
PHYS 20602 Handout 2

Handout Contents

• Golden Equations from Lectures 1 to 4

• Web resources

• Examples for Lectures 2 to 8 (with hints at end)

• Answers to examples from Handout 1

Golden Equations from Lectures 1 to 4

These “Golden Equations” are intended as a revision aid. They are not, of course,
a complete summary of the material in the recent lectures, but if you know all these
equations, understand the meaning of all the terms, and can see why these equations
are particularly significant, you will be on top of the basic ideas.

|a〉 =
∑

i

|i〉〈i|a〉 = Î|a〉

[

〈b|Â
]

(|a〉) = 〈b|
(

Â|a〉
)

≡ 〈b|Â|a〉

〈a|B̂|b〉 = (〈a|1〉, 〈a|2〉)
(

〈1|B̂|1〉 〈1|B̂|2〉
〈2|B̂|1〉 〈2|B̂|2〉

)(

〈1|b〉
〈2|b〉

)

≡ [a]T∗[B][b]

Web resources

Handouts and power-point slides used in the lectures are available on Teachweb and
from my web page: www.jb.man.ac.uk/∼jpl/PHYS20602/

Examples (Lectures 5 to 8)

Lecture 5

1. (revision) For each of the Golden Equations above, define the terms in the
equations (e.g.: |a〉 is an arbitrary ket, a.k.a. abstract vector), and write
down in words the key idea(s) expressed in the equation.

2. Show that the product of unitary operators is unitary.
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3. Theorem 1.8 in the lectures proved that the columns and rows of a unitary
matrix are orthonormal vectors. Prove the converse, i.e. that (i) if the
columns of an N ×N matrix are orthonormal vectors, so are the rows (and
vice-versa) (ii) that any such matrix is unitary.

Lecture 6

1. Let Û be a unitary operator: (a) if Â is Hermitian, show that ÛÂÛ † and
Û †ÂÛ are Hermitian; (b) Show that if the kets {|ai〉} form an orthonormal
basis, so do {|bi〉}, where |bi〉 = Û †|ai〉. (c) Show that the determinant of
ÛÂÛ † is the same as for Â.

2. Why are the following not valid subspaces of V 3(R) (i.e. real 3D space)?
(a) The positive x axis; (b) the plane z = 1.

3. Show that the set of all vectors orthogonal to a given vector |v〉 in V N form
an N − 1 dimensional subspace.

4. If Â is an operator with eigenkets |an〉 and eigenvalues an, we can write

Â|an〉 = an|an〉
(a) Write down the corresponding bra equation (don’t assume Â is Hermi-

tian).

(b) Let Â be Hermitian. Show that the an ∈ R, and if aj 6= ak, |aj〉 and |ak〉
are orthogonal. (apart from the new notation, this should be revision
from PHYS2010).

(c) Let Â be unitary. Show that the an have the form eiθn , where θn ∈ R,
and if aj 6= ak, |aj〉 and |ak〉 are orthogonal.

Lecture 7

1. Consider the matrices

[A] =





1 3 1
0 2 0
0 1 4



 , [B] =





2 1 1
1 0 −1
1 −1 2



 .

For each matrix (a) Is it Hermitian? (b) Find the eigenvalues and nor-
malised eigenvectors (c) Are the eigenvectors orthogonal? (d) If the matrix
(say [A]) is Hermitian, verify that [U ]†[A][U ] is diagonal, [U ] being its the
matrix of eigenvectors.

2. Consider the matrix

[R] =

(

cos φ sin φ
− sin φ cos φ

)

.

(i) Show that it is unitary. (ii) Show that its eigenvalues are eiφ and e−iφ.
(iii) Find the corresponding eigenvectors; show that they are orthogonal.
(iv) Verify that [U ]†[R][U ] is diagonal, where U is the matrix of eigenvectors.

10



Lecture 8

1. An operator on V 3(C) is represented by the matrix

[C] =





1 0 1
0 0 0
1 0 1



 .

(i) Show that its eigenvalues are c1 = c2 = 0 and c3 = 2. (ii) Show that |c3〉
is represented by any vector of the form

eiθ

√
2





1
0
1



 .

(iii) show that the c = 0 eigenspace contains all vectors of the form

1
√

|g|2 + 2|f |2





f
g

−f



 ,

either by feeding c = 0 into the equations or by requiring that the c = 0
eigenspace be orthogonal to |c3〉.

2. By considering their commutator, show that the matrices [B] and [C] from
Q7.1 and Q8.1 respectively may be simultaneously diagonalised. Verify that
[C] can be diagonalised with the matrix of eigenvectors that you found for
[B] in Q8.1.

3. (a) Show that eÂ × eB̂ = eÂ+B̂, provided [Â, B̂] = 0. Use only the abstract
operator formalism, not the matrix representation (because in general Â
and B̂ may have an uncountable infinity of eigenvectors, in which case
there is no straightforward matrix equivalent). (b) Hence, show that if Â

is Hermitian, eiÂ is unitary.

Note: Question number m set for lecture n are referenced as Qn.m, e.g. Lecture 1,
Q4 is references as Q1.4.

HINTS:

Lecture 5: 3(i) To prove that rows i and k of a matrix [A] are orthogonal, you need to show that
∑

j(Aij)
∗Akj = 0. Lecture 6: 1(b) Show that the |bi〉 are all orthonormal and that there are enough

of them to make a basis. 1(c) See the proof of Theorem 1.8 in the lectures. 4(b) Consider 〈aj |Â|ak〉.
Work Â to both left and right and equate the results (this is exactly analogous to the proof for operators

on wave functions given in PHYS20101). 4(c) Consider 〈aj |Â†Â|ak〉. Lecture 7 2(iii) remember that

coordinates can be complex. Lecture 8 3(a) Use the power series expansion of ex and compare terms.

3(b) Don’t forget to check that both U†U = I and UU† = I.
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Answers to Handout 1

Lecture 1

1.

(a) |b〉 + |v〉 = |v〉 Hypothesis
|v〉 + |−v〉 = |0〉 Group property 4
(|b〉 + |v〉) + |−v〉 = |0〉 Substitution for |v〉
|b〉 + (|v〉 + |−v〉) = |0〉 Group property 2
|b〉 + |0〉 = |0〉 Group property 4
Therefore |b〉 = |0〉 Group property 3.

(b) (0 + 1)|a〉 = 0|a〉 + 1|a〉 Property 2(d)
But also (0 + 1)|a〉 = 1|a〉 Algebra of ordinary numbers
1|a〉 = 0|a〉 + 1|a〉 substitution for LHS
|a〉 = 0|a〉 + |a〉 Property 2(b) applied on each side
Therefore 0|a〉 = |0〉 Result of part (a).

(c) α|0〉 + α|b〉 = α(|0〉 + |b〉) Property 2(b)
But |0〉 + |b〉 = |b〉 Group property 3
α|0〉 + α|b〉 = α|b〉 substitution on RHS of first line
Therefore α|0〉 = |0〉 Result of part (a).

2. Below, (1) and (2) are the top-level requirements for vector spaces, i.e. (1) addi-
tive group nature and (2) combinations with scalar (here, real) numbers. (1.n)
refers to the nth requirement for groups, and 2(a) etc to the specific properties
for combining scalars and vectors, listed on p. 5 of Handout 1.

(i) Real numbers R. (1) under addition: (1.1) closure: adding two reals gives a
real (1.2) addition of reals is associative (1.3) the “zero vector” is the usual 0
(1.4) The inverse of x is −x with the usual meaning of minus. Abelian property:
addition of reals is commutative. (2) Combination with real scalars (R again)
via multiplication: a real times a real is a real. 2(a) multipication of reals is
associative 2(b) one times a real is the same real 2(c) multiplication is distributive
over addition for reals 2(d) same thing again.

(ii) Real (2 × 2) matrices (actually the following would work for any (n × m)
real or complex matrices): (1) under addition: as above, except that the “zero
vector” is the matrix with all elements zero, and the additive “inverse” is the
matrix with the sign of all elements reversed. 2: scalar times a matrix is a
matrix 2(a) successive multiplication by scalars is equivalent to multiplication
by the product of the scalars, as required 2(b) scalar 1 times a matrix leaves it
unchanged 2(c) multiplication by scalar is distributive over matrix addition 2(d)
scalar addition and matrix addition are compatible as required.
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NB: the rules of vector spaces do not allow you to multiply two vectors together
to make a new vector. But the main point about matrices is that you can
multiply them together, so it is not really very helpful to think of arbitrary
matrices (as opposed to column matrices) as abstract vectors!

3. Sets of functions defined on 0 ≤ x ≤ L. At any one x, f(x) is a real number so
we expect sets of arbitrary real functions to pass the requirement for a vector
space given that real numbers do (see previous question). The one thing to check
is the behaviour at x = 0 and x = L.

(i) constrained to zero at the ends: adding zeros gives zero, as does multiply by
any number, so this is OK. (The set {0} containing just one element, namely
zero, is the smallest possible group where the group operation “·” is addition,
and trivially satisfies all the requirements for combination with scalars, so it is
also the smallest possible vector space).

(ii) Periodic f(x), constrained that f(0) = f(L). This is OK because this
property is preserved when such functions are added or multiplied by scalars.

(iii) f(0) = 4: obviously fails to be an additive group since adding two such
functions gives (f + g)(0) = f(0) + g(0) = 8, so the set is not closed under
addition (nor under multiplication by scalars).

Lecture 2

1. (i) (3, 2, 1)−2(1, 1, 0)− (1, 0, 1) = (0, 0, 0). This is the representation of the zero
vector; by convention we just call it 0. QED.

(ii) The vectors are linearly dependent if we can find a, b, c such that

a(1, 1, 0) + b(1, 0, 1) + c(0, 1, 1) = 0.

Then the three components give (1) a + b = 0 (2) a + c = 0 (3) b + c = 0.
Substituting from (1) and (2) in (3) gives −2a = 0 hence a = 0. Then (1) and
(2) give b = c = 0. Since there is no solution except all coefficients zero, the
three vectors are not linearly dependent.

2. By definition an N dimensional space can accomodate at most N linearly inde-
pendent vectors; for definiteness call one such set {|1〉, |2〉 . . . |N〉}. Suppose this
was not a basis. Then there would be some vector |v〉 for which there would be
no set of coefficients ai satisfying

|v〉 =
N
∑

i=1

ai|i〉
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Therefore, the only solution to

a0|v〉 +
N
∑

i=1

ai|i〉 = 0

would be for all the coefficients to be zero. Therefore, |v〉 would be linearly
independent of the set {|i〉}N

i=1, so the latter would not be a maximal set, contrary
to our initial definition that the space has dimension N . Therefore there is no
such vector |v〉 and the |i〉 do indeed form a basis.

Lecture 3

1.

〈i|a〉 = 〈i|
(

N
∑

j=1

aj|j〉
)

,

from the definition of coordinates. Using linearity (on the right) to move the
bra inside the sum gives

〈i|a〉 =
N
∑

j=1

aj〈i|j〉 =
N
∑

j=1

ajδij = ai.

2. Start with a = 3i + 4j. Normalise it:

i′ = a/|a| = a/5 =
3

5
i +

4

5
j

The component of b = 2i − 6j parallel to i′ is

(b · i′)i′ = (b · a/5)i′ = −18

25
(3i + 4j)

The residual perpendicular to i′ is then

b − (b · i′)i′ = (2i − 6j) +
18

25
(3i + 4j) =

2

25
(52i − 39j)

Normalising it gives

j′ =
52i − 39j√
522 + 392

=
52

65
i − 39

65
j

Check:

i′ · j′ =
1

5 × 65
(3 × 52 − 4 × 39) = 0

We could have got another pair of orthonormal vectors by starting with b.
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3. The Schwarz inequality becomes an equality if the two vectors |a〉 and |b〉 are
“parallel”, i.e. |b〉 = c|a〉 where c is some complex scalar. To avoid unnecessary
square root signs we square both sides: Then the LHS squared is

〈a|a〉〈b|b〉 = 〈a|a〉〈a|c∗c|a〉 = |c|2〈a|a〉2

while the square of the RHS is

|〈a|b〉|2 = 〈a|b〉〈b|a〉 = 〈a|c|a〉〈a|c∗|a〉 = |c|2〈a|a〉2.

This is just what you get from the dot product between arrow vectors: equal to
the product of their magnitudes only when they are parallel (cos θ = 1).

4. Squaring the triangle inequality, the LHS is

|c|2 ≡ 〈c|c〉 = (〈a| + 〈b|)(|a〉 + |b〉) = 〈a|a〉 + 〈a|b〉 + 〈b|a〉 + 〈b|b〉

while the RHS os

(|a| + |b|)2 = |a|2 + 2|a||b| + |b|2 = 〈a|a〉 + 2|a||b| + 〈b|b〉

Cancelling terms that appear on both sides we have to prove that

〈a|b〉 + 〈b|a〉 = 〈a|b〉 + 〈a|b〉∗ = 2ℜ(〈a|b〉) ≤ 2|a||b|

But the real part of 〈a|b〉 must be less than or equal to its modulus:

ℜ〈a|b〉 ≤ |〈a|b〉| ≤ |a||b|

where the last inequality is the Schwarz inequality. QED.

Lecture 4

1. The linear operators clearly form an abelian group using the definition of ad-
dition specified in the question, with the “zero vector” being the zero operator
represented as a matrix with all elements zero and the additive inverse of Â
being −1 × Â. Multiplication by scalars works just as for the original set of
vectors, since operators are defined via their action on kets, so multiplying an
operator by a scalar boils down to multiplying objects like A|v〉, which belong
to the original vector space V (C).

2. If Â|v〉 = |Av〉 for all |v〉, then 〈w|Â|v〉 = 〈w|Av〉 (for all |w〉). From our
original definition, this implies 〈Av| = 〈v|Â† and so 〈Av|w〉 = 〈v|Â†|w〉. But
〈Av|w〉 = 〈w|Av〉∗ from the definition of inner products. Hence

〈v|Â†|w〉 = 〈w|Â|v〉∗ for all |v〉, |w〉.

15



Reversing the argument, the above equation implies 〈v|Â†|w〉 = 〈Av|w〉 for all
|w〉. That is, considered as a functional, 〈v|Â† is equal to 〈Av|. But for a
finite-dimensional vector space there is a unique ket corresponding to any linear
functional (i.e. bra); by construction in this case it is |Av〉 = Â|v〉. Hence, 〈v|Â†

is the bra corresponding to Â|v〉 for all |v〉, i.e. our original definition.

3. The matrix elements of Â are Aij = 〈i|Â|j〉, while the (column) matrix elements
of |v〉 are vi = 〈i|v〉 and the (row) matrix elements of 〈v| are v∗

i = 〈v|i〉. Hence
the matrix elements of Â|v〉 = |Av〉 are

〈i|Â|v〉 =
∑

j

Aijvj

The matrix elements of 〈Av| = 〈v|Â† are 〈i|Â|v〉∗ by the usual rule that if |a〉
is represented as [a] (a column matrix), then 〈a| is represented as [a]T∗. Indeed,
performing the matrix multiplication to the left:

[v]T∗[A]† = (〈v|1〉, 〈v|2〉, . . . 〈v|N〉)













〈1|Â|1〉 〈1|Â|2〉 . . . 〈1|Â|N〉
〈2|Â|1〉 . . .

...

〈N |Â|1〉 . . . 〈N |Â|N〉













†

gives the ith element of the bra matrix as

(

[v]T∗[A]†
)

i
=
∑

j

v∗
j A

†
ji =

∑

j

v∗
j A

∗
ij =

∑

j

〈j|v〉∗〈i|Â|j〉∗

=

(

〈i|Â
(

∑

j

|j〉〈j|
)

|v〉
)∗

= 〈i|ÂÎ|v〉∗ = 〈i|Â|v〉∗

as required.
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