
Tricks of the quantum trade

The main reason for learning the Dirac notation is that it makes it much easier to do quantum
mechanics. Not just because it tends to be shorter, but because it lets you make a number of
‘sanity checks’ on the equations you write. This document tries to spell this out, and also to
highlight points where you have to take care because the notation does not help you.

Making the notation work for you

You are used to checking that all the terms in an equation have the same physical dimen-
sions/units. You also know that every term in a vector equation must be a vector, every term
in a matrix equation must be a matrix with the same number of columns and rows, etc.

In the same way, in QM, the terms in equations may be bras, kets, operators, or scalars (i.e.
numbers, often complex numbers). Each side of an equation must be the same kind of thing,
and only things of the same kind can be added or subtracted. Also, you shouldn’t mix terms
which apply to different vector spaces. Checking this avoids a lot of potential mistakes... here
are some examples:

|a〉 = |b〉 + |d〉 OK: all terms are kets, presumably in the same space

R̂|a〉 = |h〉 OK: operators act to the right on a ket to make a new ket
|d〉 =

∑

i ci|ai〉 OK: scalar (here, ci) times a ket is a ket

T̂ = p̂2/2m OK: all terms are operators (op divided by scalar is an op)

P̂a = |a〉〈a| OK: outer products are one type of operator

〈b|h〉 = 〈b|R̂|a〉 = 3 + 4i OK: inner products are complex numbers.

〈b|R̂ = 〈e| OK: operators act to the left on a bra to make a new bra
|1〉 = |↑〉 ⊗ |↑〉 OK: direct products of kets are kets (but in a bigger vector space)

〈b|Ĝ|a〉 = 〈b|a〉Ĝ WRONG: LHS is a complex number, RHS is an operator
〈b| + |a〉 − 〈b|a〉 = 0 WRONG: can’t add bras, kets and/or scalars to each other
|2〉 = |↑〉 ⊗ |↑〉 + |↓〉 WRONG: all kets in an equation must belong to the same space

Â|a0〉 = 0 OK: here ‘0’ means the zero (ket) vector, not scalar zero

M̂ = Ŝz
2

+ 2h̄2 OK(ish): what is really meant is M̂ = Ŝz
2

+ 2h̄2Î
...i.e. scalars are implicitly multiplied by the identity operator

Ĵ = L̂+ Ŝ OK(ish): the operators act on three different spaces, but we mean...

Ĵ = L̂⊗ Î + Î ⊗ Ŝ OK: all terms are ops acting on the L⊗ S product space

A second check is that each equation should refer to just one level of description. So far we
have been talking about the level of abstract vectors for which we use Dirac notation. When we
pick a particular basis, we get a ‘representation’ of these abstract quantities as a set of numbers
in a less abstract (so-called ‘concrete’) notation; in this course we have used matrices and wave
functions. These should not be mixed, with each other or with abstract bras and kets. Here
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are some examples:

Abstract ket |a〉 bra 〈a| operator Ô number 〈a|b〉

Matrix rep column

(

a1

a2

)

row (a∗
1
, a∗

2
) square

(

0 1
1 0

)

(a∗
1
, a∗

2
)

(

b1
b2

)

= a∗
1
b1 + a∗

2
b2

Wave fn rep a(x) a∗(x) x× . . . , −ih̄d/dx, etc.
∫

a∗(x)b(x) dx

Here are some no-no’s:

〈↑ |

(

1 0
0 −1

)

|↓〉 = 0

This mixes abstract & matrix levels, although it’s pretty clear what’s meant.

〈p〉 =
∫

〈ψ|
h̄

i

d

dx
|ψ〉 dx

This mixes abstract vectors & wave functions and is wrong in two ways. First, one of the
main reasons Dirac notation is shorter & neater than using wave functions is that it avoids

have to write out such integrals; they are implicit in expressions like 〈ψ|p̂|ψ〉. Second, the
differential operator for p̂ applies to wave functions, ψ(x) = 〈x|ψ〉, not to kets |ψ〉. Notice that
the momentum wave function ψ(p), which is the Fourier transform of ψ(x), is also encoded in
|ψ〉: ψ(p) = 〈p|ψ〉. |ψ〉 is not a function of x — its value does not change as x changes, because
it implicitly accounts for all values of x simultaneously:

|ψ〉 = Î|ψ〉 =
∫

∞

−∞

|x′〉〈x′|ψ〉 dx′ =
∫

∞

−∞

|x′〉ψ(x′) dx′

(notice that x′ is a dummy variable). So you will get into trouble if you try to differentiate
by x! Note that, in contrast, kets representing quantum states are functions of time because
they do change (i.e. rotate in their abstract vector space) with time, under the control of the
Schrödinger equation.

Numbers in Quantum mechanics

In quantum mechanics, scalar numbers play several different roles, but unfortunately the nota-
tion does not help tell them apart, and many mistakes are due to getting these roles confused:

Values of observables: Operators representing physical observables have physical dimensions
(usually) and therefore units. Their eigenvalues, which are the allowed values of the
observables, have the same dimensions and units, for instance in the equation

Ĥ|E0〉 = E0|E0〉,

the Hamiltonian Ĥ and the scalar E0 have dimensions of energy. Eigenvalues of Hermi-
tian operators are always real numbers. Note that, in contrast, unitary operators (such
as rotations) are dimensionless, and so are their eigenvalues, which may be complex. Ex-
pectation values of operators, e.g. 〈ψ|p̂|ψ〉, are averages over eigenvalues and, of course,
share the same units.
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Useful check: If one term in an equation involves an operator with physical dimensions,
all the other terms must also have those same physical dimensions and so the numbers
multiplying the dimensionless kets (or bras) in any terms lacking operators must involve
values of observables, at least implicitly.

Probability amplitudes: We represent physical states, and vectors in orthonormal bases, as
normalised kets, e.g. |ψ〉, where 〈ψ|ψ〉 = 1. These are therefore dimensionless. If we
expand such a ket in terms of a basis

|ψ〉 =
∑

i

ci|ai〉

the scalars complex numbers ci = 〈ai|ψ〉 must also be dimensionless, and we must also
have |ci| ≤ 1 (NB: only if |ψ〉 is normalised, of course). They are often called probability
amplitudes. They can be thought of as ‘coordinates’ for the tip of the vector |ψ〉, in the
chosen basis.

Probabilities: The absolute square of a probability amplitude, e.g. |c1|
2 = c∗

1
c1 gives the

probability that a suitable measurement will find the system in the state given by the
corresponding basis vector, here |a1〉. Probabilities are dimensionless real numbers be-
tween 0 and 1. (“Suitable” means we measure some observable for which |a1〉 is an
eigenstate).

Useful check: you never get equations where bras, kets, or operators are multiplied by
probabilities.

Probability (amplitude) densities Bases like {|x〉}, appropriate for a wave function in N
spatial dimensions, are normalised to a delta-function instead of unity, i.e. 〈x|x′〉 =
δ(x− x′). Instead of probabilities we get probability densities which can be converted to
probabilities by integrating over a suitable N -dimensional volume, e.g. in 1-D

Prob(x ≤ 0) =
∫

0

−∞

|ψ(x)|2 dx.

Probability amplitude densities like ψ(x) = 〈x|ψ〉 have dimensions of length to the
(−N/2) power (e.g. (length)−1/2 for 1-D), so the above integral gives a dimensionless
probability. Since |ψ〉 is dimensionless, 〈x| and |x〉 must also have dimension (length)−N/2.

Many beginners confuse probability amplitudes with values of observables, since both are
commonly found as multipliers of kets. The best way to tell them apart is to read carefully the
words surrounding the equations, especially the ones that go “where ai are the eigenvalues of
operator Â” etc. Notice that sometimes you get both:

Â|ψ〉 = Â
∑

i

ci|ai〉 =
∑

i

ciÂ|ai〉 =
∑

i

ciai|ai〉.

A last warning: mathematically, it is legitimate to write

c2a2|a2〉 = b2|a2〉 = |Ξ〉 (DON’T DO THIS!)
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but this is horrible because b2 is a probability amplitude (likely complex) multiplied by some-
thing physical like an energy or position, and the final ket |Ξ〉 is not dimensionless but has the
same units as the eigenvalue a2. Save yourself a lot of trouble by not writing things like this:
keep the different kinds of numbers separate, and work out your own notation to help. For
instance, in this document I’ve consistently used ci for probability amplitudes, and deliberately
not used ’C’ to name any operator and hence eigenvalues.
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