron star to be precessing, where ε0 is the ‘reference’ or

zero-strain oblateness and εfluid is the fluid oblateness. If this criterion does not

hold, it implies that the crust has ‘frozen’ during a period where the star was

spinning more slowly than present.
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Table 6.5: Estimated oblatenesses from Jones & Andersson (2001), given a neu-
tron star mass of 1.4 M¯ and radius of 10 km.

Pulsar Observed Spin Effective Reference Fluid ISF

Fundamental Period Eccentricity Oblateness Oblateness Istar

period (seconds) εeff ε0 εfluid

(days) ×109 ×106 ×106 ×109

B1828–11 1000 0.405 4.69 2.81 0.518 0.543
B0740–28 360 0.167 5.36 3.22 3.06 0.621
B0144+59 310 0.196 7.33 4.40 2.21 0.848
B0329+54 380 0.715 21.8 13.1 0.166 2.52
B0329+54 1105 74.8 4.49 0.166 0.866

In the limit where the superfluid interior pinned to the crust has zero mo-

ment of inertia, the reference oblateness can be calculated as follows (Jones &

Andersson 2001, equation 69):

ε0 = 103εeff
M1.4

R6

, (6.3)

where M1.4 and R6 are the mass and radius at 1.4 M¯ and 6 km, and εeff is

the effective deformation, given by the ratio of the spin and precessional periods

(their equation 67).

The fluid oblateness can be calculated using the pulsar’s spin frequency (in

the absence of precession) ω0:

εfluid = Iω2
0

(
GM2

R

)−1

, (6.4)

for total moment of inertia I ≈ 2
5
MR2, pulsar mass M and radius R (Lyne &

Graham-Smith 1990).

In addition to the above, we can also find a limit to the fraction of the moment

of inertia associated with any pinned superfluid ISF /Istar, using the equation 71

from Jones & Andersson (2001) which states that, in the limit that ε0 = 0:

ISF

Istar

= 1.5× 10−2εeff
R4

6

M2
1.4

. (6.5)

The ellipticity for our candidates, based on the above equations, are shown in

Table 6.5. In all cases, Equation 6.2 is satisfied for masses of 1.4 M¯ and radii
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of 10 km. Thus, if the model of Jones & Andersson (2001) is correct, all our

positive candidates satisfy the criterion for free precession. It is worth noting

that ε0 scales linearly with mass and inversely with radius, whereas εfluid scales

non-linearly with both mass and radius. If B0740–28 is of lower mass or larger

radius than our estimate, Equation 6.2 may no longer hold.

6.4 Conclusion

In this thesis, we have produced a software package able to detect precession

amongst pulsars. We have used this package on the Jodrell Bank pulse profile

database and have confirmed precession in B1828–11 and put forward tentative

evidence of precession in a number of other pulsars.

While there is no clear evidence that precession is certainly taking place in any

of these, there is some evidence to suggest that B1828–11 is not the only pulsar

we know of that is precessing. We suggest that precession has not previously

been detected in other pulsars not because it is not present, but because it is too

weak to be detectable in most cases.

6.5 Future Work

In this study, the focus has been on finding periodic shape changes in the pulsar

profiles. However, the software developed for use in this project has uses beyond

what could be accomplished in an MSc thesis. A better study of the timing resid-

uals could be made, with particular attention being paid to the period derivative,

Ṗ . Changes in this parameter are not easily mimicked by artificial effects, such as

matching templates to profiles. Of particular important are pulsars highlighted

in this study, namely B0740–28, B0144+59, B0329+54 and B1830–08.

A more thorough investigation of links between timing residual changes and
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profile shape changes should be made, focussing on correspondences between

maxima and minima in each. Also of interest is whether any profile shape changes

occur during glitches.

Other work could also be done using the Principal Component Analysis soft-

ware developed here, focussed on aperiodic changes or more complex periodicities,

which could result from complex or chaotic rotation in tri-axially asymmetric pul-

sars, which could, in turn, be linked to timing residuals as well.

As always, better data could be found from continual recording of high-

resolution profiles from both today’s instruments, and future instruments, such as

the Square Kilometre Array (SKA), which should enable us to better determine

whether or not precession is taking place, both in our candidates and in other

pulsars.



Appendix A

Other Possible Detections

The pulsars contained in this section are those previously identified in Chapter 4

as having detections of shape changes that were considered ‘significant’. However,

upon further analysis, it is thought that the evidence there is for precession

is either anomalous or inconclusive enough that support for their detection as

precessing pulsars cannot be presented.

A.1 B1737–30

The main evidence for candidacy for precession for this pulsar has been the

very strong 7214-day period found by phase-binned Lomb-Scargle analysis. Co-

incidentally enough, this is the exact same length as the length of the dataset

used in the analysis. Compounding this with the fact that the periodicity found

using P.C.A. is particularly low (71.4% chance of null detection), this strongly

suggests that there is no strong variation at all. Examination of the timing resid-

uals shows a long series of glitches (McKenna & Lyne (1990), Shemar & Lyne

(1996b), D’Allesandro & McCulloch (1997), Krawczyk et al. (2003b), Urama

(2002), Jodrell Bank Observatory Pulsar Glitch Database (unpublished)), mean-

ing any periodicities are likely lost and that the mechanisms generating them may

151
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well have been disturbed.

A.2 B1821–19

Pulsar B1821–19 shows a strong detection in both Lomb-Scargle and the power

spectrum of its P.C.A. data, both at a period of around 5000 days. In addition to

this, there is also a very clear 2300–2500 day periodicity in the timing residuals.

The combination of these would normally make it an ideal candidate for preces-

sion. However, closer inspection of the Principal Component (first eigenvector)

from the P.C.A. data shows a distinct difference between data before MJD 51000

and after. This is presumably due to the filterbank change that has also affected

J1022+1001 and J1713+0747. Negating this abrupt change, the profile appears

to be stable in the first eigenvector, and subsequent eigenvectors appear to con-

sist only of noise. Taking this into account, we are forced to accept that, at best,

our analysis of B1821–19 is incomplete due to changes in the filterbank, and that

there is no evidence for precession in this pulsar.

A.3 B1933+16

Pulsar B1933+16 is the most intrinsically luminous pulsar in our dataset based

on its DM distance and 1400 MHz flux density (Manchester et al. 2005). As

such, this pulsar is covered extensively in both the Lovell/Mark II and 42-foot

databases.

The strong periodicities to come from the phase-binned Lomb-Scargle results

are at extremely long periods. There is insufficient resolution to fully test these

periodicities in either a periodogram of the P.C.A. data or the 42-foot data, but

on this timescale, even if they are real, there is no evidence that they are periodic.

A periodogram of our P.C.A. data does produce two weak peaks at 245 days
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and 1100 days for the Lovell data, but both of these are below our imposed noise

detection limit. There is little or no correlation between these peaks and the data

obtained from the 42-foot data, which appears to be entirely aperiodic.

Statistically significant peaks are also seen in our phase-binned Lomb-Scargle

analysis at periods of 5550, 4750, 144, 154 and 1280 days, but all of these fail to

be picked up using P.C.A. The first two eigenvectors in the P.C.A. appear to be

correlated, but periodicities on these levels do not appear to be present. The third

eigenvector appears to represent a complex broadening term, and has a bimodal

distribution in time around MJD 51000 as seen previously, suggesting this is due

to the filterbank change that occurred at this time, which would explain the 4750

and 5500 day periods found.

The timing residuals for B1933+16 show a very triangular structure, with a

possible 8000-day wave. Superimposed on top of this appears to be a wave with

a period of just over 1000 days and an amplitude of half a millisecond, visible in

both the Lovell/Mark II and 42-foot data.

While there do appear to be profile changes going on in B1933+16, there is

insufficient evidence to find any periodicity in them. Were it to be found, from

our data, we would expect it to be on a timescale of several years — either three

or 20 years — but there is insufficient evidence to imply it exists now.

A.4 B1930+22

Pulsar B1930+22 is another young pulsar, with a characteristic age of only 40

kyr ( (Manchester et al. 2005)). Our periodicity data for this pulsar are very

similar to those of B0144+59: there is a single, very strong periodicity in both

the phase-binned Lomb-Scargle results and the periodogram of the P.C.A. results;

however, it is somewhat longer, less powerful, and less well constrained at 5310

and 4650 days, respectively, and the P.C.A. periodicity is only slightly above our
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Figure A.1: The variation of the first (principal) component (eigenvector) from
Principal Component Analysis over time for B1930+22, as in Figure 5.3 and
other Figures. Lomb-Scargle analysis of this data shows a possible variation on
a 5000-day timescale. A suggested peak is around MJD 50000.

imposed detection threshold.

It is possible that the trends are due to changes in instrumentation, particu-

larly in the filterbank around MJD 51000, as has been seen in other pulsars. The

data do seem to represent a more general trend apart from this — showing an

increase from MJD 48000 to 51000, as can be seen in Figure A.1, but this may

be due to changes in receiver setup as well, particularly the use of the multibeam

receiver.

As usual, we must also consider the timing data from this pulsar, which shows

a large aperiodic variation, with a major glitch at MJD 50264 ± 20 (Krawczyk

et al. 2003b), followed by 2500 days of very noisy (possibly incoherent) timing

ending with one or two glitches (Jodrell Bank Observatory Pulsar Glitch Database

(unpublished)). There is, however, no evidence of any periodicities on a 5000-day

timescale, although multiple periodicities do seem to be present on timescales of

150 to 400 days in more recent, coherently-timed data.

The data suggest that some shape changes may be ongoing in B1930+22.
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Figure A.2: The variation of the first (principal) component (eigenvector) from
Principal Component Analysis over time for B1913+10, as in Figure 5.3 and other
Figures. A possible variation is present on a 5000-day timescale, showing a peak
around MJD 50000.

However, this variation is close to our detection limit in our P.C.A. and there is

a good chance that they are entirely due to the changes in filterbanks. Without

any evidence of corresponding timing variations, we suggest that it is unlikely

that precession is occurring in B1930+22.

A.5 B1913+10

Pulsar B1913+10 is a fairly average pulsar, with a moderate period, inferred

luminosity and DM (405 ms, 36.79 mJy kpc2 at 1400MHz and 242 cm−3 pc,

respectively — Manchester et al. 2005). Our shape tests yield very concordant

periodicities: 5380 days for phase-binned Lomb-Scargle and 5350 days for our

P.C.A. periodogram. Once again, the P.C.A. detection is only marginally above

our threshold for noise. In fact, the eigenvector data for B1913+10 bears a striking

resemblance to that of B1930+22, showing the broader peaks and troughs in

identical places (see Figure A.2).
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The timing residuals for B1913+10 show similar changes to B1930+22, show-

ing changes in the rotation period on timescales of around 200 days, followed

by long periods with no period change. These are also aperiodic, although they

do exhibit more of a wave-like structure. Without any concordance between the

shape-changing results and the timing residuals, we cannot support any evidence

of precession in B1913+10.

A.6 B1859+03

Pulsar B1859+03 was labelled as significant due to its relatively strong period-

icities of 5070 and 6340 days picked up by phase-binned Lomb-Scargle results

at ’null probabilities’ (see Chapter 4) of 4 × 10−9 and 5 × 10−8, respectively —

significantly lower than our cutoff of around 3× 10−4. However, this periodicity

is not supported by our P.C.A. results, which show the data to be aperiodic to a

99.999% confidence level. The timing residuals show some evidence of periodici-

ties on a 700-day timescale, but they are dominated by changes such as those seen

in B1913+10 and B1930+22. Thus, we cannot support evidence for precession in

this case.

A.7 B1834–10

Pulsar B1834–10 experiences a similar problem to B1859+03. A strong periodic-

ity was found at 6540 days by our phase-binned Lomb-Scargle test, which is very

close to the length of the dataset at 6583 days. Again, there is no periodicity

in the P.C.A. results to a 97.7% confidence level. The timing solutions are very

similar to those of B1859+03 in negative. Once again, there is no evidence to

support precession.



APPENDIX A. OTHER POSSIBLE DETECTIONS 157

A.8 B1742–30

Pulsar B1742–30 has an average period, DM and luminosity (367 ms, 88.4 cm−3

pc and 56.2 mJy kpc2 at 1400 MHz, respectively). Its profile consists of two main

components, the major one of which consists of at least two unresolved Gaussians

(Seiradakis et al. 1995). Our Lomb-Scargle results appear to show a significant

variation in the left-hand side of the major component at a period of 6355 days.

Once again, this is the exact same period as the length of the dataset, suggesting

this is a processing artifact.

The P.C.A. analysis shows a residual profile consisting entirely of noise for all

of the first three eigenvectors. From this, we deduce that the profile is actually

stable to changes over a timescale of years. The timing solution shows a famil-

iar ‘bump’ in an otherwise smooth acceleration term, such as has been seen in

B1859+03 and B1934–10. Interestingly, there seems to be no evidence for an un-

derlying short-period wave within this data, as with other pulsars described here,

with the smallest variation times appearing to be around 2000 days. Without

consensus between the methods, and particularly with our main evidence being

the 6355-day periodicity, we conclude that detectable precession is unlikely to be

taking place here.

A.9 B0834+06

Pulsar B0834+06 was identified as significant due to its strong Lomb-Scargle

periodicities at 5050 and 6050 days, which can be identified using both the phase-

binning as occurring on the rise and fall of both of the components. Examination

of the P.C.A. results show them to be aperiodic to a 99.93% confidence level. The

same can be said of the timing data, which show remarkably low residuals, with

a 870 µs r.m.s. value over 22 years. We therefore suggest that this periodicity is
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Figure A.3: Timing residuals observed for B1838–04. This data is for the only
the time span before the sharp period changes. Possible periodicities of about 200
days can be seen around MJD 48000 and of around 400 days near MJD 50000.

due to a ‘smoothing’ term caused by differences in the temporal resolution (either

through interpolation or smearing) between the old and new filterbanks.

A.10 B1838–04

Pulsar B1838–04 was picked up for the same reasons as B0834+06 with periodic-

ities of 4800 and 5760 days in Lomb-Scargle. Our P.C.A. results are aperiodic to

a 97.5% confidence level. The timing residuals, however, are far from stable, and

show very noisy behaviour with two glitches at MJD 52000 and 53356 (Jodrell

Bank Observatory Pulsar Glitch Database (unpublished)). This behaviour does

show signs of being periodic, with 200-day and 400-day periodicities visible, as

can be seen in Figure A.3. 40- and 50-day periodicities are present in the phase-

binned Lomb-Scargle data, but these are below our significance threshold, so can

probably be attributed to noise. In short, we do not find substantial enough

evidence to support precession in this case.
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A.11 B0919+06

Pulsar B0919+06 is a fairly close, moderately bright pulsar with a moderate

period (1200 pc, 6.1 mJy kpc2 at 1400 MHz and 431 ms, respectively), and was

again picked up due to a strong Lomb-Scargle periodicity, in this case of 15000

days. While the P.C.A. data is again entirely aperiodic and all other periodicities

are below the noise thresholds, the timing residuals show a strong periodicity of

around 600 to 630 days at an amplitude of around 10 ms on top of a seemingly

more random, long-period variation. This is a similar situation to B1642–03,

which shows a variation in timing residuals, but no significant changes in profile

shape. We conclude that this change is unlikely to be due to precession without

evidence of shape changes and that the periodicity found by Lomb-Scargle is an

artifact due to a period being fitted to a non-repeating trend.

A.12 B0525+21

Pulsar B0525+21 provides a similar situation to B0919+06, with an 11300-day

and a 17000-day periodicity. Once again, the P.C.A. data is entirely aperiodic.

The timing data is also quasi-stable, the only major features being two large

glitches at MJD 42057 and 52298.2 (Jodrell Bank Observatory Pulsar Glitch Data-

base (unpublished)). A 1600-day periodicity is possible, but it is only at a 3 ms

level, which is only 1
60

of the profile FWHM (Lorimer et al. 1995). Again, it is

likely that the periodicities found are caused by over-extrapolation of data.

A.13 B1826–17

Pulsar B1826–17 shows periodicities in both the Lomb-Scargle and P.C.A. data,

at 6308 days and 5778 days, respectively. Examination of the first eigenvector
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evolution shows a trend similar to that observed in B1930+22 and B1913+10.

The co-incidence of all of these results is likely to mean they are due to receiver

changes, rather than changes in the actual pulsar. B1826–17 shows a triple-

component profile and changes are observed over all three components, which

would not necessarily be expected for precession — we would expect a transition

more like that seen in J0631+1037.

The timing residuals for B1826–17 show a very distinct periodicity, with a pe-

riod of between 1050 and 1100 days and an amplitude of around 10 ms. However,

we find no link between this change and shape changes in the pulsar, so conclude

that this pulsar belongs in the category of B1642–03 and B0919+06, and is not

precessing, but is producing periodic timing irregularities.

A.14 B1822–09

Pulsar B1822–09 is a known moding pulsar (Fowler et al. 1981) and as such

any periodicities we find are more likely to be periodicities in the moding than

precession, due to the amplitude of the changes involved. Our phase-binned

Lomb-Scargle analysis shows a strong periodicity at 6700 and at 16700 days,

which we would normally attribute to over-extrapolation of data or filterbank

changes. However, it is worth noting that the strong periodicity is not present

in the main pulse, but in the interpulse region. Fowler et al. (1981) and Dyks

et al. (2005) note that the interpulse region is involved in the mode switching,

but comparative changes in the left-hand component of the main pulse (which

plays the dominant rle in the mode-switching) are not seen. Given the broad

range of possible precession periods (the periodicity is also strong between the

6700 and 16700 days) it could be that the interpulse region is slowly changing

over a timescale of several years in a largely aperiodic fashion.

Analysis of the P.C.A. eigenvector variations show a very noisy structure,
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with the first eigenvector connected to the left-hand component (and hence the

mode-switching) and the other eigenvectors due to noise terms. A periodicity is

found at 431 days, although it is has a 23% null probability and hence is well

below our noise threshold of 3 × 10−4 null probability. Interestingly enough, a

434-day periodicity is also found in phase-binned Lomb-Scargle at the interpulse,

although it is well below our noise threshold. In addition to this, as can be seen

in Figure A.4, there appears to be a corresponding periodicity in the timing data.

It seems to be present throughout the entire data at around the 5 ms level, but is

most easily visible in the stable region around MJD 50200. This is obviously very

small in comparison to the period of the pulsar (769 ms — Hobbs et al. 2004b)

and even the FWHM of the profile (12 ms — Hobbs et al. 2004a) and could well

be due to problems with matching a template to the pulse due to the changing

profile.

Pulsar B1822–09 provides an interesting case where all our detection methods

agree, although they are all below the expected detection thresholds. Compound-

ing this with the moding known to be present in the pulsar, we must conclude

there is insufficient evidence to determine whether precession is occurring or not.

It seems more likely that these phenomenon are all related due to changes im-

posed upon the data in collection (whether through template matching, filterbank

de-dispersion or otherwise) rather than real periodic changes.

A.15 J2043+2740

Pulsar J2043+2740 was also picked up due to its high periodicity in the phase-

binned Lomb-Scargle data, with a 6520-day period at a null probability level

of 1.5 × 10−6. Other periodicities at 1086 and 2173 days were found near our

detection limit. However, only 63 profiles passed the required frequency and

signal-to-noise tests to warrant inclusion in our data.
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Figure A.4: Timing residuals observed for B1822–09. This data is for a subset of
the data only. Possible periodicities of about 430 days can be seen, most clearly
around MJD 50200.

Examination of our P.C.A. data shows a consistent change in the first eigen-

vector, which represents a widening of the pulse peak, around MJD 53000. This

is well away from any major filterbank changes. A corresponding change in the

pulse period can also be ascertained from the timing residuals. There do not,

however, appear to be any periodic changes in either of these, so we suggest that,

while shape changes could well be taking place, it seems unlikely that they are

connected with precession.

A.16 B1620–26

Pulsar B1620–26 is another case of periodicity being picked up at the length of

the dataset (in this case 5594 days). A further 2000-day periodicity found in

the P.C.A. tests at a 29% null probability level is most likely a combination of

noise, intermittent sampling, poor phase sampling (this is a millisecond pulsar)

and filterbank changes. A 4000-day periodicity may exist in the timing residuals

with a 5 ms amplitude, but there is insufficient data to determine whether its is
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a true periodicity or just a quasi-periodic variation.

A.17 B1756–22

The case of B1756–22 is similar to that of B1620–26, although here the periodicity

is slightly shorter than the observations at 5077 days. The P.C.A. eigenvector

data appears entirely aperiodic, yet the timing residuals also show a 2400-day

periodicity at 20 ms amplitude. Shorter periods may also be visible in the timing

data on periods of around 200 days, but neither periodicity appears to manifest

itself in changes in the pulsars shape.

A.18 B1931+24

Pulsar B1931+24 is one of the “new class” of pulsars, showing distinct ‘on’ and

‘off’ periods. For the purposes of our study, it appears to exhibit much the same

effects as B1822–09. It shows a reasonably long-period variability in the anti-pulse

region (opposite the main pulse) in the phase-binned Lomb-Scargle analysis (920

days), which is probably due to coherent noise. It shows very little evidence of

periodicity in the P.C.A. results (99.92% null probability) and the timing results

vary widely in an aperiodic fashion. We do not find any apparent periodicities in

the data, and suggest that the periodicity found by Lomb-Scargle is unlikely to

be real, especially given there is nothing in the timing residuals to back it up.

A.19 B1929+10

Pulsar B1929+10 has also been noted due to a long-period result from our Lomb-

Scargle analysis. Significant peaks at 8450 and 11270 days were found corre-

sponding to changes near the pulse peak, which consists of two partially-resolved
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components. Our P.C.A. shows no evidence for any substantial periodicities, nor

does the timing data, which only shows smooth changes in period over timescales

of years. This pulsar is also covered by the 42-foot telescope, which failed to find

any significant periodicity in any of the 1000-day segments, with the exception of

one (at 979 days), which can be put down to an artifact due to a finite dataset.

We therefore discount this pulsar from our list of candidates as well.

A.20 J1835–1031

Pulsar J1835–1031 has a small data sample compared to the other pulsars in

this study: only 53 profiles were included in our dataset, over a period of 1935.5

days. Coincidentally enough, the strong periodicities found by our Lomb-Scargle

analysis are at 1935 and 968 days, so we can immediately discount those as being

irrelevant. A significant 2077-day periodicity found in our P.C.A. tests is also

likely to be due to a combination of this and changes in the filterbank, which

occurred shortly after the first observations in our data. The timing solution is

very stable, with only a 365-day period present (presumably due to the inaccuracy

of the pulsar’s position, required for timing data).

A.21 B0621–04

Pulsar B0621–04 shows similar effects to J1835–1031, exhibiting a strong period-

icity at 11200 days — twice the length of the observation set. A further significant

periodicity is found at 3200 days and a weaker one at 1600 days, but these are

very close to the main peak of the pulsar, which shows a complex pulse, and

are likely due to errors in the cross-correlation process, which manifests itself as

spikes in the first eigenvector evolution plot. The P.C.A. shows no periodicities of

any significance whatsoever, and the timing solution is extremely stable to within
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a millisecond, hence we can safely remove this object from our candidate list also.

A.22 B1133+16

Pulsar B1133+16 is a long-period pulsar (1.188 s — Hobbs et al. 2004b). It

is also very bright: not because it is luminous, but because it is so close to us,

only 360 pc away (Manchester et al. 2005). As a result of this brightness, it

is observed not only by the Lovell and Mark II telescopes, but by the 42-foot

telescope as well. This gives us two independent datasets with which to work.

Four ‘significant’ periodicities were found from the Lovell(/Mark II) data using

our Lomb-Scargle tests, at periodicities of 56.5, 3776, 68.7 and 128 days and null

probabilities of between 8.3 × 10−6 and 4.3 × 10−5 (c.f. our imposed cutoff at

3.2 × 10−4). There is no significant result observed for our P.C.A. data, but,

judging from our Monte Carlo tests described in Chapter 4, periodicities at this

power should be found by our phase-binned Lomb-Scargle test and not by our

P.C.A. test.

Examining our 42-foot data, we find the same thing — strong periodicities

using Lomb-Scargle, but none using P.C.A. above a 20% null probability level

(the value is almost certainly attributable to noise because if its period anyway).

Several strong periodicities were found here: a periodicity between 350 and 380

days was visible in three of the seven 1000-day segments; a possible sub-harmonic

726-day periodicity was also found, as well as a 3
2

resonance at 571 days; further

periodicities were also found at 46.5 days, 59.2 days, 68.4 days, 77.8 days, 86.3

days, 97.2 days, 129.6 days and 145.9 days, all of which were found between MJD

41000 and 42999, with the exception of the 46.5 day periodicity, found from MJD

43000 onwards. It would seem sensible that some of these periodicities are (sub-

)harmonics of each other. It is also interesting to note that there are particularly

close matches for a 68.5 day and 129 day periodicity between the two datasets,
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as well as a possible 56–59 day periodicity.

Looking at the timing data for both the Lovell and 42-foot observations, there

is no evidence of any periodicity in the residuals. The Lovell data show no

departures from a noise pattern in the short term and only a possibly periodic

7000-day variation in the long term. The 42-foot data provides more frequent

observations and does not show any periodic variation above a millisecond (with

noise r.m.s. of around 800 µs).

While it seems possible that shape changes may be occurring, without corre-

sponding P.C.A. data, we cannot tell exactly what the profile changes represent.

Phase-binning on our Lomb-Scargle data shows that they involve the main peak,

but no more information is obtainable. With very good timing observations that

show no sign of periodic variation on timescales close to those observed in the

possible shape changes. Therefore, we must conclude that, even if the profile

shape is changing periodically, we cannot support a case for precession taking

place in B1133+16.

A.23 B0818–13

Pulsar B0818–13 is another long-period pulsar (1.238 s — Hobbs et al. 2004b).

Strong periodicities were found by our Lomb-Scargle routine at 15130 days. Re-

grettably, this is exactly twice the length of the dataset and no similar periodicities

were detected using P.C.A. We once again put forward that this is a processing

error and that precession is not taking place. The timing residuals confirm this,

showing a possible 4000- to 4500-day periodicity at an amplitude of only around

2 ms, but no evidence of anything on either longer or shorter periods.
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A.24 B2255+58

Pulsar B2255+58 appears to be another false detection. The profile consists

of two equal-intensity, partially-resolved components. Moderate, but significant

periodicities were found at 8481 and 3635 days in the region between the two

components. No evidence for any variation can be found in either the P.C.A.

data, which appears to be noisy and contains several spikes from poorly-matching

profiles, nor the timing residuals, which appear constant on the millisecond level,

apart from the occasional small change in period. We therefore conclude that it

is unlikely that precession is occurring in this pulsar.

A.25 B2053+21

Moderately strong periodicities have been found for B2053+21 in our phase-

binned Lomb-Scargle data at periods of 619, 8454, 85.7 and 259 days. The

86-day period is almost certainly due to noise as it is found in a blank region

of the profile. The 259- and 619-day periods are found at the anti-pulse region

of the profile (i.e. the region of a possible interpulse, opposite the main pulse),

yet no interpulse appears to exist. The 8454-day period represents a ‘smoothing’

term and is likely connected with the change in filterbanks. The P.C.A. data is

entirely aperiodic and the timing residuals show no periodicity and are constant

over the last 10 years to a level of around 500 µs. Therefore, we suggest that this

result is due mostly to noise and that precession is not taking place.
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A.26 B1732–07

Pulsar B1732–07 also records moderately strong periodicities from phased-binned

Lomb-Scargle tests at 122, 82.2, 224 and 54.8 days. These results are not repro-

duced by our P.C.A. tests, which show no periodicities present. The timing

residuals show a seemingly aperiodic long-term variation with an amplitude of a

few milliseconds. Limits of a millisecond can easily be placed on finding further

periodicities in the data. Thus, we cannot support precession in this case either.

A.27 B2020+28

Pulsar B2020+28 was labelled as significant due to moderately strong periodic-

ities found at three phases, all at a period of 10000 days, backed up by a weak

8600-day periodicity in the P.C.A. data. Closer examination of the latter found

that this is again likely to be due to filterbank changes. Comparison with the

timing residuals shows no evidence for a period of anywhere near this length.

Hence, we claim that precession has not been detected in this pulsar.

A.28 B2045–16

The case of B2045–16 shows a similar situation to B2020+28. Here, a 3774-day

periodicity was found by Lomb-Scargle, along with further short periodicities

which are almost certainly noise. A periodogram of our P.C.A. data shows no

periodicities present and while timing residuals do show very weak evidence for

a complex 4000-day periodicity, it is deemed unlikely that precession is taking

place here.
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Figure A.5: The variation of the first (principal) component (eigenvector) from
Principal Component Analysis over time for B2035+36, as in Figure 5.3 and other
Figures. A clear decrease in the amplitude of the eigenvector can be seen from
the start of the major part of our data (around MJD 52500) onwards.

A.29 B2035+36

Pulsar B2035+36 is interesting in that it supports a weak 3100-day periodicity

in our phase-binned Lomb-Scargle results and also a 3200-day periodicity in a

periodogram of our P.C.A. results. While this is not borne out in the timing

residuals (they show apparently random fluctuations), we do have some evidence

for changes taking place.

Figure A.5 shows the evolution of the first eigenvector from our P.C.A. analy-

sis. While this does not support any periodicity, it does appear to be changing

on a gradual basis, which is not in line with any likely variations imposed by fil-

terbanks. The eigenvector itself seems to represent a ‘spreading’ or ‘blurring’ in

the profile. Closer analysis of our phase-binned Lomb-Scargle results show that

the periodicities found are spread out widely in frequency space, suggesting low-

frequency noise on the timescale of years, although as can be seen from Figure

A.5, there is little data before MJD 52500. This suggests that, at least from MJD
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Figure A.6: The variation of the first (principal) component (eigenvector) from
Principal Component Analysis over time for B0355+54, as in Figure 5.3 and other
Figures. Lomb-Scargle analysis produces a 2460-day periodicity. We suggest
peaks are present around MJD 48500, 51000 and 53500.

52500 onwards, a gradual, yet distinct change in profile shape has been taking

place. While this does not appear to be connected to precession, it nevertheless

seems likely to be a real change.

A.30 B0355+54

Our final case is that of B0355+54, which has been noted here not because of

its phase-binned Lomb-Scargle results, but from its P.C.A. data, which show a

moderate periodicity at 2460 days. Our Lomb-Scargle results also pick out this

periodicity, but it is very weak and below our threshold; however, it does appear

to be periodic over the entire pulse region. A further, slightly stronger periodicity

was determined by Lomb-Scargle at 310 days on the right side of the leftmost of

the two partially-resolved components of the pulse.

Figure A.6 shows the evolution of the first eigenvector of our P.C.A. over time,

with the 2460-day periodicity apparently present, though not easily visible to the
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eye. With this periodicity confirmed exactly by Lomb-Scargle, if rather weakly

(at a null probability of 5.3 × 10−4, compared to our 3 × 10−4 noise threshold),

we conclude that shape changes may well be occurring in the profile of B0355+54

on a timescale of 2460 days.

Unfortunately, this is not borne out by the timing residuals, which show a

smoothly varying structure with no periodicities visible to the eye. A full analysis

would be required to determine whether any periodicity exists on this timescale in

the timing data at all, but we can probably conclude that although periodic shape

changes are possibly taking place (this is a known moding pulsar (Rankin 1986)),

they are unlikely to be associatable with precession without a more rigorous study

of the timing data.
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