
PHYS 20602 Handout 5

Golden Equations (Lectures 14 to 17)

σ̂xσ̂y = iσ̂z (etc.)

σ̂2
x = σ̂2

y = σ̂2
z = Î

Ĥ = − µ̂· B

(component of Hamiltonian for a particle in a magnetic field).

|S = 1,M = 0〉 =
|↑〉|↓〉+ |↓〉|↑〉√

2
=
|←〉|←〉 − |→〉|→〉√

2

|S = 0,M = 0〉 =
|↑〉|↓〉 − |↓〉|↑〉√

2
=
|←〉|→〉 − |→〉|←〉√

2

Problems

Lecture 18

1. Consider the vector |b〉 represented as b(x) = 1/(1 + x) for x ≥ 0, and
as b(x) = 0 for x < 0. Show that (a) |b〉 is normalised and therefore an
element of the space of 1-dimensional square-integrable functions, L2(R);
(b) x̂|b〉 is unnormalisable and therefore not in L2(R); (c) 〈b|x|b〉 is infinite.

2. Show that (a) the delta function δ(x) = δ(−x) (i.e. it is a symmetric
function); (b) δ(ax) = δ(x)/|a|.

3. Consider the “theta function” θ(x − x′) which is zero if x − x′ < 0 and
equals 1 if x− x′ ≥ 0. (a) Show that

δ(x− x′) =
d

dx
θ(x− x′).

That is, show that the expression on the right has the properties of a delta
function, i.e. equal to zero if x 6= x′ and integral equal to 1 if the integral
range covers x = x′.
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Lecture 19 Momentum space and position space in one spatial dimension:

1. From the notes:

〈x|p〉 =
1√
2π~

eipx/~.

Given a Gaussian “wave packet”

〈x|ψ(0)〉 =
1

(2πσ2)1/4
e−x2/4σ2

,

find 〈p|ψ(0)〉 (e.g. by expanding in terms of position states using Î =
∫∞

−∞
|x〉〈x| dx).

NB: this requires a result from complex analysis:

∫ ∞

−∞

e−z2

dz =
√
π

where z = x + iy is a complex variable and the integral is along any path
through the complex plane, as long as the real component x runs from −∞
to ∞ and y is always finite.

2. (Challenge) If the wave packet in the previous question represents a free
particle (V (x) = 0) with mass m at time t = 0,

(a) Write down the time evolution operator Û(t) in the momentum-space
representation. (Note that momentum states are energy eigenstates for
a free particle, which gives Û(t) a relatively simple form).

(b) By expanding in terms of the momentum basis, show that

〈x|ψ(t)〉 =
1

(2π)1/4
(

σ + i~t
2mσ

)1/2
exp

[

−x2

4
(

σ2 + i~t
2m

)

]

(c) Find 〈x〉, 〈p〉, and ∆p for the wave packet at time t, and show that

∆x = σ

(

1 +
~

2t2

4m2σ4

)
1

2

,

hence show that a Gaussian wave function (i.e. 〈x|ψ(0)〉) is a minimum
uncertainty state: ∆x∆p = ~/2.

(d) How long will it take for the position uncertainty to increase by a factor
of
√

2 for (i) an electron in an atom, (ii) a dust particle with σ = 10−5m
and m = 10−14 kg?

Lecture 20 The harmonic oscillator:
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1. Show that [â, â†] = 1, that â†|n〉 =
√
n+ 1|n+ 1〉, and that

|n〉 =
(â†)n

√
n!
|0〉.

2. Find the matrix representation for p̂x in the energy basis, and show by
matrix multiplication that [x̂, p̂x] = i~.

3. Challenge: Show that

〈E〉 =
∆p2

x + 〈px〉2
2m

+
1

2
mω(∆x2 + 〈x〉2).

By substituting x̂ and p̂ in terms of â and â†, show that 〈x〉 and 〈p〉 both
vanish for the states |n〉, and that

∆x2 =
~

2mω
〈n|
(

â+ â†
)2 |n〉 =

(

n +
1

2

)

~

mω

∆p2
x =

(

n +
1

2

)

~ωm = Em

Note that the ground state is a minimum uncertainty state, consistent with
its Gaussian wave function.

Lecture 21 Entanglement & non-locality:

1. A machine is set up to emit pairs of particles in opposite directions, which
are detected by a pair of “black box” detectors at the two ends of the lab.
Each detector can operate in two modes, ‘A’ or ‘B’, specified by the setting
of a switch. When the particles reach the detectors, each detector flashes a
red or green light. The mode at each end is chosen at random, just before
the particles arrive, so after a while you have a large sample of flashes
for each possible combination of modes at the two ends. You observe the
following trends:

• If the switches are set to B at both ends, sometimes both detectors
flash green.

• If the switch at one end is set to A, and the switch at the other to B,
the two detectors never both flash green.

As an exercise in pure logic, show that if the two particles cannot commu-
nicate with each other after after they leave the central emitter, then these
results imply that we must sometimes see both lights flash red when mode
A is selected at both ends.

2. A pair of spin-1/2 particles is emitted in opposite directions with combined
spin state given by

|ψ〉 =

√

3

8
(|↓〉|↑〉+ |↑〉|↓〉)− 1

2
|↑〉|↑〉.
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(This is in fact an entangled state, i.e. it cannot be written as a simple
direct product like |g〉|h〉). These particles are detected by a pair of Stern-
Gerlach experiments at opposite ends of the lab. The SG experiments can
be set either (A) measure spin along the z direction (i.e. Sz) or (B) tilted
to measure spin in a certain direction n, where spin up and down along n
are given by:

|+n〉 =

√

3

5
|↑〉+

√

2

5
|↓〉; |−n〉 = −

√

2

5
|↑〉+

√

3

5
|↓〉

The experiments are set up so that a spin-up result gives a green light and a
spin-down gives a red light. Show that the measurements will show exactly
the two trends noted in the previous question, but also will never show two
red lights in mode A!

HINTS:

Lecture 18: 1: Probably the fastest way to do some of the integrals is using the method of partial

fractions, e.g. note that x2 = (1 + x)2 − 2x − 1. 2(a) Note that δ(x) is real as it is the limit of

a sequence of real functions. As always, 〈x|x′〉 = 〈x′|x〉∗. (b) Change the variable in the defin-

ing integral. 3 You can either consider θ(x) as the limit of a sequence of functions with a finite

gradient instead of a sudden step, or you can go back to the definition of the differential as the

limit when δx → 0. Remember that
∫ b

a
(df/dx)dx =

∫ f(b)

f(a)
df . Lecture 19: 1 When evaluating inte-

grals like I =
∫

dx exp[iax − x2], complete the square: I = exp(−a2/4)
∫

dx exp[−(x − (ia/2))2],

and change variables to z = x − (ia/2). By change of variables from the given result, I(a) =
∫

∞

−∞
dx exp(−ax2) =

√

π/a. 2(b) Calculate 〈p|ψ(t)〉 = 〈p|Û(t)|ψ(0)〉 and transform back to position

space. 2(c)
∫

∞

−∞
dxx2n exp(−ax2) = (−d/da)nI(a). Lecture 21: 1. A consequence of the second

result is that if we see a green light in mode B, we know we will get a red light in mode A at the

other end. A consequence of the “no-communication” assumption is that the outcome for a particle

cannot depend on the switch setting at the other end, because the setting had not even been chosen

when the particle left the emitter. 2. The chance of getting, for instance, two spin-ups in mode B

(i.e. two green lights) will be |(〈+n|〈+n|)|ψ〉|2. You only have to show that such probabilities are

finite or zero.
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Answers to Handout 4

Lecture 14

1. (a) In the lectures we saw that for n = cosφ i + sinφ j we have

σ·n =

(

0 e−iφ

eiφ 0

)

.

Hence for n = sin θ(cos φ i + sin φ j) + cos θ k,

σ·n = cos θ σ̂z+sin θ

(

0 e−iφ

eiφ 0

)

=

(

cos θ 0
0 − cos θ

)

+

(

0 sin θ e−iφ

sin θ eiφ 0

)

.

=

(

cos θ sin θ e−iφ

sin θ eiφ − cos θ

)

.

(b) Solving the eigenvalue equation is a bit redundant as you can guess that the
eigenvalues of σ·n are ±1, but for the record

|σ·n−λÎ| = 0 = (cos θ−λ)(− cos θ−λ)−sin2 θ ei(φ−φ) = − cos2 θ−sin2 θ+λ2 = λ2−1.

Hence the eigenvalues of S · n = (~/2)σ·n are±~/2. Solving for the eigenvectors
we have

(

cos θ ∓ 1 sin θ e−iφ

sin θ eiφ − cos θ ∓ 1

)(

x
y

)

= 0,

We know that both lines in this equation will give us the same answer, since
only the ratio x/y is determined by the eigenvector equation; the absolute values
come from normalizing the vector. From the first line, we get

x

y
=

sin θ e−iφ

±1− cos θ
=

sin θ e−iφ/2

(±1− cos θ) eiφ/2
,

where in the last step we multiply top and bottom by eiφ/2 to make the phasors
look more balanced. Choosing the + sign (corresponding to λ = 1 i.e. |+n〉),
and using double-angle formulae, we have

x

y
=

2 sin(θ/2) cos(θ/2) e−iφ/2

2 sin2(θ/2) eiφ/2
=

cos(θ/2) e−iφ/2

sin(θ/2) eiφ/2

as required (we can just identify x and y with the numerator and denominator
as this obviously gives a normalised eigenvector). Note that for |−n〉 we get
− cos2(θ/2) on the bottom instead.

Consistency check: For |±z〉, θ = 0 and π respectively and φ is arbitrary. This
gives

|+z〉 −→Sz

(

e−iφ/2

0

)

; |−z〉 −→Sz

(

0
eiφ/2

)

;
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which differ from the standard spinors only by phase factors. For |±x〉, θ = π/2
and φ = 0 or π:

|+x〉 −→Sz

(

cos(π/4)
sin(π/4)

)

=
1√
2

(

1
1

)

; |−x〉 −→Sz

(

−i cos(π/4)
i sin(π/4)

)

=
−i√

2

(

1
−1

)

;

again we have a phase factor −i = e−iπ/2 in the case of |−x〉.
(c) For spin along the y axis, θ = π/2 and φ = π/2, i.e.

|+y〉 −→Sz

1√
2

(

e−iπ/4

eiπ/4

)

.

Comparing this with the answer to Q11.1(b), γ+ = −π/4, γ− = π/4, (γ+−γ−) =
−π/2, consistent with our previous requirement. The conventional phase choice
actually has γ+ = 0, giving

|+y〉 −→Sz

1√
2

(

1
i

)

.

(d)

〈+n|S|+n〉 = (cos(θ/2) eiφ/2, sin(θ/2) e−iφ/2)
~

2
[σx i + σy j + σz k]

(

cos(θ/2) e−iφ/2

sin(θ/2) eiφ/2

)

= (cos(θ/2) eiφ/2, sin(θ/2) e−iφ/2)× ~

2
×

[(

sin(θ/2) eiφ/2

cos(θ/2) e−iφ/2

)

i +

(

−i sin(θ/2) eiφ/2

i cos(θ/2) e−iφ/2

)

j +

(

cos(θ/2) e−iφ/2

− sin(θ/2) eiφ/2

)

k

]

=
~

2

[

cos(θ/2) sin(θ/2)
(

i(eiφ + e−iφ) + j(−ieiφ + ie−iφ)
)

+ k(cos2(θ/2)− sin2(θ/2))
]

=
~

2
[sin θ (i cosφ+ j sinφ) + k cos θ] =

~

2
n.

(e) write p = aeiα, q = beiβ where a, b, α, β ∈ R, and a, b ≥ 0. To get this into a
normalized form, extract a factor of

√
a2 + b2:

(

p
q

)

=
√
a2 + b2

(

a′ eiα

b′ eiβ

)

with a′ = a/
√
a2 + b2 etc. But now a′, b′ ≤ 1 and b′2 = 1− a′2, so we can write

θ/2 = arccos a′. Note that this puts θ between 0 and π. Then a′ = cos(θ/2) and
b′ = sin(θ/2), so

(

p
q

)

=
√
a2 + b2 ei(α+β)/2

(

cos(θ/2) ei(α−β)/2

sin(θ/2) ei(β−α)/2

)

.

This is the required result, with φ = β − α = arg(q/p), also note that θ/2 =
arctan(b′/a′) = arctan(b/a) = arctan(|q/p|); and A =

√
a2 + b2 ei(α+β)/2.

49



Lecture 15

1. Differentiating with respect to time:

ω1

2

(

(ḋ+ i(ω0 − ω)d) ei(ω0−ω)t

(ċ+ i(ω − ω0)c) e
i(ω−ω0)t

)

= i

(

c̈

d̈

)

.

We need to uncouple the c and d equations, which we can do by using the
undifferentiated equation to substitute c, d for ċ, ḋ and vice-versa. This gives:

−iω
2
1

4

(

c
d

)

+

(

i(ω0 − ω)iċ

i(ω − ω0)iḋ

)

= i

(

c̈

d̈

)

.

For d(t) this becomes

d̈− i(ω − ω0)ḋ+ dω2
1/4 = 0

Try a solution of the form d(t) = eiΩt. Inserting this into the above equation
gives

−Ω2 + (ω − ω0)Ω + ω2
1/4 = 0

Solving the quadratic gives:

Ω =
(ω − ω0)±

√

(ω − ω0)2 + ω2
1

2

The ± indicates that we have two solutions, Ω+ and Ω−, hence

b(t) = (AeiΩ+t +BeiΩ
−

t) eiω0t/2

= A exp

[

i
ω +

√

(ω − ω0)2 + ω2
1

2
t

]

+B exp

[

i
ω −

√

(ω − ω0)2 + ω2
1

2
t

]

One pair of boundary conditions is that a(0) = c(0) = 1 and b(0) = d(0) = 0.
Applying the second gives B = −A. We can also use c(0) = 1 in our initial
equation at t = 0:

ḋ(t = 0) = −iω1

2
c(0)ei0 = −iω1

2
.

But

ḋ(t) = i(AΩ+ +BΩ−) = iA
√

(ω − ω0)2 + ω2
1

So

A =
−ω1/2

√

(ω − ω0)2 + ω2
1

d(t) = A
(

eiΩ+t − eiΩ
−

t
)

= −i ω1e
i(ω−ω0)t/2

√

(ω − ω0)2 + ω2
1

sin

(

√

(ω − ω0)2 + ω2
1

2
t

)

50



The phase factors vanish when we take the modulus squared:

|d(t)|2 =
ω2

1

(ω − ω0)2 + ω2
1

sin2

(

√

(ω − ω0)2 + ω2
1

2
t

)

,

as required.

Lecture 16

1. We keep the subscript 1 and 2 for operators on the single-particle spaces and for
their extension into the direct product space, while the total angular momentum
operators will have no numerical subscripts. Per the hint, on the direct product
space we should write S1 = S1 ⊗ I and S2 = I ⊗ S2. Thus the commutator
between total angular momentum components is

[Sx, Sy] = [S1x + S2x, S1y + S2y] ≡ [S1x ⊗ I + I ⊗ S2x, S1y ⊗ I + I ⊗ S2y]

From Q7.1(c), operators on different spaces commute, so this boils down to

[Sx, Sy] = [S1x ⊗ I, S1y ⊗ I] + [I ⊗ S2x, I ⊗ S2y]

This is an example of Q7.1(d), where in the single-particle space we put Ω1 = S1x,
Λ1 = S1y, and we know their commutator is Γ1 = i~S1z , and similarly on the
space for particle 2. Then in the direct product space we have

[Sx, Sy] = i~S1z ⊗ I + i~I ⊗ S2z = i~Sz.

The other two commutators, [Sy, Sz] and [Sz, Sx] go through in exactly the same
way, permuting x, y, z.

2. (a) We have
S2 = (S1 + S2)

2 = S2
1 + S2

2 + 2S1 · S2

As noted in the lectures,

2S1 · S2 = 2 (S1xS2x + S1yS2y + S1zS2z) ,

and we also have S± = Sx ± iSy so

Sx = (S+ + S−)/2; Sy = (S+ − S−)/2i

so

2S1 · S2 =
2

4
{(S1+ + S1−)(S2+ + S2−)− (S1+ − S1−)(S2+ − S2−)}+ 2S1zS2z

= S1+S2− + S1−S2+ + 2S1zS2z.
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We work out the matrices in the direct product basis for each of these terms,
representing the basis kets in the order given in the question, i.e.

|↑, ↑〉 −→product









1
0
0
0









; |↑, ↓〉 −→product









0
1
0
0









; |↓, ↑〉 −→product









0
0
1
0









; |↓, ↓〉 −→product









0
0
0
1









.

These basis kets are all eigenstates of S2
1 + S2

2 with the same eigenvalue, i.e.

s1(s1 + 1)~2 + s2(s2 + 1)~2 = 2
1

2

3

2
~

2 =
3~

2

2
.

(since we are adding two spin-halfs). So the matrix representation in the direct
product basis is:

S2
1 + S2

2

−→
product

3~
2

2









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









The basis kets are also eigenstates of 2S1zS2z with eigenvalues 2m1~m2~, where
m1 or m2 are ±1/2. we have

2S1zS2z
−→

product
~

2

2









1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1









The products of raising and lowering operators act on the basis kets as:

S1+S2−|↑, ↑〉 ≡ (S1+ ⊗ S2−) (|↑〉1 ⊗ |↑〉2) = (S1+|↑〉1)⊗(S2−|↑〉2) = 0⊗
(

√

3

4
+

1

4
~|↓〉

)

= 0

and so on. Working through all the options gives zeros nearly everywhere:

S1+S2−
−→

product ~
2









0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0









; S1−S2+
−→

product ~
2









0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0









.

Adding all these terms together gives the required matrix

S2 −→
product ~

2









2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2









.
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(b) Solving for the eigenvalues of S2/~2:

det(S2/~2−λI) = 0 =

∣

∣

∣

∣

∣

∣

∣

∣

2− λ 0 0 0
0 1− λ 1 0
0 1 1− λ 0
0 0 0 2− λ

∣

∣

∣

∣

∣

∣

∣

∣

= (2−λ)

∣

∣

∣

∣

1− λ 1
1 1− λ

∣

∣

∣

∣

(2−λ)

where we use the usual rule for breaking large determinants into sums of smaller
ones...in this case there is only one term as there is only one entry on the top
and bottom rows. Hence we get

0 = (2− λ)2[(1− λ)2 − 1] = (2− λ)2λ(λ− 2)

i.e. the eigenvalues are 2 (three times) and 0 (once)...the familiar triplet and
singlet. Thus S2 = 2~

2 = 1(1 + 1)~2 and S2 = 0, i.e. the total spin S = 1 or 0.
It should be obvious by looking at the matrix that the top and bottom states of
the ladder are eigenstates of spin-1:

S2|↑, ↑〉 = 2~
2|↑, ↑〉; S2|↓, ↓〉 = 2~

2|↓, ↓〉

and that these have M = 1 andM = −1 respectively, ie. they are |S,M〉 = |1, 1〉
and |1,−1〉. So we have to find the other two eigenkets, which must be orthogonal
to those two and hence must be superpositions of the middle two of our original
basis states. These are both M = 0 states since Sz = S1z + S2z acting on them
multiples them by (1/2 − 1/2)~ or (−1/2 + 1/2)~ i.e. 0. More formally using
the language of direct products:

Sz|↑, ↓〉 ≡ (S1z ⊗ I + I ⊗ S2z) (|↑〉1 ⊗ |↓〉2) = (S1z|↑〉1)⊗ |↓〉2 + |↑〉1 ⊗ (S2z|↓〉2)

=
~

2
|↑, ↓〉 − ~

2
|↑, ↓〉 = 0

and the same for |↓, ↑〉. The two eigenkets of S2 and Sz that we’re looking for
must have different quantum numbers, so as M is the same, S must differ, i.e.
they must be |S = 1,M = 0〉 and |S = 0,M = 0〉 as stated in the question. So
the eigenvector problem reduces to a 2× 2 matrix:

(

1 1
1 1

)(

a
b

)

= λ

(

a
b

)

.

Taking λ = 0 (i.e. S = 0) we get a = −b, so the normalised eigenket is

|0, 0〉 =
|↑, ↓〉 − |↓, ↑〉√

2
.

Taking λ = 2 (i.e. S = 1) we get a + b = 2a so b = a, so

|1, 0〉 =
|↑, ↓〉+ |↓, ↑〉√

2
.
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(c) Substituting eigenstates of spin-x for eigenstates of spin-z, using the formulae
given in the question:

|0, 0〉 =
|↑〉|↓〉 − |↓〉|↑〉√

2

=
1

(
√

2)3
{(|←〉+ |→〉)(|←〉 − |→〉)− (|←〉 − |→〉)(|←〉+ |→〉)}

=
1

2
√

2
{2(|←〉|→〉)− 2(|→〉|←〉)} =

|←〉|→〉 − |→〉|←〉√
2

|1, 0〉 =
|↑〉|↓〉+ |↓〉|↑〉√

2

=
1

(
√

2)3
{(|←〉+ |→〉)(|←〉 − |→〉) + (|←〉 − |→〉)(|←〉+ |→〉)}

=
1

2
√

2
{2(|←〉|←〉)− 2(|→〉|→〉)} =

|←〉|←〉 − |→〉|→〉√
2

Challenge: We saw in Q13.2(b) that a spin-1/2 pointing in an arbitrary direc-
tion ±n (angles θ, φ) can be represented by

|+n〉 −→Sz

(

cos(θ/2) e−iφ/2

sin(θ/2) eiφ/2

)

; |−n〉 −→Sz

(

− sin(θ/2) e−iφ/2

cos(θ/2) eiφ/2

)

.

where we choose the phase (in effect, sign) of |−n〉 so that it equals |−z〉 ≡ |↓〉
when θ = φ = 0. Expanding out the expression given in the question:

|+n〉|−n〉 − |−n〉|+n〉 =

(cos(θ/2) e−iφ/2|↑〉+ sin(θ/2) eiφ/2|↓〉)(− sin(θ/2) e−iφ/2|↑〉+ cos(θ/2) eiφ/2|↓〉)
−(− sin(θ/2) e−iφ/2|↑〉+ cos(θ/2) eiφ/2|↓〉)(cos(θ/2) e−iφ/2|↑〉+ sin(θ/2) eiφ/2|↓〉)

= cos2(θ/2)|↑〉|↓〉 − sin2(θ/2)|↓〉|↑〉+ sin2(θ/2)|↑〉|↓〉 − cos2(θ/2)|↓〉|↑〉
= |↑〉|↓〉 − |↓〉|↑〉.

Therefore

|0, 0〉 =
|↑〉|↓〉 − |↓〉|↑〉√

2
=
|+n〉|−n〉 − |−n〉|+n〉√

2
.

This confirms, as you might hope, that a state with zero total spin also has zero
spin along any arbitrary axis.
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Lecture 17

1. Evaluating as per the question:

(

J2
1 + J2

2 + 2J1zJ2z + J1+J2− + J1−J2+

)

|j1, j1〉|j2, j2〉 =

(

(j1(j1 + 1)~2 + j2(j2 + 1)~2 + 2j1~ j2~ + 0 + 0
)

|j1, j1〉|j2, j2〉
which is just a multiple of the original so this is an eigenstate. Notice that the
only components of J2 that can change one of the direct product basis states
are the ones involving raising and lowering operators. By definition a stretched
state contains the maximum or minimum j1, j2 values, so trying to raise one
and lower the other always gives zero.
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