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Golden Equations (Lectures 9 to 13)

〈A〉 = 〈ψ|A|ψ〉

Û(t, t0) = e−iĤ(t−t0)/~

Ĥ|ψ(t)〉 = i~
d

dt
|ψ(t)〉

[Ĵx, Ĵy] = i~Ĵz; [Ĵy, Ĵz] = i~Ĵx; [Ĵz, Ĵx] = i~Ĵy

Ĵ±|j,m〉 = c±(j,m)|j,m± 1〉

Exam Info

The exam on this course has the standard format: a compulsory Q1 with several short
parts testing knowledge of the basics, and a choice of two out of three other questions.
This course was introduced in 2009 as “Fundamentals of Quantum Mechanics” (a
misnomer) so there are is only three direct previous exam papers to practice on.
Moreover, the syllabus was revised after the first year, so from the 2009 paper, Q1(b),
Q1(d) and most of Q4 do not apply to the current course. To find further examples to
practice on, check papers on the old course PHYS 30101 Quantum Mechanics, choosing
questions which match the topics covered here (see the “Learning Objectives” in the
Blue book). These will usually involve Dirac notation or matrices. For instance, from
the Jan 2008 paper (available on-line), Q1(b), (c), (d), and Q3 would be fair questions
for this course.1

1Usually, questions on 2nd-year papers are a bit simpler than questions on 3rd-year papers. But
(M) courses like this one are more mathematically sophisticated than average for the year.
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Examples

Lecture 14

1. Generalise the result given in the lectures by solving for the eigenstates of
spin in an arbitrary direction n = (sin θ cosφ, sin θ sinφ, cos θ).

(a) Show that the spin operator in this direction is

Ŝ · n −→Sz

~

2

(

cos θ sin θ e−iφ

sin θ eiφ − cos θ

)

.

(b) Solve for the eigenvector for “spin up” along n: |Sn = ~/2〉 ≡ |+n〉, to
show that it can be represented in the Sz basis by

|+n〉 −→Sz

(

cos(θ/2) e−iφ/2

sin(θ/2) eiφ/2

)

.

Convince yourself that (apart from an overall phase) this is consistent
with our previous expressions for |+z〉, |−z〉, |+x〉, and |−x〉.

(c) Show that for n = j = (0, 1, 0) this gives phases consistent with the
requirements on |±y〉 from Q11.1.

(d) Show that 〈+n|S|+n〉 = (~/2)n.
NB: this is a 3-vector equation: it is a compact way of writing 3 equa-
tions for the x, y, and z components of S, e.g. the z-component gives
〈+n|Sz|+n〉 = (~/2) cos θ.

(e) Show the converse of part (b), i.e. that an arbitrary ket, represented
by

|r〉 −→Sz

(

p
q

)

for any p, q ∈ C represents a definite spin state A|+n〉 for some θ, φ,
where A is an arbitrary complex number (since |r〉 is not normalized).
Find θ and φ as functions of p and q.
[NB: this is a peculiarity of spin-1/2; for any larger value of angular
momentum we can construct states which are not eigenstates of Ĵn in
any direction n.]

Lecture 15

1. (Challenge): The equation for magnetic resonance derived in the lecture
was

ω1

2

(

d ei(ω0−ω)t

c ei(ω−ω0)t

)

= i

(

ċ

ḋ

)

.

31



(a) Without assuming that ω = ω0, differentiate this equation with respect
to time and by substituting from the above equation to get ċ in terms
of d, ḋ in terms of c, and vice versa, separate the c(t) and d(t) variables
into two second-order differential equations.

(b) Try a solution of the form d = AeiΩt. Find the two possible expressions
for Ω, say Ω+ and Ω−. Hence the general expression is d = AeiΩ+t +
BeiΩ−t.

(c) Given the boundary condition that the state starts with spin up, i.e.

|ψ(0)〉 = |↑〉 −→Sz

(

c(0)
d(0)

)

=

(

1
0

)

,

find the values of A and B.

(d) Hence show that the probability of finding the state in spin down is
given by Rabi’s formula:

|d(t)|2 = |〈↓ |ψ(t)〉|2 =
ω2

1

(ω0 − ω)2 + ω2
1

sin2

(

√

(ω0 − ω)2 + ω2
1

2
t

)

.

Note that from normalization, |c|2 + |d|2 = 1.

Lecture 16

1. If Ŝ = Ŝ1+Ŝ2 is the total spin operator of a system of two spin-half particles,
prove that the components of Ŝ satisfy the commutation relations

[Sx, Sy] = i~Sz, [Sy, Sz] = i~Sx, [Sz, Sx] = i~Sy

given that these hold for the components of Ŝ1 and Ŝ2.

2. In a system of two spin-1/2 particles,

(a) Show that the matrix for S2 for in the product basis (basis kets |↑, ↑〉,
|↑, ↓〉, |↓, ↑〉, |↓, ↓〉) is

S2 −→
product ~

2









2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2









.

(b) Show that in addition to |S,M〉 = |1, 1〉 = |↑, ↑〉 and |1,−1〉 = |↓, ↓〉,
we can complete the set of eigenkets of S2 with

|1, 0〉 =
|↑〉|↓〉+ |↓〉|↑〉√

2
and |0, 0〉 =

|↑〉|↓〉 − |↓〉|↑〉√
2

.
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(c) Show that we can express the last two kets in terms of the Sx basis,
i.e. {|←〉, |→〉}, as

|1, 0〉 =
|←〉|←〉 − |→〉|→〉√

2
and |0, 0〉 =

|←〉|→〉 − |→〉|←〉√
2

,

by substituting

|↑〉 =
|←〉+ |→〉√

2
, |↓〉 =

|←〉 − |→〉√
2

.

For a challenge, show that

|0, 0〉 =
|+n〉|−n〉 − |−n〉|+n〉√

2

for any direction n.

Lecture 17

1. For a system of two particles with angular momentum quantum numbers
j1 and j2, verify that the “stretched state” |j1,m1 = j1〉|j2,m2 = j2〉 is an
eigenstate of the total angular momentum operator J2 with quantum num-
ber j = j1 + j2, by letting J2 = J2

1 + J2
2 + 2J1zJ2z + J1+J2− + J1−J2+ act

on it.

HINTS:

Lecture 14: 1(b). You will need all the double-angle formulae for cos and sine! (e). Write p and q

as complex numbers in polar form, i.e. aeiφ. Show that after normalization the amplitudes can be

written as cos(θ/2) and sin(θ/2). Pull out an overall phase factor to find A. Lecture 15: 1. Note

that the two solutions for Ω must be matched to meet the boundary conditions (i.e. at t = 0) for both

d and ḋ. Lecture 16: 1. Note that S1 should really be written S⊗ I, while S2 = I ⊗ S. The answer

to Q12.1 all but solves this problem also.
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Answers to Handout 3

Lecture 9

1. (a)

Ĥψ(x) = Ĥ[c1φ1(x)+c2φ2(x)] = c1Ĥφ1(x)+c2Ĥφ2(x) = c1E1φ1(x)+c2E2φ2(x)

(last step because φ1, φ2 are energy eigenfunctions).

(b) Ĥ and E1 both have dimension of energy (operators have the same physical
dimensions as their eigenvalues). c1 is a dimensionless complex number (“proba-
bility amplitude”). Wave functions φ1(x), ψ(x) have their dimensions set by the
requirement that probabilities (dimensionless) are space integrals over squared
wave functions. So for 1 particle in 3 space dimensions φ1 and ψ have dimensions
inverse square-root volume (length to the −3/2 power). x is a position vector,
with dimension of length.

(c) Possible values are the eigenvalues of the energy eigenfunctions present in
the superposition, i.e. E1, with probability |c1|2, and E2, with prob. |c2|2.
(d) Prob. particle is within 1 nm of the origin is

∫ 2π

0

∫ π

0

∫ 1 nm

0

|ψ(x)|2r2dr sin θdθdφ

2. (a) If you measure an observable represented by an operator, the possible values
are the operator’s eigenvalues. One could solve the eigenvalues of the Lz matrix
but since it is already diagonal you can just read them off the main diagonal, i.e
the values are ~ × (1, 0,−1). NB since the Lz matrix is diagonal, you can tell
that these matrices have been written in the Lz representation.

(b) The vector representing Lz = ~ is just

|Lz = ~〉 −→Lz





1
0
0



 .

Evaluating the various expectations we have

〈Lx〉 = 〈Lz = ~|L̂x|Lz = ~〉 = (1, 0, 0)
~√
2





0 1 0
1 0 1
0 1 0









1
0
0





= (1, 0, 0)
~√
2





0
1
0



 = 0
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〈L2
x〉 = (1, 0, 0)

~
2

2





0 1 0
1 0 1
0 1 0









0 1 0
1 0 1
0 1 0









1
0
0





= (1, 0, 0)
~

2

2





1 0 1
0 2 0
1 0 1









1
0
0



 =
~

2

2

∆Lx =
√

〈L2
x〉 − 〈Lx〉2 =

~√
2
.

(c) Eigenvalues of L̂x:

∣

∣

∣

∣

∣

∣

−l ~/
√

2 0

~/
√

2 −l ~/
√

2

0 ~/
√

2 −l

∣

∣

∣

∣

∣

∣

= −l
(

(−l)2 − ~
2

2

)

− ~√
2

(−l~√
2
− 0

)

= l(~2− l2) = 0.

So the eigenvalues are l = ~× (1, 0,−1), the same as for Lz. Eigenvectors come
from

y~/
√

2 = xl; (x+ z)~/
√

2 = yl; y~/
√

2 = zl.

Hence, up to phase factors, the eigenvectors are

|Lx = ~〉 −→Lz

1

2





1√
2
1



 ; |Lx = 0〉 −→Lz

1√
2





1
0
−1



 ; |Lx = −~〉 −→Lz

1

2





1

−
√

2
1



 .

(d) We have

|Lz = −~〉 −→Lz





0
0
1



 .

Possible outcomes are eigenvalues of L̂x, i.e. ~, 0,−~.

Prob(Lx = ~) =

∣

∣

∣

∣

∣

∣

1

2

(

1,
√

2, 1
)





0
0
1





∣

∣

∣

∣

∣

∣

2

=
1

4

Prob(Lx = 0) =

∣

∣

∣

∣

∣

∣

1√
2

(1, 0,−1)





0
0
1





∣

∣

∣

∣

∣

∣

2

=
1

2

Prob(Lx = −~) =

∣

∣

∣

∣

∣

∣

1

2

(

1,−
√

2, 1
)





0
0
1





∣

∣

∣

∣

∣

∣

2

=
1

4
.

(e) We can get the eigenvalues of L̂2
x without solving the eigenvalue equation:

by the usual rule for a function of an operator, they are just the squares of the
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eigenvalues of L̂x: ~
2 (for Lx = ±~) and 0 (for Lx = 0). Since this is a degenerate

operator, a measurement projects the original state onto the eigenspace of the
observed value; in this case the space spanned by |Lx = ~〉 and |Lx = −~〉. The
probability is just the sum of the probabilities for the two components of the
vector which lie in this eigenspace, i.e.

Prob(L2
x = ~

2) = |〈Lx = ~|ψ〉|2 + |〈Lx = −~|ψ〉|2

=





1

2
(1,
√

2, 1)





1/2
1/2

1/
√

2









2

+





1

2
(1,−

√
2, 1)





1/2
1/2

1/
√

2









2

=
1

16

[

1 + 2
√

2
]2

+
1

16
[1 + 0]2 =

1 + 4
√

2 + 8 + 1

16
=

5 + 2
√

2

8
= 0.979

More formally, we could get the probability by applying the projection operator.
This can be constructed explicitly using the butterfly operators:

P̂L2
x
=~ = P̂Lx=~ + P̂Lx=−~

= |Lx = ~〉〈Lx = ~|+ |Lx = −~〉〈Lx = −~|
In matrix form this becomes

[PL2
x
=~] =

1

4





1√
2
1





(

1,
√

2, 1
)

+
1

4





1

−
√

2
1





(

1,−
√

2, 1
)

=
1

4









1
√

2 1√
2 2

√
2

1
√

2 1



+





1 −
√

2 1

−
√

2 2 −
√

2

1 −
√

2 1









=
1

2





1 0 1
0 2 0
1 0 1



 .

Hence

〈ψ|P̂L2
x
=~|ψ〉 = =

(

1

2
,
1

2
,

1√
2

)

1

2





1 0 1
0 2 0
1 0 1









1/2
1/2

1/
√

2





=

(

1

2
,
1

2
,

1√
2

)

1

4





1 +
√

2
2

1 +
√

2



 =
5 + 2

√
2

8

as before. The column vector in the last line is the projected ket; to get the
state after measurement we just re-normalise it:

|ψ′〉 =
(

10 + 4
√

2
)−1/2





1 +
√

2
2

1 +
√

2



 .
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If we now measure Lz we get ~ or −~ each with probability 3+2
√

2
10+4

√
2
, or Lz = 0

with probability 4
10+4

√
2
.

(f) Since the particle has a finite probability for all three possible eigenvalues of
Lz, it must be in a state of the form:

|ψ〉 = a|Lz = ~〉+ b|Lz = 0〉+ c|Lz = −~〉

with |a|2 = 1/4, |b|2 = 1/2, |c|2 = 1/4. Taking the square root and allowing for a
complex phase gives the result quoted in the question. The phases of individual
components in a superposition are NOT irrelevant. The probability of getting
Lx = 0, given the representation of |Lx = 0〉 derived in part (c), is

Prob(Lx = 0) =

∣

∣

∣

∣

∣

∣

1√
2
(1, 0,−1)

1

2





eiδ1√
2eiδ2

eiδ3





∣

∣

∣

∣

∣

∣

2

=
1

8

∣

∣eiδ1 − eiδ3
∣

∣

2

=
1

8

(

eiδ1 − eiδ3
) (

e−iδ1 − e−iδ3
)

=
1

8

(

1− ei(δ1−δ3) − ei(δ3−δ1) + 1
)

=
1− cos(δ1 − δ3)

4

=
1

2
sin2

(

δ1 − δ3
2

)

The irrelevance of the overall phase shows up here in that the probability depends
only on the phase difference between the two surviving terms: we can always
remove an overall phase from |ψ〉. But the relative phases between the terms
are crucial: here, if (δ1 − δ3) = 0 there is no chance of getting Lx = 0, while if
(δ1 − δ3) = π then we have a 50% probability.

Lecture 10

1. Maclaurin series:

f(x) = f(0) + x
f ′(0)

1!
+ x2f

′′(0)

2!
+ . . .

d

dx

(

1 +
x

N

)N

= N
(

1 +
x

N

)N−1

× 1

N
=
(

1 +
x

N

)N−1

.

Clearly the n-times differential, evaluated at x = 0, fn′(0) = 1 for n < N , i.e.
for all n in the limit.

Thus

lim
N→∞

(

1 +
x

N

)N

= 1 + x+ x2/2! + x3/3! + . . .

which I hope you recognize as the Maclaurin expansion for ex.
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2. (a) We have

H(t)|ψ(t)〉 = i~
d

dt
|ψ(t)〉

so

H(t)U(t0, t)|ψ(t0)〉 = i~
d

dt
U(t0, t)|ψ(t0)〉.

But here |ψ(t0)〉 is for a fixed time and so does not depend on t. Moreover
the Schrödinger equation gives the time evolution for any starting wavefunction
|ψ(t0)〉 (as long as it is in the set of physically possible wavefunctions). But if
two operators give the same result for all vectors in the relevant space, they are
equal:

H(t)U(t0, t) = i~
d

dt
U(t0, t),

as required.

(b) Going back to basics

i~
dU(t0, t)

dt0
= i~ lim

dt0→0

U(t0 + dt0, t)− U(t0, t)

dt0

Using U(t0, t) = U(t0, t1)U(t1, t), with t1 = t0 + dt0, we get

i~
dU(t0, t)

dt0
= i~ lim

dt0→0

I − U(t0, t0 + dt0)

dt0
U(t0 + dt, t)

But by definition

H(t0) = i~ lim
dt0→0

U(t0, t0 + dt0)− I
dt0

,

so

i~
dU(t0, t)

dt0
= −H(t0) lim

dt0→0
U(t0 + dt0, t) = −H(t0)U(t0, t).

(c) Putting f = t− t0, we have

dU(t− t0)
dt0

=
d(t− t0)
dt0

dU(f)

df
= −dU(f)

df
,

and similarly dU(t− t0)/dt = dU(f)/df . Hence

H(t)U(t− t0) = i~
dU(f)

df
= −[−H(t0)U(t− t0)] = H(t0)U(t− t0).

But since U is unitary it has an inverse, so we can post-multiply both sides:

H(t)UU−1 = H(t) = H(t0)UU
−1 = H(t0),

as required.
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3. (a) Find eigenstates of the Hamiltonian:
∣

∣

∣

∣

∣

∣

E0 − λ 0 A
0 E1 − λ 0
A 0 E0 − λ

∣

∣

∣

∣

∣

∣

= 0 = (E0 − λ)(E1 − λ)(E0 − λ) + A(−(E1 − λ)A)

((E0 − λ)2 − A2)(E1 − λ) = 0

i.e. λ = E1 or λ = E0 ± A. Solving for the eigenstates:




E0 0 A
0 E1 0
A 0 E0









a
b
c



 = E1





a
b
c





The first and last lines give

(E0 − E1)a = −Ac
(E0 − E1)c = −Aa

which can only be satisfied if a = c = 0 (unless E1 = E0 ± A, i.e. eigenvalues
degenerate). Thus for E = E1 the normalised eigenstate is





0
1
0



←− |soggy〉

Thus if the system starts |soggy〉,
|ψ(t)〉 = e−iE1t/~|soggy〉;

apart from a phase factor, the system remains |soggy〉.
(b) If





E0 0 A
0 E1 0
A 0 E0









a
b
c



 = (E0 ± A)





a
b
c





we require b = 0 from the second line and c = ±a from the first and third, so
the other eigenstates are

|E0 + A〉 =
1√
2





1
0
1



 and |E0 − A〉 =
1√
2





1
0
−1





Thus

|pop〉 =
1√
2
(|E0 + A〉 − |E0 − A〉)

so the time evolution is given by

|ψ(t)〉 = e−iĤt/~|pop〉 =
e−i(E0+A)t/~

√
2

(|E0 + A〉 − e2iAt/~|E0 − A〉)

i.e. the system oscillates between |pop〉 and |snap〉.
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Lecture 11

1. (a) Stern-Gerlach experiments show that the spin in one direction can be con-
sidered to be a superposition (with equal weight) of the ‘+’ and ‘−’ spin states
in a second, orthogonal, direction. Originally we called these directions x and z,
but we could have called them y and z just as easily. For equal weight superpo-
sition the probabilities must be 1/2 for each state, i.e. complex amplitudes have
modulus 1/

√
2 but they can have arbitrary phases, giving the required result:

|+y〉 =
eiγ+

√
2
|+z〉+ eiγ−

√
2
|−z〉.

In general there are also arbitrary phases δ± for |+x〉, but we have the freedom
to choose the phases of |±z〉 to make δ± = 0.

Re-labelling the axes x and y instead of z and x will not change the results, i.e.
there must be a 50% probability of getting |+y〉 from a particle in state |+x〉,
as required:

|〈+y|+x〉|2 =
1

2
.

(b) With the conventional phase choice (δ± = 0) we have

|+x〉 =
1√
2
(|+z〉+ |−z〉)

〈+y| = 1√
2
(e−iγ+〈+z|+ e−iγ−〈−z|)

Notice that i becomes −i going from ket to bra.

〈+y|+x〉 =
1

2
(e−iγ+〈+z|+z〉+ e−iγ+〈+z|−z〉+ e−iγ−〈−z|+z〉+ e−iγ−〈−z|−z〉)

=
1

2
(e−iγ+ + e−iγ−),

where we used the orthonormality of |+z〉, |−z〉.

|〈+y|+x〉|2 =
1

4
(1 + e−iγ++iγ− + e−iγ−+iγ+ + 1) =

1

2
(1 + cos(γ+ − γ−))

To make this agree with the 50% probability derived above, we need

(γ+ − γ−) =

(

n+
1

2

)

π

But for both the eiγ± phase factors to be real (i.e. ±1), we would have needed
both γ± to be an integral number of πs. Thus at least one phase factor must have
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an imaginary component. Now the probability amplitudes, from the definition
of |+y〉, are

〈±z|+y〉 = exp[−iγ±]/
√

2,

so if the phase factors are complex, so are the probability amplitudes.

2. (a) Sz|↑〉 = (~/2)|↑〉 and Sz|↓〉 = (−~/2)|↓〉; now:

~

2
(P↑ − P↓)|↑〉 =

~

2
(|↑〉+ 0)

~

2
(P↑ − P↓)|↓〉 =

~

2
(0− |↓〉)

as required.

(b) S+|↑〉 = 0 and S+|↓〉 = ~|↑〉; now

~|↑〉〈↓ |↑〉 = ~|↑〉 × 0 = 0

~|↑〉〈↓ |↓〉 = ~|↑〉 × 1 = ~|↑〉
as required; similarly for S− and ~|↑〉〈↓ |.

3. For j = 2 the possible m values are −2,−1, 0, 1, 2. We have j(j + 1) = 6.
Remembering that the J+ (J−) operators are only non-zero for the diagonal
above (below) the main diagonal, we get the following values for c±:

m c+(2,m) c−(2,m)
2 0 2~

1 2~
√

6~

0
√

6~
√

6~

-1
√

6~ 2~

-2 2~ 0

i.e. the matrices are

J+ = ~













0 2 0 0 0

0 0
√

6 0 0

0 0 0
√

6 0
0 0 0 0 2
0 0 0 0 0













; J− = ~













0 0 0 0 0
2 0 0 0 0

0
√

6 0 0 0

0 0
√

6 0 0
0 0 0 2 0













.

Hence

Jx =
J+ + J−

2
=

~

2













0 2 0 0 0

2 0
√

6 0 0

0
√

6 0
√

6 0

0 0
√

6 0 2
0 0 0 2 0













;
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Jy =
J+ − J−

2i
=

~

2













0 −2i 0 0 0

2i 0 −
√

6i 0 0

0
√

6 0 −
√

6i 0

0 0
√

6i 0 −2i
0 0 0 2i 0













.

Lecture 12

1. (a) By definition,

(

Θ̂⊗ Λ̂
)

|v〉 ⊗ |w〉 =
(

Θ̂|v〉
)

⊗
(

Λ̂|w〉
)

for any direct product ket. Therefore

(

Ω̂⊗ Γ̂
)(

Θ̂⊗ Λ̂
)

|v〉⊗|w〉 =
(

Ω̂⊗ Γ̂
)(

Θ̂|v〉
)

⊗
(

Λ̂|w〉
)

=
(

Ω̂Θ̂|v〉
)

⊗
(

Γ̂Λ̂|w〉
)

=
(

(Ω̂Θ̂)⊗ (Γ̂Λ̂)
)

|v〉 ⊗ |w〉.

Now, we know that we can find a basis on V1⊗2 consisting of direct product
kets of the above form, e.g. {|vi〉 ⊗ |wj〉} where |vi〉 and |wi〉 are basis
vectors on V1 and V2 respectively. But since direct product operators are
linear (just like all operators we are discussing), if two operators give the
same result for all basis vectors they will give the same result for all vectors
and so will be identical. Therefore

(

Ω̂⊗ Γ̂
)(

Θ̂⊗ Λ̂
)

= (Ω̂Θ̂)⊗ (Γ̂Λ̂) QED.

(b) From the linearity of addition of operators (e.g. Q4.1):

(

Â⊗ Î + B̂ ⊗ Î
)

|v〉 ⊗ |w〉 = (Â⊗ Î)|v〉 ⊗ |w〉+ (B̂ ⊗ Î)|v〉 ⊗ |w〉

= (Â|v〉)⊗ |w〉+ (B̂|v〉)⊗ |w〉

Then from the linearity of the vector direct product:

= (Â|v〉+ B̂|v〉)⊗ |w〉 = (Â+ B̂)|v〉 ⊗ (Î|w〉)
=

(

(A+B)⊗ Î
)

|v〉 ⊗ |w〉.

Hence Â ⊗ Î + B ⊗ Î = (A + B) ⊗ Î by the same argument as before. In
this way, operator direct products “inherit” linearity from the vector direct
product.
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(c) By definition of commutator, and using result (a) above:

[Ω̂1⊗2
1 , Λ̂1⊗2

2 ] = [Ω̂1 ⊗ Î , Î ⊗ Λ̂2]

= (Ω̂1 ⊗ Î)(Î ⊗ Λ̂2)− (Î ⊗ Λ̂2)(Ω̂1 ⊗ Î)
= (Ω̂1Î)⊗ (ÎΛ̂2)− (ÎΩ̂1)⊗ (Λ̂2Î) = Ω̂1 ⊗ Λ̂2 − Ω̂1 ⊗ Λ̂2 = 0

(d) Using the results (a) and (b) above:

[Ω̂1⊗2
1 , Λ̂1⊗2

1 ] = [Ω̂1 ⊗ Î , Λ̂1 ⊗ Î]
= (Ω̂1 ⊗ Î)(Λ̂1 ⊗ Î)− (Λ̂1 ⊗ Î)(Ω̂1 ⊗ Î)
= Ω̂1Λ̂1 ⊗ Î − Λ̂1Ω̂1 ⊗ Î = (Ω̂1Λ̂1 − Λ̂1Ω̂1)⊗ Î
= [Ω̂1, Λ̂1]⊗ Î = Γ̂1 ⊗ Î = Γ̂1⊗2

1

(e) Using the result of part (c) that Ω̂1⊗2
1 and Ω̂1⊗2

2 commute:

(

Ω̂1⊗2
1 + Ω̂1⊗2

2

)2

=
(

Ω̂1⊗2
1

)2

+ 2Ω̂1⊗2
1 Ω̂1⊗2

2 +
(

Ω̂1⊗2
2

)2

=
(

Ω̂1 ⊗ Î
)2

+ 2(Ω̂1 ⊗ Î)(Î ⊗ Ω̂2) +
(

Î ⊗ Ω̂2

)2

= (Ω̂1)
2 ⊗ Î + 2Ω̂1 ⊗ Ω̂2 + Î ⊗ (Ω̂2)

2 QED.
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