
Part II: Distortions for different scenarios and what 
we may learn by studying them



Planck all-sky 
temperature map

• CMB has a blackbody spectrum in every direction

• tiny variations of the CMB temperature ΔT/T ~ 10-5

Cosmic Microwave Background Anisotropies



Planck Collaboration: Cosmological parameters
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Fig. 1. The Planck 2015 temperature power spectrum. At multipoles ` � 30 we show the maximum likelihood frequency averaged
temperature spectrum computed from the Plik cross-half-mission likelihood with foreground and other nuisance parameters deter-
mined from the MCMC analysis of the base ⇤CDM cosmology. In the multipole range 2  `  29, we plot the power spectrum
estimates from the Commander component-separation algorithm computed over 94% of the sky. The best-fit base ⇤CDM theoretical
spectrum fitted to the Planck TT+lowP likelihood is plotted in the upper panel. Residuals with respect to this model are shown in
the lower panel. The error bars show ±1� uncertainties.

sults to the likelihood methodology by developing several in-
dependent analysis pipelines. Some of these are described in
Planck Collaboration XI (2015). The most highly developed of
these are the CamSpec and revised Plik pipelines. For the
2015 Planck papers, the Plik pipeline was chosen as the base-
line. Column 6 of Table 1 lists the cosmological parameters for
base ⇤CDM determined from the Plik cross-half-mission like-
lihood, together with the lowP likelihood, applied to the 2015
full-mission data. The sky coverage used in this likelihood is
identical to that used for the CamSpec 2015F(CHM) likelihood.
However, the two likelihoods di↵er in the modelling of instru-
mental noise, Galactic dust, treatment of relative calibrations and
multipole limits applied to each spectrum.

As summarized in column 8 of Table 1, the Plik and
CamSpec parameters agree to within 0.2�, except for ns, which
di↵ers by nearly 0.5�. The di↵erence in ns is perhaps not sur-
prising, since this parameter is sensitive to small di↵erences in
the foreground modelling. Di↵erences in ns between Plik and
CamSpec are systematic and persist throughout the grid of ex-
tended ⇤CDM models discussed in Sect. 6. We emphasise that
the CamSpec and Plik likelihoods have been written indepen-
dently, though they are based on the same theoretical framework.
None of the conclusions in this paper (including those based on

the full “TT,TE,EE” likelihoods) would di↵er in any substantive
way had we chosen to use the CamSpec likelihood in place of
Plik. The overall shifts of parameters between the Plik 2015
likelihood and the published 2013 nominal mission parameters
are summarized in column 7 of Table 1. These shifts are within
0.71� except for the parameters ⌧ and Ase�2⌧ which are sen-
sitive to the low multipole polarization likelihood and absolute
calibration.

In summary, the Planck 2013 cosmological parameters were
pulled slightly towards lower H0 and ns by the ` ⇡ 1800 4-K line
systematic in the 217 ⇥ 217 cross-spectrum, but the net e↵ect of
this systematic is relatively small, leading to shifts of 0.5� or
less in cosmological parameters. Changes to the low level data
processing, beams, sky coverage, etc. and likelihood code also
produce shifts of typically 0.5� or less. The combined e↵ect of
these changes is to introduce parameter shifts relative to PCP13
of less than 0.71�, with the exception of ⌧ and Ase�2⌧. The main
scientific conclusions of PCP13 are therefore consistent with the
2015 Planck analysis.

Parameters for the base ⇤CDM cosmology derived from
full-mission DetSet, cross-year, or cross-half-mission spectra are
in extremely good agreement, demonstrating that residual (i.e.
uncorrected) cotemporal systematics are at low levels. This is
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Huge compression of 
information to a few 
hundred numbers!

Planck all-sky 
temperature map

• CMB has a blackbody spectrum in every direction

• tiny variations of the CMB temperature ΔT/T ~ 10-5

Cosmic Microwave Background Anisotropies



• Standard 6 parameter concordance cosmology with 
parameters known to percent level precision

• Gaussian-distributed adiabatic fluctuations with nearly 
scale-invariant power spectrum over a wide range of scales

• cold dark matter (“CDM”)

• accelerated expansion today (“Λ”)

• Standard BBN scenario  → Neff and Yp

• Standard ionization history  → Ne as a function of z

 CMB anisotropies (with SN, LSS, etc...) clearly 
taught us a lot about the Universe we live in!

Planck Collaboration: Cosmological parameters

Table 4. Parameter 68 % confidence limits for the base ⇤CDM model from Planck CMB power spectra, in combination with
lensing reconstruction (“lensing”) and external data (“ext,” BAO+JLA+H0). Nuisance parameters are not listed for brevity (they
can be found in the Planck Legacy Archive tables), but the last three parameters give a summary measure of the total foreground
amplitude (in µK2) at ` = 2000 for the three high-` temperature spectra used by the likelihood. In all cases the helium mass fraction
used is predicted by BBN (posterior mean YP ⇡ 0.2453, with theoretical uncertainties in the BBN predictions dominating over the
Planck error on ⌦bh2).

TT+lowP TT+lowP+lensing TT+lowP+lensing+ext TT,TE,EE+lowP TT,TE,EE+lowP+lensing TT,TE,EE+lowP+lensing+ext
Parameter 68 % limits 68 % limits 68 % limits 68 % limits 68 % limits 68 % limits

⌦bh2 . . . . . . . . . . . 0.02222 ± 0.00023 0.02226 ± 0.00023 0.02227 ± 0.00020 0.02225 ± 0.00016 0.02226 ± 0.00016 0.02230 ± 0.00014

⌦ch2 . . . . . . . . . . . 0.1197 ± 0.0022 0.1186 ± 0.0020 0.1184 ± 0.0012 0.1198 ± 0.0015 0.1193 ± 0.0014 0.1188 ± 0.0010

100✓MC . . . . . . . . . 1.04085 ± 0.00047 1.04103 ± 0.00046 1.04106 ± 0.00041 1.04077 ± 0.00032 1.04087 ± 0.00032 1.04093 ± 0.00030

⌧ . . . . . . . . . . . . . 0.078 ± 0.019 0.066 ± 0.016 0.067 ± 0.013 0.079 ± 0.017 0.063 ± 0.014 0.066 ± 0.012

ln(1010As) . . . . . . . . 3.089 ± 0.036 3.062 ± 0.029 3.064 ± 0.024 3.094 ± 0.034 3.059 ± 0.025 3.064 ± 0.023

ns . . . . . . . . . . . . 0.9655 ± 0.0062 0.9677 ± 0.0060 0.9681 ± 0.0044 0.9645 ± 0.0049 0.9653 ± 0.0048 0.9667 ± 0.0040

H0 . . . . . . . . . . . . 67.31 ± 0.96 67.81 ± 0.92 67.90 ± 0.55 67.27 ± 0.66 67.51 ± 0.64 67.74 ± 0.46

⌦⇤ . . . . . . . . . . . . 0.685 ± 0.013 0.692 ± 0.012 0.6935 ± 0.0072 0.6844 ± 0.0091 0.6879 ± 0.0087 0.6911 ± 0.0062

⌦m . . . . . . . . . . . . 0.315 ± 0.013 0.308 ± 0.012 0.3065 ± 0.0072 0.3156 ± 0.0091 0.3121 ± 0.0087 0.3089 ± 0.0062

⌦mh2 . . . . . . . . . . 0.1426 ± 0.0020 0.1415 ± 0.0019 0.1413 ± 0.0011 0.1427 ± 0.0014 0.1422 ± 0.0013 0.14170 ± 0.00097

⌦mh3 . . . . . . . . . . 0.09597 ± 0.00045 0.09591 ± 0.00045 0.09593 ± 0.00045 0.09601 ± 0.00029 0.09596 ± 0.00030 0.09598 ± 0.00029

�8 . . . . . . . . . . . . 0.829 ± 0.014 0.8149 ± 0.0093 0.8154 ± 0.0090 0.831 ± 0.013 0.8150 ± 0.0087 0.8159 ± 0.0086

�8⌦
0.5
m . . . . . . . . . . 0.466 ± 0.013 0.4521 ± 0.0088 0.4514 ± 0.0066 0.4668 ± 0.0098 0.4553 ± 0.0068 0.4535 ± 0.0059

�8⌦
0.25
m . . . . . . . . . 0.621 ± 0.013 0.6069 ± 0.0076 0.6066 ± 0.0070 0.623 ± 0.011 0.6091 ± 0.0067 0.6083 ± 0.0066

zre . . . . . . . . . . . . 9.9+1.8
�1.6 8.8+1.7

�1.4 8.9+1.3
�1.2 10.0+1.7

�1.5 8.5+1.4
�1.2 8.8+1.2

�1.1

109As . . . . . . . . . . 2.198+0.076
�0.085 2.139 ± 0.063 2.143 ± 0.051 2.207 ± 0.074 2.130 ± 0.053 2.142 ± 0.049

109Ase�2⌧ . . . . . . . . 1.880 ± 0.014 1.874 ± 0.013 1.873 ± 0.011 1.882 ± 0.012 1.878 ± 0.011 1.876 ± 0.011

Age/Gyr . . . . . . . . 13.813 ± 0.038 13.799 ± 0.038 13.796 ± 0.029 13.813 ± 0.026 13.807 ± 0.026 13.799 ± 0.021

z⇤ . . . . . . . . . . . . 1090.09 ± 0.42 1089.94 ± 0.42 1089.90 ± 0.30 1090.06 ± 0.30 1090.00 ± 0.29 1089.90 ± 0.23

r⇤ . . . . . . . . . . . . 144.61 ± 0.49 144.89 ± 0.44 144.93 ± 0.30 144.57 ± 0.32 144.71 ± 0.31 144.81 ± 0.24

100✓⇤ . . . . . . . . . . 1.04105 ± 0.00046 1.04122 ± 0.00045 1.04126 ± 0.00041 1.04096 ± 0.00032 1.04106 ± 0.00031 1.04112 ± 0.00029

zdrag . . . . . . . . . . . 1059.57 ± 0.46 1059.57 ± 0.47 1059.60 ± 0.44 1059.65 ± 0.31 1059.62 ± 0.31 1059.68 ± 0.29

rdrag . . . . . . . . . . . 147.33 ± 0.49 147.60 ± 0.43 147.63 ± 0.32 147.27 ± 0.31 147.41 ± 0.30 147.50 ± 0.24

kD . . . . . . . . . . . . 0.14050 ± 0.00052 0.14024 ± 0.00047 0.14022 ± 0.00042 0.14059 ± 0.00032 0.14044 ± 0.00032 0.14038 ± 0.00029

zeq . . . . . . . . . . . . 3393 ± 49 3365 ± 44 3361 ± 27 3395 ± 33 3382 ± 32 3371 ± 23

keq . . . . . . . . . . . . 0.01035 ± 0.00015 0.01027 ± 0.00014 0.010258 ± 0.000083 0.01036 ± 0.00010 0.010322 ± 0.000096 0.010288 ± 0.000071

100✓s,eq . . . . . . . . . 0.4502 ± 0.0047 0.4529 ± 0.0044 0.4533 ± 0.0026 0.4499 ± 0.0032 0.4512 ± 0.0031 0.4523 ± 0.0023

f 143
2000 . . . . . . . . . . . 29.9 ± 2.9 30.4 ± 2.9 30.3 ± 2.8 29.5 ± 2.7 30.2 ± 2.7 30.0 ± 2.7

f 143⇥217
2000 . . . . . . . . . 32.4 ± 2.1 32.8 ± 2.1 32.7 ± 2.0 32.2 ± 1.9 32.8 ± 1.9 32.6 ± 1.9

f 217
2000 . . . . . . . . . . . 106.0 ± 2.0 106.3 ± 2.0 106.2 ± 2.0 105.8 ± 1.9 106.2 ± 1.9 106.1 ± 1.8

Table 5. Constraints on 1-parameter extensions to the base⇤CDM model for combinations of Planck power spectra, Planck lensing,
and external data (BAO+JLA+H0, denoted “ext”). Note that we quote 95 % limits here.

Parameter TT TT+lensing TT+lensing+ext TT,TE,EE TT,TE,EE+lensing TT,TE,EE+lensing+ext

⌦K . . . . . . . . . . . . . . �0.052+0.049
�0.055 �0.005+0.016

�0.017 �0.0001+0.0054
�0.0052 �0.040+0.038

�0.041 �0.004+0.015
�0.015 0.0008+0.0040

�0.0039
⌃m⌫ [eV] . . . . . . . . . . < 0.715 < 0.675 < 0.234 < 0.492 < 0.589 < 0.194
Ne↵ . . . . . . . . . . . . . . 3.13+0.64

�0.63 3.13+0.62
�0.61 3.15+0.41

�0.40 2.99+0.41
�0.39 2.94+0.38

�0.38 3.04+0.33
�0.33

YP . . . . . . . . . . . . . . . 0.252+0.041
�0.042 0.251+0.040

�0.039 0.251+0.035
�0.036 0.250+0.026

�0.027 0.247+0.026
�0.027 0.249+0.025

�0.026
dns/d ln k . . . . . . . . . . �0.008+0.016

�0.016 �0.003+0.015
�0.015 �0.003+0.015

�0.014 �0.006+0.014
�0.014 �0.002+0.013

�0.013 �0.002+0.013
�0.013

r0.002 . . . . . . . . . . . . . < 0.103 < 0.114 < 0.114 < 0.0987 < 0.112 < 0.113
w . . . . . . . . . . . . . . . �1.54+0.62

�0.50 �1.41+0.64
�0.56 �1.006+0.085

�0.091 �1.55+0.58
�0.48 �1.42+0.62

�0.56 �1.019+0.075
�0.080
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What are the main next targets for CMB anisotropies?

• CMB temperature power spectrum kind of finished...

• E modes cosmic variance limited to high-l
- better constraint on ! from large scale E modes 

- refined CMB damping tail science from small-scale E modes

- CMB lensing and de-lensing of primordial B-modes

• primordial B modes 
- detection of r ~ 10-3 (energy scale of inflation) 

- upper limit on nT < O(0.1) as additional ‘proof of inflation’ 

• CMB anomalies
- stationarity of E and B-modes, lensing potential, etc across the sky

• SZ cluster science
- large cluster samples and (individual) high-res cluster measurements
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• primordial B modes 
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- stationarity of E and B-modes, lensing potential, etc across the sky

• SZ cluster science
- large cluster samples and (individual) high-res cluster measurements

Lots of competition to reach these goals!



What can CMB spectral distortions add?
• Add a new dimension to CMB science

- probe the thermal history at different stages of the Universe

• Complementary and independent information!
- cosmological parameters from the recombination radiation

- new/additional test of large-scale anomalies

• Several guaranteed signals are expected
- y-distortion from low redshifts

- damping signal & recombination radiation

• Test various inflation models
- damping of the small-scale power spectrum 

• Discovery potential
- decaying particles and other exotic sources of distortions

PIXIE/PRISM-S
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• Add a new dimension to CMB science

- probe the thermal history at different stages of the Universe

• Complementary and independent information!
- cosmological parameters from the recombination radiation

- new/additional test of large-scale anomalies

• Several guaranteed signals are expected
- y-distortion from low redshifts

- damping signal & recombination radiation

• Test various inflation models
- damping of the small-scale power spectrum 

• Discovery potential
- decaying particles and other exotic sources of distortions

All this largely without any competition from the ground!!!

PIXIE/PRISM-S



Physical mechanisms that lead to spectral distortions

• Cooling by adiabatically expanding ordinary matter                                                                     

(JC, 2005; JC & Sunyaev 2011; Khatri, Sunyaev & JC, 2011)

• Heating by decaying or annihilating relic particles                                                       
(Kawasaki et al., 1987; Hu & Silk, 1993; McDonald et al., 2001; JC, 2005; JC & Sunyaev, 2011; JC, 2013; JC & Jeong, 2013)

• Evaporation of primordial black holes & superconducting strings                                                                            
(Carr et al.  2010; Ostriker & Thompson, 1987; Tashiro et al. 2012; Pani & Loeb, 2013)

• Dissipation of primordial acoustic modes & magnetic fields                                                                
(Sunyaev & Zeldovich, 1970; Daly 1991; Hu et al. 1994; JC & Sunyaev, 2011; JC et al. 2012 - Jedamzik et al. 2000; Kunze & Komatsu, 2013)

• Cosmological recombination radiation                                                                     
(Zeldovich et al., 1968; Peebles, 1968; Dubrovich, 1977; Rubino-Martin et al., 2006; JC & Sunyaev, 2006; Sunyaev & JC, 2009)

•                                                                                  

• Signatures due to first supernovae and their remnants                                        
(Oh, Cooray & Kamionkowski, 2003)

• Shock waves arising due to large-scale structure formation                                    
(Sunyaev & Zeldovich, 1972; Cen & Ostriker, 1999)

• SZ-effect from clusters; effects of reionization                                                              
(Refregier et al., 2003; Zhang et al. 2004; Trac et al. 2008)

• more exotic processes                                                                                          
(Lochan et al. 2012; Bull & Kamionkowski, 2013; Brax et al., 2013; Tashiro et al. 2013)

„high“ redshifts

„low“   redshifts
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Reionization and structure formation



Simple estimates for the distortion

• Gas temperature T ≃ 104 K

• Thomson optical depth  ! ≃ 0.1

• second order Doppler effect y ≃ few x 10-8

• structure formation / SZ effect (e.g., Refregier et al., 2003)   y ≃ few x 10-7-10-6

=) y ' kTe

mec2
⌧ ⇡ 2⇥ 10�7



Average CMB spectral distortions
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• Huge ‘foreground’ signal!

• makes it ‘hard’ to use y-distortion 
part of primordial signals!
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PIXIE sensitivity

Should be considered as an 
“effective” sensitivity that 
includes an estimate for the 
foreground removal penalty 
(Kogut et al. 2011)

 →  requires more work... 
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Average CMB spectral distortions
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high significance using 
present day technology!

⇒ relativistic corrections 
measurable! (Hill et al. 2015) 
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•                               (~ 10% from IGM and reionization rest from ICM) 

• > 1000 σ detection with PIXIE-type experiment

• optical depth-weighted temperature: 

• ~ 30 σ detection with PIXIE-type experiment

hyi ' 1.8⇥ 10�6

hkTei⌧ ' 0.208 keV(⌘ 2.4⇥ 106 K)

Taking the Universe’s temperature

Hill et al., 2015, ArXiv:1507.01583
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FIG. 1: The mean tSZ signal of the universe. The dashed
cyan and solid blue curves show non-relativistic and relativis-
tic calculations, respectively. The signal is dominated by hot,
ionized electrons in galaxy groups and clusters. Error bars are
shown only on the relativistic curve for clarity, and include
the PIXIE instrumental noise, component separation noise,
and cosmic variance (CV). PIXIE can detect the signal at
1470� significance; CV reduces the e↵ective signal-to-noise to
230�. For comparison, the thin green curve shows the

µ distortion (multiplied by 100 to render it visible).

⌦
m

= 0.282) [45] and the halo mass function of Ref. [46].
We use the ICM electron pressure profile fitting func-
tion from Ref. [47], which is extracted from cosmological
hydrodynamics simulations [39]. This pressure profile
matches a wide range of recent tSZ and X-ray obser-
vations (e.g., [48–52]) and fully specifies the ICM elec-
tron pressure as a function of cluster mass, redshift, and
cluster-centric distance. Finally, to calculate the rela-
tivistic corrections, we use the T

e

(M, z) relation from
Ref. [53], with a +20% correction applied to the masses
derived from X-ray data in that work, to account for de-
viations from hydrostatic equilibrium in the ICM [14].

The sky-averaged tSZ signal also receives contribu-
tions from electrons in the IGM and during reioniza-
tion. Our reionization model is described in Ref. [54]
and B15. The IGM and reionization contributions are
subdominant to the ICM signal by more than an or-
der of magnitude. They are approximated well by the
non-relativistic tSZ spectrum due to the electrons’ low
temperature (k

B

T
e

. few eV), and thus are fully char-
acterized by the Compton-y parameter. We add these
contributions to that from the ICM to obtain the total
sky-averaged tSZ signal. We verify the accuracy of our
analytic calculations by comparing to numerical simula-
tions, finding that the predicted hyi values agree to within
2% (see B15).

Fig. 1 shows the mean tSZ signal of the universe, for
both the non-relativistic and relativistic cases, as well as

FIG. 2: Di↵erence between relativistic and non-relativistic
predictions for the mean tSZ signal of the universe. The solid
magenta curve shows the di↵erence between the tSZ predic-
tions from Fig. 1. The dashed orange curve shows an approxi-
mation based on moments of the optical depth-weighted ICM
electron temperature distribution, which matches the full cal-
culation to . 0.1% precision. The dash-dotted black

curve shows the lowest-order “residual” (non-y/non-
µ) distortion [56]. The relativistic tSZ signal is par-

tially degenerate with this distortion, and thus makes

it harder to access the r-type signal. The shaded blue
area shows the PIXIE instrumental noise plus component sep-
aration noise, while the shaded red area shows the additional
uncertainty from CV (note that important o↵-diagonal con-
tributions are not shown). PIXIE can distinguish between
the relativistic and non-relativistic predictions at 30� signifi-
cance.

the µ distortion signal for comparison. We show

below that currently proposed experiments can

measure the relativistic e↵ects at high precision.

The non-relativistic results can be summarized fully by
the Compton-y parameter. We find hyi

ICM

= 1.58⇥10�6,
hyi

IGM

= 8.9 ⇥ 10�8, and hyi
reion

= 9.8 ⇥ 10�8 for the
contributions from the ICM, IGM, and reionization, re-
spectively. Note that hyi

ICM

depends sensitively on �
8

,
the amplitude of matter density perturbations (going
roughly as �5

8

); if we assumed Planck 2015 cosmologi-
cal parameters [55] instead of WMAP9, the prediction
would be ⇡ 10% higher. Regardless, the ICM contribu-
tion dominates over those from the IGM and reionization,
although it may be possible to isolate the latter

by masking the ICM using deep galaxy or clus-

ter catalogs, or via cross-correlation techniques.

All hyi contributions are much larger in ampli-

tude than the µ distortion signal. In agreement with
early estimates [36], the total hyi is roughly one order of
magnitude below the COBE-FIRAS bound.

To emphasize the relativistic e↵ects, Fig. 2 shows the
di↵erence between the non-relativistic and relativistic
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the PIXIE instrumental noise, component separation noise,
and cosmic variance (CV). PIXIE can detect the signal at
1470� significance; CV reduces the e↵ective signal-to-noise to
230�. For comparison, the thin green curve shows the

µ distortion (multiplied by 100 to render it visible).

⌦
m

= 0.282) [45] and the halo mass function of Ref. [46].
We use the ICM electron pressure profile fitting func-
tion from Ref. [47], which is extracted from cosmological
hydrodynamics simulations [39]. This pressure profile
matches a wide range of recent tSZ and X-ray obser-
vations (e.g., [48–52]) and fully specifies the ICM elec-
tron pressure as a function of cluster mass, redshift, and
cluster-centric distance. Finally, to calculate the rela-
tivistic corrections, we use the T

e

(M, z) relation from
Ref. [53], with a +20% correction applied to the masses
derived from X-ray data in that work, to account for de-
viations from hydrostatic equilibrium in the ICM [14].

The sky-averaged tSZ signal also receives contribu-
tions from electrons in the IGM and during reioniza-
tion. Our reionization model is described in Ref. [54]
and B15. The IGM and reionization contributions are
subdominant to the ICM signal by more than an or-
der of magnitude. They are approximated well by the
non-relativistic tSZ spectrum due to the electrons’ low
temperature (k

B

T
e

. few eV), and thus are fully char-
acterized by the Compton-y parameter. We add these
contributions to that from the ICM to obtain the total
sky-averaged tSZ signal. We verify the accuracy of our
analytic calculations by comparing to numerical simula-
tions, finding that the predicted hyi values agree to within
2% (see B15).

Fig. 1 shows the mean tSZ signal of the universe, for
both the non-relativistic and relativistic cases, as well as
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FIG. 2: Di↵erence between relativistic and non-relativistic
predictions for the mean tSZ signal of the universe. The solid
magenta curve shows the di↵erence between the tSZ predic-
tions from Fig. 1. The dashed orange curve shows an approxi-
mation based on moments of the optical depth-weighted ICM
electron temperature distribution, which matches the full cal-
culation to . 0.1% precision. The dash-dotted black

curve shows the lowest-order “residual” (non-y/non-
µ) distortion [56]. The relativistic tSZ signal is par-

tially degenerate with this distortion, and thus makes

it harder to access the r-type signal. The shaded blue
area shows the PIXIE instrumental noise plus component sep-
aration noise, while the shaded red area shows the additional
uncertainty from CV (note that important o↵-diagonal con-
tributions are not shown). PIXIE can distinguish between
the relativistic and non-relativistic predictions at 30� signifi-
cance.

the µ distortion signal for comparison. We show

below that currently proposed experiments can

measure the relativistic e↵ects at high precision.

The non-relativistic results can be summarized fully by
the Compton-y parameter. We find hyi

ICM

= 1.58⇥10�6,
hyi

IGM

= 8.9 ⇥ 10�8, and hyi
reion

= 9.8 ⇥ 10�8 for the
contributions from the ICM, IGM, and reionization, re-
spectively. Note that hyi

ICM

depends sensitively on �
8

,
the amplitude of matter density perturbations (going
roughly as �5

8

); if we assumed Planck 2015 cosmologi-
cal parameters [55] instead of WMAP9, the prediction
would be ⇡ 10% higher. Regardless, the ICM contribu-
tion dominates over those from the IGM and reionization,
although it may be possible to isolate the latter

by masking the ICM using deep galaxy or clus-

ter catalogs, or via cross-correlation techniques.

All hyi contributions are much larger in ampli-

tude than the µ distortion signal. In agreement with
early estimates [36], the total hyi is roughly one order of
magnitude below the COBE-FIRAS bound.

To emphasize the relativistic e↵ects, Fig. 2 shows the
di↵erence between the non-relativistic and relativistic
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Fluctuations of the y-parameter at large scales

Example: 
Simulation of reionization process 
(1Gpc/h) by Alvarez & Abel

• spatial variations of the 
optical depth and 
temperature cause 
small-spatial variations 
of the y-parameter at 
different angular scales

• could tell us about the 
reionization sources 
and structure formation 
process

• additional independent 
piece of information! 

• Cross-correlations with 
other signals 



Measured power spectrum for y-parameter

Planck Collaboration, 2015, XXII

All masses contribute here!

Planck Collaboration: A map of the thermal Sunyaev-Zeldovich effect
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Fig. 18: tSZ power spectrum for existing models in the litera-
ture. NILC-MILCA F/L cross-power spectrum after foreground
correction (black dots) compared to the Atacama Cosmology
Telescope (ACT; cyan dot) and the South Pole Telescope (SPT;
orange, George et al., 2014) power spectrum estimates. We
also show the tSZ power spectrum models from hydrodynamic
simulations (Battaglia et al., 2012, blue), from N-body simu-
lations plus semi-analytical dust gas models (Trac et al., 2011,
cyan; TBO2), and from analytical calculations (Shaw et al. 2010,
green).

7.2.1. Cluster physics dependence

As discussed in Planck Collaboration XXI (2014), we also ex-
pect the tSZ power spectrum amplitude to be sensitive to the
physics of clusters of galaxies. To explore this dependence we
have considered a set of predicted tSZ spectra for various phys-
ical models. In Fig. 18 we compare these models to the fore-
ground cleaned Planck tSZ power spectrum derived above (grey
dots), as well as to the Atacama Cosmology Telescope (ACT;
cyan dot) and the South Pole Telescope (SPT; orange, George
et al., 2014) power spectrum estimates. We consider the predic-
tions derived from hydrodynamical simulations (Battaglia et al.,
2010; Battaglia et al., 2012, blue), from N-body simulations plus
semi-analytical models (Trac et al., 2011, cyan; TBO2) and from
analytical calculations (Shaw et al. 2010, green). These models
were originally computed for the set of cosmological parameters
in Hinshaw et al. (2012) with �8 = 0.8 and have been rescaled
in amplitude to our best-fit value for �8

8⌦
3
m. We note that there

is some dispersion in the predicted amplitudes and shapes of
the tSZ power spectrum. These differences reflect the range of
methodologies and assumptions used both in the physical prop-
erties of clusters and in the technical details of the computation.
The latter includes differences in the redshift ranges and also in
the mass intervals probed by the limited sizes of the simulation
boxes of the hydrodynamical simulations. Analytical predictions
are also sensitive to the model ingredients, such as the mass func-
tion, mass bias and scaling relations adopted.

We see from Fig. 18 that the models presented above (the tSZ
template for CMB analyses, plus the Battaglia et al. 2012, Shaw
et al. 2010 and TBO2 models) provide reasonable fits to the data
for multipoles above 200. For lower multipoles the Shaw et al.
2010 and TBO2 models are not consistent with the data.

We have also performed a simplified likelihood analysis to
evaluate the uncertainties in cosmological parameters induced
by the uncertainties in the modelling of the cluster physics. We

replace our own model of the tSZ power spectrum by the models
discussed above and recompute �8(⌦m/0.28)3/8, ACIB, ARad and
AIR from a simple linear fit to the NILC-MILCA F/L cross-power
spectrum. In the case of mass bias of 0.2, we obtain values for
�8(⌦m/0.28)3/8 between 0.77 and 0.80, which lie within the 1�
uncertainties (0.03) presented above.

In the case of our fiducial model (see Appendix A.1) we can
also consider uncertainties in the parameters describing the scal-
ing relations allowing us to relate the observed tSZ flux to the
mass of the cluster for a given redshift. Following Eq. (7) in
Planck Collaboration XXVIII (2014) the main parameters to be
considered are the mass bias b, the overall amplitude Y⇤ and the
scaling slope �. As discussed above the mass bias is fully degen-
erate with �8. Similar conclusions can be drawn for Y⇤, which is
expected to be known at the percent level (see Table 1 in Planck
Collaboration XXVIII (2014)) and therefore it is subdominant
with respect to the uncertainties in the mass bias. Although the
uncertainties in the slope of the scaling relation are relatively
large, we have checked that they lead to negligible uncertainties
on cosmological parameters.

7.3. Higher order statistics

7.3.1. Skewness measurements

The skewness of the 1D PDF distribution,R
y3P(y)dy/

⇣R
y2P(y)dy

⌘3/2
can also be used to derive

constraints on cosmological parameters. Following Wilson
et al. (2012); Planck Collaboration XXI (2014) we have chosen
a hybrid approach, by computing the skewness of the filtered
Compton parameter maps outside the 50% sky mask. In
particular, we have computed the skewness of the Planck data
Compton parameter maps hy3i, and of the half-difference maps
hy3

Ni.
Using the models presented in Sect. A we can show that the

unnormalized skewness of the tSZ fluctuation, hT 3(n)i scales
approximately as �11

8 , whereas the amplitude of the bispectrum
scales as �↵8 with ↵ = 11–12, as shown by Bhattacharya et al.
(2012). In the following we do not consider the dependency of
the bispectrum and the unnormalized skewness on other cosmo-
logical parameters, since such dependencies are expected to be
significantly lower than for �8 (Bhattacharya et al., 2012).

We derive constraints on �8 by comparing the measured un-
normalized skewness and bispectrum amplitudes with those ob-
tained from simulations of the tSZ effect. The tSZ contribution
was obtained from a hybrid simulation including a hydrody-
namic component for z < 0.3 plus extra individual clusters at
z > 0.3, and with �8 = 0.789. This approach is strongly lim-
ited by systematic uncertainties and the details of the theoretical
modelling (see Hill & Sherwin, 2013). Uncertainties due to fore-
ground contamination are computed using the simulations and
are accounted for in the final error bars.

We obtain �8 = 0.77 for NILC and �8 = 0.78 for MILCA.
Combining the two results and considering model and fore-
ground uncertainties we obtain �8 = 0.78 ± 0.02 (68% C.L.).
Notice that the reported uncertainties are mainly dominated
by foreground contamination. However the model uncertainties
only account for the expected dependence of the unnormalized
skewness upon �8, as shown in Appendix A. We have neglected,
as was also the case in Wilson et al. (2012), the dependence on
other cosmological parameters. We have also not considered any
uncertainties coming from the combination of the hydrodynam-
ical and individual cluster simulations. Because of these limita-
tions, our error bars might be underestimated.
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Dissipation of small-scale acoustic modes

Planck collaboration: CMB power spectra, likelihoods, and parameters
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Figure 47. CMB-only power spectra measured by Planck (blue),
ACT (orange), and SPT (green). The best-fit PlanckTT+lowP
⇤CDM model is shown by the grey solid line. ACT data at
` > 1000 and SPT data at ` > 2000 are marginalized CMB
bandpowers from multi-frequency spectra presented in Das et al.
(2013) and George et al. (2014) as extracted in this work. Lower
multipole ACT (500 < ` < 1000) and SPT (650 < ` < 3000)
CMB power extracted by Calabrese et al. (2013) from multi-
frequency spectra presented in Das et al. (2013) and Story et al.
(2012) are also shown. Note that the binned values in the range
3000 < ` < 4000 appear higher than the unbinned best-fit line
because of the binning (this is numerically confirmed by the re-
sidual plot in Planck Collaboration XIII 2015, figure 9).

spectra are reported in Fig. 47. We also show ACT and SPT
bandpowers at lower multipoles as extracted by Calabrese et al.
(2013). This figure shows the state of the art of current CMB
observations, with Planck covering the low-to-high-multipole
range and ACT and SPT extending into the damping region. We
consider the CMB to be negligible at ` > 4000 and note that
these ACT and SPT bandpowers have an overall calibration un-
certainty (2 % for ACT and 1.2 % for SPT).

The inclusion of ACT and SPT improves the full-mission
Planck spectrum extraction presented in Sect. 5.5 only margin-
ally. The main contribution of ACT and SPT is to constrain
small components (e.g., the tSZ, kSZ, and tSZ⇥CIB) that are
not well determined by Planck alone. However, those compon-
ents are sub-dominant for Planck and are well described by the
prior based on the 2013 Planck+highL solutions imposed in the
Planck-alone analysis. The CIB amplitude estimate improves by
40 % when including ACT and SPT, but the CIB power is also
reasonably well constrained by Planck alone. The main Planck
contaminants are the Poisson sources, which are treated as in-
dependent and do not benefit from ACT and SPT. As a result,
the errors on the extracted Planck spectrum are only slightly re-
duced, with little additional cosmological information added by
including ACT and SPT for the baseline ⇤CDM model (see also
Planck Collaboration XIII 2015, section 4).

6. Conclusions

The Planck 2015 angular power spectra of the cosmic mi-
crowave background derived in this paper are displayed in

Fig. 48. These spectra in TT (top), T E (middle), and EE (bot-
tom) are all quite consistent with the best-fit base-⇤CDM model
obtained from TT data alone (red lines). The horizontal axis is
logarithmic at ` < 30, where the spectra are shown for individual
multipoles, and linear at ` � 30, where the data are binned. The
error bars correspond to the diagonal elements of the covariance
matrix. The lower panels display the residuals, the data being
presented with di↵erent vertical axes, a larger one at left for the
low-` part and a zoomed-in axis at right for the high-` part.

The 2015 Planck likelihood presented in this work is based
on more temperature data than in the 2013 release, and on
new polarization data. It benefits from several improvements
in the processing of the raw data, and in the modelling of
astrophysical foregrounds and instrumental noise. Apart from
a revision of the overall calibration of the maps, discussed
in Planck Collaboration I (2015), the most significant improve-
ments are in the likelihood procedures:

(i) a joint temperature-polarization pixel-based likelihood at
`  29, with more high-frequency information used for fore-
ground removal, and smaller sky masks (Sects. 2.1 and 2.2);

(ii) an improved Gaussian likelihood at ` � 30 that includes
a di↵erent strategy for estimating power spectra from data-
subset cross-correlations, using half-mission data instead of
detector sets (which allows us to reduce the e↵ect of cor-
related noise between detectors, see Sects. 3.2.1 and 3.4.3),
and better foreground templates, especially for Galactic dust
(Sect. 3.3.1) that allow us to mask a smaller fraction of the
sky (Sect. 3.2.2) and to retain large-angle temperature in-
formation from the 217 GHz map that was neglected in the
2013 release (Sect. 3.2.4).

We performed several consistency checks of the robustness
of our likelihood-making process, by introducing more or less
freedom and nuisance parameters in the modelling of fore-
grounds and instrumental noise, and by including di↵erent as-
sumptions about the relative calibration uncertainties across fre-
quency channels and about the beam window functions.

For temperature, the reconstructed CMB spectrum and er-
ror bars are remarkably insensitive to all these di↵erent as-
sumptions. Our final high-` temperature likelihood, referred to
as “PlanckTT” marginalizes over 15 nuisance parameters (12
modelling the foregrounds, and 3 for calibration uncertainties).
Additional nuisance parameters (in particular, those associated
with beam uncertainties) were found to have a negligible impact,
and can be kept fixed in the baseline likelihood.

For polarization, the situation is di↵erent. Variation of the as-
sumptions leads to scattered results, with larger deviations than
would be expected due to changes in the data subsets used, and
at a level that is significant compared to the statistical error bars.
This suggests that further systematic e↵ects need to be either
modelled or removed. In particular, our attempt to model cal-
ibration errors and temperature-to-polarization leakage suggests
that the T E and EE power spectra are a↵ected by systematics at
a level of roughly 1 µK2. Removal of polarization systematics at
this level of precision requires further work, beyond the scope of
this release. The 2015 high-` polarized likelihoods, referred to
as “PlikTE” and “PlikEE”, or “PlikTT,EE,TE” for the com-
bined version, ignore these corrections. They only include 12
additional nuisance parameters accounting for polarized fore-
grounds. Although these likelihoods are distributed in the Planck
Legacy Archive,15 we stick to the PlanckTT+lowP choice in the
baseline analysis of this paper and the companion papers such

15 http://pla.esac.esa.int/pla/
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Hu & White, 1997, ApJ

Silk-damping is 
equivalent to 
energy release!

Dissipation of small-scale acoustic modes



Energy release caused by dissipation process

‘Obvious’ dependencies:
• Amplitude of the small-scale power spectrum

• Shape of the small-scale power spectrum

• Dissipation scale → kD ~ (H0 Ωrel1/2 Ne,0)1/2 (1+z)3/2 at early times

not so ‘obvious’ dependencies:
• primordial non-Gaussianity in the ultra squeezed limit                          

(Pajer & Zaldarriaga, 2012; Ganc & Komatsu, 2012)

• Type of the perturbations (adiabatic ↔ isocurvature)                               
(Barrow & Coles, 1991; Hu et al., 1994; Dent et al, 2012, JC & Grin, 2012)

• Neutrinos (or any extra relativistic degree of freedom)
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• Shape of the small-scale power spectrum

• Dissipation scale → kD ~ (H0 Ωrel1/2 Ne,0)1/2 (1+z)3/2 at early times

not so ‘obvious’ dependencies:
• primordial non-Gaussianity in the ultra squeezed limit                          

(Pajer & Zaldarriaga, 2012; Ganc & Komatsu, 2012)

• Type of the perturbations (adiabatic ↔ isocurvature)                               
(Barrow & Coles, 1991; Hu et al., 1994; Dent et al, 2012, JC & Grin, 2012)

• Neutrinos (or any extra relativistic degree of freedom)

CMB Spectral distortions could add additional numbers beyond 
‘just’ the tensor-to-scalar ratio from B-modes!
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Distortions caused by superposition of blackbodies

• average spectrum

⇒  

• known with very high precision 

JC & Sunyaev, 2004
JC, Khatri & Sunyaev, 2012
JC, 2016, ArXiv:1603.02496

y ' 1
2

*✓
�T

T

◆2
+
⇡ 8⇥ 10�10

�Tsup ' T

*✓
�T

T

◆2
+
⇡ 4.4nK



Distortions caused by superposition of blackbodies

• average spectrum

⇒  

• known with very high precision 

JC & Sunyaev, 2004
JC, Khatri & Sunyaev, 2012
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• CMB dipole ( β ~ 1.23x10-3)

⇒  

• electrons are up-scattered
• can (and should) be taken out 

down to the level of y ~ 10-9
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COBE/DMR: ΔT = 3.353 mK
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How do we compute the effective heating rate?



Dissipation of acoustic modes: ‘classical treatment’

Sunyaev & Zeldovich, 1970
Hu, Scott & Silk, 1994, ApJ

• energy stored in plane sound waves 

Landau & Lifshitz, ‘Fluid Mechanics‘, § 65 ⇒  Q ~ cs2 ρ (δρ/ρ)2

• expression for normal ideal gas where ρ is ‘mass 
density’ and cs denotes ‘sounds speed’
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Landau & Lifshitz, ‘Fluid Mechanics‘, § 65 ⇒  Q ~ cs2 ρ (δρ/ρ)2

• expression for normal ideal gas where ρ is ‘mass 
density’ and cs denotes ‘sounds speed’

• photon-baryon fluid with baryon loading R << 1

(cs/c)2 = [ 3 (1+R) ]-1 ~ 1/3
ρ → ργ  = aR T4

δρ/ρ → 4(δT0/T) ≡ 4Θ0   only perturbation in the 
monopole accounted for
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Sunyaev & Zeldovich, 1970
Hu, Scott & Silk, 1994, ApJ

• energy stored in plane sound waves 

Landau & Lifshitz, ‘Fluid Mechanics‘, § 65 ⇒  Q ~ cs2 ρ (δρ/ρ)2

• expression for normal ideal gas where ρ is ‘mass 
density’ and cs denotes ‘sounds speed’

• photon-baryon fluid with baryon loading R << 1

(cs/c)2 = [ 3 (1+R) ]-1 ~ 1/3
ρ → ργ  = aR T4

δρ/ρ → 4(δT0/T) ≡ 4Θ0  
⇒   (a4ργ)-1 da4Qac/dt = -16/3 d<Θ02>/dt 

 ‘minus’ because decrease of Θ 
at small scales means increase 
for average spectrum

 can be calculated using first 
order perturbation theory
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Dissipation of acoustic modes: ‘classical treatment’

Sunyaev & Zeldovich, 1970
Hu, Scott & Silk, 1994, ApJ

• energy stored in plane sound waves 

Landau & Lifshitz, ‘Fluid Mechanics‘, § 65 ⇒  Q ~ cs2 ρ (δρ/ρ)2

• expression for normal ideal gas where ρ is ‘mass 
density’ and cs denotes ‘sounds speed’

• photon-baryon fluid with baryon loading R << 1

(cs/c)2 = [ 3 (1+R) ]-1 ~ 1/3
ρ → ργ  = aR T4

δρ/ρ → 4(δT0/T) ≡ 4Θ0  
⇒   (a4ργ)-1 da4Qac/dt = -16/3 d<Θ02>/dt 

‣ total energy release is 9/4 ~ 2.25 
times larger!

‣ only 1/3 of the released energy 
goes into distortions (follows from 
superposition of blackbodies...)

• Simple estimate does not capture 
all the physics of the problem:
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H Early power spectrum constraints from FIRAS

Hu, Scott & Silk, 1994

• based on classical 
estimate for heating rate

• Tightest / cleanest 
constraint at that point!

• simple power-law 
spectrum assumed

• µ~10-8 for scale-invariant 
power spectrum

• nS ≲ 1.6



Dissipation of acoustic modes: ‘microscopic picture’

JC, Khatri & Sunyaev, 2012

• average energy stored in photon field at                  
any given moment

   < ργ > = aR <T4> ≈ aR <T>4 [1+ 4<Θ> + 6<Θ2> ]

• after inflation: photon field has spatially 
varying temperature T

 E.g., our snapshot at z=0== 0
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Dissipation of acoustic modes: ‘microscopic picture’

JC, Khatri & Sunyaev, 2012

• average energy stored in photon field at                  
any given moment

   < ργ > = aR <T4> ≈ aR <T>4 [1+ 4<Θ> + 6<Θ2> ]

• after inflation: photon field has spatially 
varying temperature T

 E.g., our snapshot at z=0

⇒   (a4ργ)-1 da4Qac/dt = -6 d<Θ2>/dt 

• Monopole actually drops out of the equation!

• In principle all higher multipoles contribute to the energy release

== 0

‣ net (gauge-invariant) dipole and contributions from 
higher multipoles are negligible

• At high redshifts (z ≥ 104):

‣ dominant term caused by quadrupole anisotropy

⇒   (a4ργ)-1 da4Qac/dt ≈ -12 d<Θ02>/dt 

9/4 larger than classical estimate



• Effective heating rate from full 2x2 Boltzmann treatment (JC, Khatri & Sunyaev, 2012)

Effective energy release caused by damping effect

gauge-independent dipole effect of polarization higher multipoles
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• Effective heating rate from full 2x2 Boltzmann treatment (JC, Khatri & Sunyaev, 2012)

Effective energy release caused by damping effect
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Which modes dissipate in the µ and y-eras?

JC, Erickcek & Ben-Dayan, 2012

• Modes with wavenumber                  
50 Mpc-1 < k < 104 Mpc-1  
dissipate their energy 
during the µ-era

• Modes with k < 50 Mpc-1 
cause y-distortion

• Single mode with 
wavenumber k 
dissipates its energy at 

    

  zd ~ 4.5x105(k Mpc/103)2/3



So what does one expect within ΛCDM?
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Spectral distortion caused by the cooling of ordinary matter
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Electrons & baryons always 
slightly cooler than photons

JC, 2005; JC & Sunyaev, 2012
Khatri, Sunyaev & JC, 2012

• adiabatic expansion 
⇒  Tγ ~ (1+z) ↔ Tm ~ (1+z)²

• photons continuously cooled / 
down-scattered since day one 
of the Universe!      

• Compton heating balances 
adiabatic cooling
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• at high redshift same scaling 
as annihilation (           ) and 
acoustic mode damping

⇒ partial cancellation
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today x=10-2 means ν~1GHz
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today x=10-2 means ν~1GHz
• negative µ and y distortion      

• late free-free absorption at 
very low frequencies
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Figure 3. Comparison of the posterior distributions for the dissipation sce-
nario I (Table 1) obtained with method B (red contours) and the PCA (black
contours). The vertical lines indicate the mean values. Method B predicts
lower values for µ than the distortion eigenmode analysis.

We immediately mention that one alternative approach, which
could mitigate the above problem, could be to determine the aver-
age CMB temperature using the integral properties of the µ, y and
r-distortions. Since these are created by a scattering process, the
number density of photons should not change. Thus, determining
the e↵ective temperature of the CMB by computing the total photon
number density (N� / T 3

� ) from the measured spectrum, the distor-
tions would not contribute under idealized assumptions. However,
this procedure is not expected to work well for discretized versions
of the spectra. It is furthermore complicated by the presence of fore-
grounds and the possibility of non-standard processes that can ac-
tually lead to non-trivial photon injection (Chluba 2015). Finally,
the r-distortion parameters would no longer remain uncorrelated,
so that we do not explore this avenue any further.

3.3 Results from the di↵erent methods

We are now in the position to explicitly compute the µ- and y-
parameters for the di↵erent distortion scenarios discussed above.
With the PCA, we are furthermore able to obtain the eigenmode
amplitudes, µ1 and µ2. We stop at the second residual distortion
eigenmode, since observing µ2 is already very futuristic for stan-
dard scenarios. We also mention that the values for y are only used
as a comparison, since the y-distortion from the low-redshift Uni-
verse is much larger in all cases.

In our estimates, we include the measurement uncertainties for
the relevant⇤CDM parameters (Planck Collaboration et al. 2015b).
For the dissipation scenarios, these are mainly related to the power
spectrum parameters, while for the adiabatic cooling distortion it
is the baryon density (assuming standard BBN). The results are
summarized in Table 1. For the dissipation scenarios, we obtained
the error estimates by using the relevant covariance matrix for the
Planck data, while the error for the adiabatic cooling e↵ect was
directly estimated using Gaussian error propagation.

Figure 4. Posterior distributions for the dissipation scenario II (Table 1) ob-
tained with the PCA. We omitted y as its posteriors remains fairly Gaussain.
The vertical lines indicate the mean values.

Table 2. Explicit projections of the full CosmoTherm output using the dis-
tortion eigenmodes for PIXIE-like settings. The last column also gives the
estimates 1� error for PIXIE in its current design (Chluba & Jeong 2014),
which degrades quickly for the µk . In parenthesis we show estimates for the
expected significance in terms of distortion measurements.

Parameter Dissipation I Adiabatic cooling PIXIE 1�

y/10�9 3.54 (' 3.0�) �0.623 (' 0.5�) 1.20
µ/10�8 2.00 (' 1.5�) �0.334 (' 0.2�) 1.37
µ1/10�8 3.82 (' 0.3�) �0.588 (' 0.04�) 14.8
µ2/10�9 �1.18 (' 0.0�) �0.054 (' 0.0�) 761

For the y-parameter estimates, method A and B are equivalent
and give results which are quite close to those of the PCA, which
should be considered the most precise representation of what would
be recovered in a distortion analysis. The methods C and D are also
equivalent, but overestimate the y-parameter by ' 5% � 10% in
comparison to the PCA. The recovered error bars for all methods
are very comparable. For the µ-parameter, all methods are slightly
di↵erent. The PCA always gives 20%�30% larger values. The best
agreement with the PCA is achieved by methods A and C. Again
all methods give very similar estimates for the expected errors.

In Fig. 3, we highlight the di↵erences in the predicted y and
µ-parameters for the dissipation scenario I obtained with method
B and the PCA5. The errors are dominated by uncertainties in the
power spectrum parameters. The result for y agree quite well, while
the result for µ is biased low by ' 2.6� with method B, a di↵er-
ence that needs to be taken into account when interpreting future

5 The figure was obtained using the Markov Chain Monte Carlo (MCMC)
tool of the Greens software package (Chluba 2013b) available at
www.Chluba.de/CosmoTherm.
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tions would not contribute under idealized assumptions. However,
this procedure is not expected to work well for discretized versions
of the spectra. It is furthermore complicated by the presence of fore-
grounds and the possibility of non-standard processes that can ac-
tually lead to non-trivial photon injection (Chluba 2015). Finally,
the r-distortion parameters would no longer remain uncorrelated,
so that we do not explore this avenue any further.
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parameters for the di↵erent distortion scenarios discussed above.
With the PCA, we are furthermore able to obtain the eigenmode
amplitudes, µ1 and µ2. We stop at the second residual distortion
eigenmode, since observing µ2 is already very futuristic for stan-
dard scenarios. We also mention that the values for y are only used
as a comparison, since the y-distortion from the low-redshift Uni-
verse is much larger in all cases.

In our estimates, we include the measurement uncertainties for
the relevant⇤CDM parameters (Planck Collaboration et al. 2015b).
For the dissipation scenarios, these are mainly related to the power
spectrum parameters, while for the adiabatic cooling distortion it
is the baryon density (assuming standard BBN). The results are
summarized in Table 1. For the dissipation scenarios, we obtained
the error estimates by using the relevant covariance matrix for the
Planck data, while the error for the adiabatic cooling e↵ect was
directly estimated using Gaussian error propagation.

Figure 4. Posterior distributions for the dissipation scenario II (Table 1) ob-
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The vertical lines indicate the mean values.

Table 2. Explicit projections of the full CosmoTherm output using the dis-
tortion eigenmodes for PIXIE-like settings. The last column also gives the
estimates 1� error for PIXIE in its current design (Chluba & Jeong 2014),
which degrades quickly for the µk . In parenthesis we show estimates for the
expected significance in terms of distortion measurements.
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For the y-parameter estimates, method A and B are equivalent
and give results which are quite close to those of the PCA, which
should be considered the most precise representation of what would
be recovered in a distortion analysis. The methods C and D are also
equivalent, but overestimate the y-parameter by ' 5% � 10% in
comparison to the PCA. The recovered error bars for all methods
are very comparable. For the µ-parameter, all methods are slightly
di↵erent. The PCA always gives 20%�30% larger values. The best
agreement with the PCA is achieved by methods A and C. Again
all methods give very similar estimates for the expected errors.

In Fig. 3, we highlight the di↵erences in the predicted y and
µ-parameters for the dissipation scenario I obtained with method
B and the PCA5. The errors are dominated by uncertainties in the
power spectrum parameters. The result for y agree quite well, while
the result for µ is biased low by ' 2.6� with method B, a di↵er-
ence that needs to be taken into account when interpreting future

5 The figure was obtained using the Markov Chain Monte Carlo (MCMC)
tool of the Greens software package (Chluba 2013b) available at
www.Chluba.de/CosmoTherm.
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contours). The vertical lines indicate the mean values. Method B predicts
lower values for µ than the distortion eigenmode analysis.
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tions would not contribute under idealized assumptions. However,
this procedure is not expected to work well for discretized versions
of the spectra. It is furthermore complicated by the presence of fore-
grounds and the possibility of non-standard processes that can ac-
tually lead to non-trivial photon injection (Chluba 2015). Finally,
the r-distortion parameters would no longer remain uncorrelated,
so that we do not explore this avenue any further.
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With the PCA, we are furthermore able to obtain the eigenmode
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verse is much larger in all cases.
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equivalent, but overestimate the y-parameter by ' 5% � 10% in
comparison to the PCA. The recovered error bars for all methods
are very comparable. For the µ-parameter, all methods are slightly
di↵erent. The PCA always gives 20%�30% larger values. The best
agreement with the PCA is achieved by methods A and C. Again
all methods give very similar estimates for the expected errors.

In Fig. 3, we highlight the di↵erences in the predicted y and
µ-parameters for the dissipation scenario I obtained with method
B and the PCA5. The errors are dominated by uncertainties in the
power spectrum parameters. The result for y agree quite well, while
the result for µ is biased low by ' 2.6� with method B, a di↵er-
ence that needs to be taken into account when interpreting future
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Figure 3. Comparison of the posterior distributions for the dissipation sce-
nario I (Table 1) obtained with method B (red contours) and the PCA (black
contours). The vertical lines indicate the mean values. Method B predicts
lower values for µ than the distortion eigenmode analysis.

We immediately mention that one alternative approach, which
could mitigate the above problem, could be to determine the aver-
age CMB temperature using the integral properties of the µ, y and
r-distortions. Since these are created by a scattering process, the
number density of photons should not change. Thus, determining
the e↵ective temperature of the CMB by computing the total photon
number density (N� / T 3

� ) from the measured spectrum, the distor-
tions would not contribute under idealized assumptions. However,
this procedure is not expected to work well for discretized versions
of the spectra. It is furthermore complicated by the presence of fore-
grounds and the possibility of non-standard processes that can ac-
tually lead to non-trivial photon injection (Chluba 2015). Finally,
the r-distortion parameters would no longer remain uncorrelated,
so that we do not explore this avenue any further.

3.3 Results from the di↵erent methods

We are now in the position to explicitly compute the µ- and y-
parameters for the di↵erent distortion scenarios discussed above.
With the PCA, we are furthermore able to obtain the eigenmode
amplitudes, µ1 and µ2. We stop at the second residual distortion
eigenmode, since observing µ2 is already very futuristic for stan-
dard scenarios. We also mention that the values for y are only used
as a comparison, since the y-distortion from the low-redshift Uni-
verse is much larger in all cases.

In our estimates, we include the measurement uncertainties for
the relevant⇤CDM parameters (Planck Collaboration et al. 2015b).
For the dissipation scenarios, these are mainly related to the power
spectrum parameters, while for the adiabatic cooling distortion it
is the baryon density (assuming standard BBN). The results are
summarized in Table 1. For the dissipation scenarios, we obtained
the error estimates by using the relevant covariance matrix for the
Planck data, while the error for the adiabatic cooling e↵ect was
directly estimated using Gaussian error propagation.

Figure 4. Posterior distributions for the dissipation scenario II (Table 1) ob-
tained with the PCA. We omitted y as its posteriors remains fairly Gaussain.
The vertical lines indicate the mean values.

Table 2. Explicit projections of the full CosmoTherm output using the dis-
tortion eigenmodes for PIXIE-like settings. The last column also gives the
estimates 1� error for PIXIE in its current design (Chluba & Jeong 2014),
which degrades quickly for the µk . In parenthesis we show estimates for the
expected significance in terms of distortion measurements.

Parameter Dissipation I Adiabatic cooling PIXIE 1�

y/10�9 3.54 (' 3.0�) �0.623 (' 0.5�) 1.20
µ/10�8 2.00 (' 1.5�) �0.334 (' 0.2�) 1.37
µ1/10�8 3.82 (' 0.3�) �0.588 (' 0.04�) 14.8
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For the y-parameter estimates, method A and B are equivalent
and give results which are quite close to those of the PCA, which
should be considered the most precise representation of what would
be recovered in a distortion analysis. The methods C and D are also
equivalent, but overestimate the y-parameter by ' 5% � 10% in
comparison to the PCA. The recovered error bars for all methods
are very comparable. For the µ-parameter, all methods are slightly
di↵erent. The PCA always gives 20%�30% larger values. The best
agreement with the PCA is achieved by methods A and C. Again
all methods give very similar estimates for the expected errors.

In Fig. 3, we highlight the di↵erences in the predicted y and
µ-parameters for the dissipation scenario I obtained with method
B and the PCA5. The errors are dominated by uncertainties in the
power spectrum parameters. The result for y agree quite well, while
the result for µ is biased low by ' 2.6� with method B, a di↵er-
ence that needs to be taken into account when interpreting future

5 The figure was obtained using the Markov Chain Monte Carlo (MCMC)
tool of the Greens software package (Chluba 2013b) available at
www.Chluba.de/CosmoTherm.
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Figure 3. Comparison of the posterior distributions for the dissipation sce-
nario I (Table 1) obtained with method B (red contours) and the PCA (black
contours). The vertical lines indicate the mean values. Method B predicts
lower values for µ than the distortion eigenmode analysis.

We immediately mention that one alternative approach, which
could mitigate the above problem, could be to determine the aver-
age CMB temperature using the integral properties of the µ, y and
r-distortions. Since these are created by a scattering process, the
number density of photons should not change. Thus, determining
the e↵ective temperature of the CMB by computing the total photon
number density (N� / T 3

� ) from the measured spectrum, the distor-
tions would not contribute under idealized assumptions. However,
this procedure is not expected to work well for discretized versions
of the spectra. It is furthermore complicated by the presence of fore-
grounds and the possibility of non-standard processes that can ac-
tually lead to non-trivial photon injection (Chluba 2015). Finally,
the r-distortion parameters would no longer remain uncorrelated,
so that we do not explore this avenue any further.

3.3 Results from the di↵erent methods

We are now in the position to explicitly compute the µ- and y-
parameters for the di↵erent distortion scenarios discussed above.
With the PCA, we are furthermore able to obtain the eigenmode
amplitudes, µ1 and µ2. We stop at the second residual distortion
eigenmode, since observing µ2 is already very futuristic for stan-
dard scenarios. We also mention that the values for y are only used
as a comparison, since the y-distortion from the low-redshift Uni-
verse is much larger in all cases.

In our estimates, we include the measurement uncertainties for
the relevant⇤CDM parameters (Planck Collaboration et al. 2015b).
For the dissipation scenarios, these are mainly related to the power
spectrum parameters, while for the adiabatic cooling distortion it
is the baryon density (assuming standard BBN). The results are
summarized in Table 1. For the dissipation scenarios, we obtained
the error estimates by using the relevant covariance matrix for the
Planck data, while the error for the adiabatic cooling e↵ect was
directly estimated using Gaussian error propagation.
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Table 2. Explicit projections of the full CosmoTherm output using the dis-
tortion eigenmodes for PIXIE-like settings. The last column also gives the
estimates 1� error for PIXIE in its current design (Chluba & Jeong 2014),
which degrades quickly for the µk . In parenthesis we show estimates for the
expected significance in terms of distortion measurements.
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For the y-parameter estimates, method A and B are equivalent
and give results which are quite close to those of the PCA, which
should be considered the most precise representation of what would
be recovered in a distortion analysis. The methods C and D are also
equivalent, but overestimate the y-parameter by ' 5% � 10% in
comparison to the PCA. The recovered error bars for all methods
are very comparable. For the µ-parameter, all methods are slightly
di↵erent. The PCA always gives 20%�30% larger values. The best
agreement with the PCA is achieved by methods A and C. Again
all methods give very similar estimates for the expected errors.

In Fig. 3, we highlight the di↵erences in the predicted y and
µ-parameters for the dissipation scenario I obtained with method
B and the PCA5. The errors are dominated by uncertainties in the
power spectrum parameters. The result for y agree quite well, while
the result for µ is biased low by ' 2.6� with method B, a di↵er-
ence that needs to be taken into account when interpreting future
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tool of the Greens software package (Chluba 2013b) available at
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Figure 3. Comparison of the posterior distributions for the dissipation sce-
nario I (Table 1) obtained with method B (red contours) and the PCA (black
contours). The vertical lines indicate the mean values. Method B predicts
lower values for µ than the distortion eigenmode analysis.

We immediately mention that one alternative approach, which
could mitigate the above problem, could be to determine the aver-
age CMB temperature using the integral properties of the µ, y and
r-distortions. Since these are created by a scattering process, the
number density of photons should not change. Thus, determining
the e↵ective temperature of the CMB by computing the total photon
number density (N� / T 3

� ) from the measured spectrum, the distor-
tions would not contribute under idealized assumptions. However,
this procedure is not expected to work well for discretized versions
of the spectra. It is furthermore complicated by the presence of fore-
grounds and the possibility of non-standard processes that can ac-
tually lead to non-trivial photon injection (Chluba 2015). Finally,
the r-distortion parameters would no longer remain uncorrelated,
so that we do not explore this avenue any further.

3.3 Results from the di↵erent methods

We are now in the position to explicitly compute the µ- and y-
parameters for the di↵erent distortion scenarios discussed above.
With the PCA, we are furthermore able to obtain the eigenmode
amplitudes, µ1 and µ2. We stop at the second residual distortion
eigenmode, since observing µ2 is already very futuristic for stan-
dard scenarios. We also mention that the values for y are only used
as a comparison, since the y-distortion from the low-redshift Uni-
verse is much larger in all cases.

In our estimates, we include the measurement uncertainties for
the relevant⇤CDM parameters (Planck Collaboration et al. 2015b).
For the dissipation scenarios, these are mainly related to the power
spectrum parameters, while for the adiabatic cooling distortion it
is the baryon density (assuming standard BBN). The results are
summarized in Table 1. For the dissipation scenarios, we obtained
the error estimates by using the relevant covariance matrix for the
Planck data, while the error for the adiabatic cooling e↵ect was
directly estimated using Gaussian error propagation.

Figure 4. Posterior distributions for the dissipation scenario II (Table 1) ob-
tained with the PCA. We omitted y as its posteriors remains fairly Gaussain.
The vertical lines indicate the mean values.

Table 2. Explicit projections of the full CosmoTherm output using the dis-
tortion eigenmodes for PIXIE-like settings. The last column also gives the
estimates 1� error for PIXIE in its current design (Chluba & Jeong 2014),
which degrades quickly for the µk . In parenthesis we show estimates for the
expected significance in terms of distortion measurements.

Parameter Dissipation I Adiabatic cooling PIXIE 1�

y/10�9 3.54 (' 3.0�) �0.623 (' 0.5�) 1.20
µ/10�8 2.00 (' 1.5�) �0.334 (' 0.2�) 1.37
µ1/10�8 3.82 (' 0.3�) �0.588 (' 0.04�) 14.8
µ2/10�9 �1.18 (' 0.0�) �0.054 (' 0.0�) 761

For the y-parameter estimates, method A and B are equivalent
and give results which are quite close to those of the PCA, which
should be considered the most precise representation of what would
be recovered in a distortion analysis. The methods C and D are also
equivalent, but overestimate the y-parameter by ' 5% � 10% in
comparison to the PCA. The recovered error bars for all methods
are very comparable. For the µ-parameter, all methods are slightly
di↵erent. The PCA always gives 20%�30% larger values. The best
agreement with the PCA is achieved by methods A and C. Again
all methods give very similar estimates for the expected errors.

In Fig. 3, we highlight the di↵erences in the predicted y and
µ-parameters for the dissipation scenario I obtained with method
B and the PCA5. The errors are dominated by uncertainties in the
power spectrum parameters. The result for y agree quite well, while
the result for µ is biased low by ' 2.6� with method B, a di↵er-
ence that needs to be taken into account when interpreting future

5 The figure was obtained using the Markov Chain Monte Carlo (MCMC)
tool of the Greens software package (Chluba 2013b) available at
www.Chluba.de/CosmoTherm.
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Detailed projection:

• Posteriors more non-
Gaussian

• extended scenario 

• small negative running 
→ lower value of µ

• µ signal ~1σ above 
current  PIXIE 
sensitivity

• first residual distortion 
parameter µ1 ~ 0.3σ 
for current  PIXIE 
sensitivityµ = 1.59+0.54

�0.40 ⇥ 10�8

µ1 = 3.39+0.58
�0.49 ⇥ 10�8

Planck 2015 
TT,TE,EE + 
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(�⇤ ⌘ � � �f )

Fiducial values:

�f = 1.2 ⇥ 10�4

yre = 4 ⇥ 10�7

fann,s = 10�22 eV sec�1

fann,p = 10�26 eV sec�1

Figure 3. Large distortion s- and p-wave annihilation scenario. Contours
and lines are as before. Degeneracies between the parameters prevent a dis-
tinction of the signatures of both particles, even for high sensitivity.

nature should be possible, the two signals are simply too similar
and strong correlations cause large uncertainties and biases in the
parameters, which only disappear at high sensitivity. This makes
the projected 2D probability distributions shown in Fig. 3 very non-
Gaussian. At ' 20 times the sensitivity of PIXIE, we find a ' 2�
detection of the s-wave annihilation signature and fann,p ' 1% from
the p-wave annihilation signal.

Considering a small distortion scenario with more compara-
ble contributions from s- and p-wave annihilations ( fann,s ' 2 ⇥
10�23 eV sec�1 and fann,p ' 10�28 eV sec�1), we find that an im-
provement of the sensitivity by a factor of ' 40 is needed to start
distinguishing the signals from both particles, rendering an analysis
along these lines more futuristic. This is because for this scenario
the signal is close to the detection limit of PIXIE, and the di↵er-
ences with respect to a pure superposition of µ- and y-distortions,
which could be used to distinguish the two cases, are only a small
correction, necessitating this large improvement of the sensitivity.

4 DECAYING PARTICLE SCENARIOS

Decaying relic particles with lifetimes ' 380 kyr (corresponding to
the time of recombination) are again tightly constrained by mea-
surement of the CMB anisotropies (Zhang et al. 2007; Giesen et al.
2012), while particles with lifetimes comparable to minutes can af-
fect the light-element abundances and bounds derived from BBN
apply (Kawasaki et al. 2005; Jedamzik 2008). However, experi-
mental constraints for particles with lifetimes ' 106 � 1012 sec are
less stringent, still leaving rather large room for extra energy re-
lease �⇢�/⇢� . 10�6 � 10�5 (e.g., Hu & Silk 1993b; Kogut et al.
2011). Large energy-release rates are especially possible for very
light particles with masses . MeV. A PIXIE-type CMB experi-
ment thus has a large potential to discover the signature of some
long-lived relic particles or at least provide complementary and in-
dependent constraints to these scenarios. If most of the energy is

(�⇤ ⌘ � � �f )

Fiducial values:

�f = 1.2 ⇥ 10�4

yre = 4 ⇥ 10�7

fX = 5 ⇥ 105 eV

zX = 5 ⇥ 104 (�X ' 1.1 ⇥ 10�8sec�1)

(�⇤ ⌘ � � �f )

Fiducial values:

�f = 1.2 ⇥ 10�4

yre = 4 ⇥ 10�7

fX = 104 eV

zX = 5 ⇥ 104 (�X ' 1.1 ⇥ 10�8sec�1)

Figure 4. Large- and small-distortion decaying particle scenario. Contours
and lines are as before. For large energy release the distortion can be easily
constrained; however, for small energy release the parameter space becomes
more complicated and higher sensitivity improves matters significantly.

released at z & 3 ⇥ 105, a pure µ-distortion is created, so that this
case is practically degenerate, e.g., with scenarios that include an
annihilating particle with p-wave annihilation cross-section. How-
ever, for energy release around z ' 5⇥ 104, the distortion can di↵er
su�ciently to become distinguishable.

In Fig. 4, we show the projected constraints for a large- and
small-distortion scenario, with energy release �⇢�/⇢� ' 6.4 ⇥ 10�6

and �⇢�/⇢� ' 1.3⇥10�7, respectively. Since the total energy release
scales as �⇢�/⇢� / fX/zX (cf. Chluba & Sunyaev 2012), it is best
to consider the variables fX/zX and zX ' 4.8 ⇥ 109 �1/2

X sec1/2 as
parameters. This reduces the parameter covariance significantly. To
accelerate the computation, we furthermore tabulate the distortion

c� 0000 RAS, MNRAS 000, 000–000

Why model-independent approach to distortion signal

• Model-dependent analysis makes model-selection non-trivial

• Real information in the distortion signal limited by sensitivity and foregrounds

• Principle Component Analysis (PCA) can help optimizing this!

• useful for optimizing experimental designs (frequencies; sensitivities, ...)!
Distortion constraints 5

(�⇤ ⌘ � � �f )

Fiducial values:

�f = 1.2 ⇥ 10�4

yre = 4 ⇥ 10�7

fann = 10�26 eV sec�1

Figure 2. Large p-wave annihilation scenario. The solid black lines show
the constraint for PIXIE sensitivity, while the red curves are for 4 times
higher sensitivity. The contours show 68% and 95% confidence levels. The
shaded regions illustrate the shape of the projected 2D probability distri-
bution function for PIXIE sensitivity only. The marginalized distributions
were all normalized to unity at the maximum.

Since the signal is directly proportional to fann, we find

� fann,p

fann,p
⇡ 2%

"
fann,p

10�26 eV sec�1

#�1 "
�I⌫
�IPIXIE
⌫

#�1

(6)

for the error, where �IPIXIE
⌫ ' 5 ⇥ 10�26 W m�2 s�1 Hz�1 sr�1 de-

notes PIXIE’s sensitivity (we confirmed this statement numeri-
cally). The rough 1�-detection limit of PIXIE therefore is fann,p '
2 ⇥ 10�28 eV sec�1. Increasing the sensitivity 2 or 4 times might be
within reach, e.g., by extending the total time spent on spectral dis-
tortion measurements or by slightly improving the instrument. As
our results show, this would further tighten possible limits on this
scenario, allowing us to constrain Majorana particles annihilating
into lighter fermions (Goldberg 1983).

Figure 2 also shows that the monopole temperature and reion-
ization y-parameter could be measured with impressive accuracy,
corresponding to �T ' 3 nK and �yre/yre . 1%. Both � and yre are
anti correlated with fann: although the annihilation distortion sig-
nal does not include any pure temperature shift contribution, it is
not fully orthogonal to the signal related to � [see. Eq. (5)]. Simi-
larly, every annihilation is associated with some late energy release
(z . 104), during the y-era, and thus boosted annihilation e�ciency
leaves less room for contribution to y from after recombination and
during reionization, explaining the behavior.

Assuming a relic particle with fann,p ' 10�28 eV sec�1, we find
that for PIXIE’s sensitivity the signal is below the detection limit,
and even at 4 times increased sensitivity, only a marginal detection
of the distortion caused by the annihilation energy release is possi-
ble. The measurements of � and yre are not severely compromised
by adding this possibility to the parameter estimation problem, be-
cause the additional signal is very small. To obtain an unambiguous
5�-detection of the p-wave annihilation signal in this scenario, the
sensitivity needs to be increased ' 10 times over PIXIE.

Assuming that the relic particle is non-relativistic without any
p-wave Sommerfeld enhancement one has h�vi / v2 / (1+ z)2. As
mentioned above, in this case most energy is released very early
causing a pure µ-distortion. However, the limits from BBN and
light-element abundances are expected to be much stronger, so that
we do not discuss this case any further.

Next we consider energy release due to s-wave annihilation,
for instance associated with a dark matter particle. The annihilation
e�ciency is already tightly constrained by the e↵ect on the CMB
anisotropies (Peebles et al. 2000; Chen & Kamionkowski 2004;
Padmanabhan & Finkbeiner 2005; Zhang et al. 2006), where the
best observational limit is obtained from WMAP (Galli et al. 2009;
Hütsi et al. 2009; Slatyer et al. 2009; Hütsi et al. 2011), translating
into fann,s . 2⇥10�23 eV sec�1 (Chluba et al. 2010). This case is as-
sociated with an energy release of�⇢�/⇢� ' 8.3⇥10�9, available for
spectral distortions. In contrast to the p-wave annihilation scenario,
energy is liberated more evenly per logarithmic redshift interval,
so that the associated spectral distortion lies between a µ and y-
distortion (see Fig. 1). Annihilations with fann,s ' 2⇥10�23 eV sec�1

remain undetectable, even at 4 times the sensitivity of PIXIE, in
agreement with conclusion from previous analyses (Chluba et al.
2010; Chluba & Sunyaev 2012). A ' 3�-detection becomes possi-
ble with 10 times the sensitivity of PIXIE.

On the other hand, assuming fann,s ' 10�22 eV sec�1, a ' 6�-
detection would be possible at 4 times PIXIE sensitivity, although
this scenario is already in tension with CMB anisotropy constraints.
The error for the s-wave annihilation scenario roughly scales as

� fann,s

fann,s
⇡ 17%

"
fann,s

10�22 eV sec�1

#�1 "
�I⌫

4�IPIXIE
⌫

#�1

. (7)

The current limit on fann,s derived from CMB anisotropies may be
improved by another factor of ' 6 (e.g., see Hütsi et al. 2009,
2011, for projections) with the next release of Planck (which will
include all the temperature and polarization data), ACTpol and SPT-
pol (Niemack et al. 2010; McMahon et al. 2009). At this level of
sensitivity it will be hard to directly compete using spectral distor-
tion measurements; however, the spectral distortion constraints are
independent and probe di↵erent epochs of the evolution, providing
another important handle on possible systematics, e.g., related to
possible uncertainties in the cosmological recombination process
(Farhang et al. 2012, 2013). Additional freedom could be added
due to Sommerfeld enhancement of the annihilation cross-section
(e.g., see Hannestad & Tram 2011), but a more detailed investiga-
tion of this aspect is beyond the scope of this work.

Figure 1 also indicates that in the p-wave annihilation scenario
with fann,p ' 10�26 eV sec�1 a similar amount of energy is deposited
during hydrogen recombination (z ' 103) as in the well constrained
s-wave annihilation scenario with fann,s ' 2 ⇥ 10�23 eV sec�1. We
thus did not consider cases with larger p-wave annihilation cross-
section, because these would already be in tension with the CMB
anisotropy data. Improving the limit on p-wave annihilation sce-
narios with CMB anisotropy measurements will, however, be very
hard and the distortion signal has a larger leverage, o↵ering a way
to detect the signatures from particles with p-wave annihilation ef-
ficiency fann,p & few ⇥ 10�28 eV sec�1 at PIXIE’s sensitivity.

Finally, in Fig. 3 for illustration we show the large distortion
scenario ( fann,s ' 10�22 eV sec�1 and fann,p ' 10�26 eV sec�1) of
Fig. 1, with simultaneous energy release due to particles with s-
and p-wave annihilation. The parameters becomes rather degen-
erate, and a separate detection of the s-wave annihilation e↵ect
remains challenging even at 4 times the sensitivity of PIXIE. Al-
though an individual detection of the s- or p-wave annihilation sig-

c� 0000 RAS, MNRAS 000, 000–000
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Using signal eigenmodes to compress the distortion data

JC & Jeong, 2013

• Principle component 
decomposition of the 
distortion signal

• compression of the 
useful information 
given instrumental 
settings
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Ultimately this may be the only way to learn more!
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Figure 4. First few eigenmodes E(k) and S(k) for PIXIE-type settings
(νmin = 30 GHz, νmax = 1000 GHz and "νs = 15 GHz). In the mode
construction, we assumed that energy release only occurred at 103 ≤ z ≤
5 × 106.

amplitudes are positive for Q = const > 0. The first energy-release
mode, E(1), has a maximum at z # 5.3 × 104, while higher modes
show more variability, extending both towards lower and higher
redshift. The corresponding distortion modes, S(k), show increasing
variability and decreasing overall amplitude with growing k. They
capture all corrections to the simple superposition of pure µ- and
y-distortion, needed to morph between these two extreme cases.

In Table 1, we summarize the projected errors for the first six
mode amplitudes. The errors, "µk, increase rapidly with mode
number (this is how we order the eigenmodes), meaning that for a
fixed amplitude of the distortion signal the information in the higher
modes can only be accessed at higher spectral sensitivity.

Knowing the signal eigenvectors, S(k), we can directly relate
the mode amplitudes, µk, to the fractional energy, ε, stored by
the residual distortion. It thus allows us to estimate how much
information is contained by the residual distortion. Since integration
over frequency can be written as a sum over all frequency bins, with
εk = 4

∑
i S

(k)
i /

∑
i Gi,T we have ε ≈

∑
kεk µk. The first six εk are

given in Table 1. The signal modes, S(1) and S(2), contribute most to
the energy, while energy release into the higher modes is suppressed
by an order of magnitude or more.

Even if individual mode amplitudes cannot be separated, the
total energy density contained in the residual distortion might

Table 1. Forecasted 1σ errors of the first six eigenmode amplitudes, E(k).
We also give εk = 4

∑
i S

(k)
i /

∑
i Gi,T , and the scalar products S(k) · S(k)

(in units of [10−18 W m−2 Hz−1 sr−1]2). The fraction of energy release to
the residual distortion and its uncertainty are given by ε ≈

∑
kεk µk and

"ε ≈ (
∑

k ε2
k"µ2

k)1/2, respectively. For the mode construction we used
PIXIE-settings ({νmin, νmax, "νs} = {30, 1000, 15}GHz and channel
sensitivity "Ic = 5 × 10−26 W m−2 Hz−1 sr−1). The errors roughly scale as
"µk ∝ "Ic/

√
"νs.

k "µk "µk/"µ1 εk S(k) · S(k)

1 1.48 × 10−7 1 −6.98 × 10−3 1.15 × 10−1

2 7.61 × 10−7 5.14 2.12 × 10−3 4.32 × 10−3

3 3.61 × 10−6 24.4 −3.71 × 10−4 1.92 × 10−4

4 1.74 × 10−5 1.18 × 102 8.29 × 10−5 8.29 × 10−6

5 8.52 × 10−5 5.76 × 102 −1.55 × 10−5 3.45 × 10−7

6 4.24 × 10−4 2.86 × 103 2.75 × 10−6 1.39 × 10−8

still be detectable. The error of ε can be found using Gaussian
error propagation, "ε ≈ (

∑
k ε2

k"µ2
k)1/2 # {3.68 × 10−9, 3.53 ×

10−9, 3.14 × 10−9, 2.84 × 10−9}, where the numbers show, respec-
tively, uncertainties when all modes, all but µ1, all but µk with k ≤
2 and all but µk with k ≤ 3 are included. Another estimator for the
residual distortion is the modulus of the residual distortion vector
|R|2 ≈

∑
k S(k) · S(k) µ2

k . The required scalar product amplitudes
are also given in Table 1. Similar to ε, the error of |R|2 scales like
"|R|2 ≈ 2(

∑
k[S(k) · S(k)µk]2"µ2

k)1/2. Both ε and |R|2 can be used
to estimate how much information is left in the residual when the
mode hierarchy is truncated at some fixed value k. If the signal-to-
noise ratio is larger than unity, more modes should be added.

4 PARAMETER ESTIMATION USING
E N E R G Y- R E L E A S E E I G E N M O D E S

In the previous sections, we created a set of orthogonal signal modes
that can be constrained by future SD experiments and used to re-
cover part of the energy-release history in a model-independent
way. We derived a set of energy-release eigenmodes that describes
the residual distortion signal that cannot be expressed as simple
superposition of temperature shift, µ- and y-distortion.

As explained above, nothing can be learned from the change in the
value of the CMB temperature caused by energy release. Thus, the
useful part of the primordial signal is determined by the parameters
pprim = {y, µ, µk}. The number of residual modes, µk, that can
be constrained depends on the typical amplitude of the distortion
and instrumental aspects. To the primordial signal, we need to add
yre to describe the late-time y-distortion, and "T to parametrize the
uncertainty in the exact value of the CMB monopole. The total
distortion signal therefore takes the form

"Ii = "I T
i + "I

y
i + "I

µ
i + "IR

i

"I T
i = Gi,T"T [1 + "T ] + Yi,SZ "2

T /2

"I
y
i = Yi,SZ (yre + y)

"I
µ
i = Mi µ, (11)

where Gi,T, Yi,SZ and Mi are the average signals of GT, YSZ and M
over the ith channel. The dependence of "I T

i on "T is quadratic, but
since "T ( 1, the problem remains quasi-linear, with the second-
order term leading to a negligible correction to the covariance
matrix, once expanded around the best-fitting value for "T. For
estimates one can thus set "I T

i ≈ Gi,T "T without loss of gener-
ality. This defines the parameter set p = {"T, y∗, µ, µk}, where
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Figure 4. First few eigenmodes E(k) and S(k) for PIXIE-type settings
(νmin = 30 GHz, νmax = 1000 GHz and "νs = 15 GHz). In the mode
construction, we assumed that energy release only occurred at 103 ≤ z ≤
5 × 106.

amplitudes are positive for Q = const > 0. The first energy-release
mode, E(1), has a maximum at z # 5.3 × 104, while higher modes
show more variability, extending both towards lower and higher
redshift. The corresponding distortion modes, S(k), show increasing
variability and decreasing overall amplitude with growing k. They
capture all corrections to the simple superposition of pure µ- and
y-distortion, needed to morph between these two extreme cases.

In Table 1, we summarize the projected errors for the first six
mode amplitudes. The errors, "µk, increase rapidly with mode
number (this is how we order the eigenmodes), meaning that for a
fixed amplitude of the distortion signal the information in the higher
modes can only be accessed at higher spectral sensitivity.

Knowing the signal eigenvectors, S(k), we can directly relate
the mode amplitudes, µk, to the fractional energy, ε, stored by
the residual distortion. It thus allows us to estimate how much
information is contained by the residual distortion. Since integration
over frequency can be written as a sum over all frequency bins, with
εk = 4

∑
i S

(k)
i /

∑
i Gi,T we have ε ≈

∑
kεk µk. The first six εk are

given in Table 1. The signal modes, S(1) and S(2), contribute most to
the energy, while energy release into the higher modes is suppressed
by an order of magnitude or more.

Even if individual mode amplitudes cannot be separated, the
total energy density contained in the residual distortion might

Table 1. Forecasted 1σ errors of the first six eigenmode amplitudes, E(k).
We also give εk = 4

∑
i S

(k)
i /

∑
i Gi,T , and the scalar products S(k) · S(k)

(in units of [10−18 W m−2 Hz−1 sr−1]2). The fraction of energy release to
the residual distortion and its uncertainty are given by ε ≈

∑
kεk µk and

"ε ≈ (
∑

k ε2
k"µ2

k)1/2, respectively. For the mode construction we used
PIXIE-settings ({νmin, νmax, "νs} = {30, 1000, 15}GHz and channel
sensitivity "Ic = 5 × 10−26 W m−2 Hz−1 sr−1). The errors roughly scale as
"µk ∝ "Ic/

√
"νs.

k "µk "µk/"µ1 εk S(k) · S(k)

1 1.48 × 10−7 1 −6.98 × 10−3 1.15 × 10−1

2 7.61 × 10−7 5.14 2.12 × 10−3 4.32 × 10−3

3 3.61 × 10−6 24.4 −3.71 × 10−4 1.92 × 10−4

4 1.74 × 10−5 1.18 × 102 8.29 × 10−5 8.29 × 10−6

5 8.52 × 10−5 5.76 × 102 −1.55 × 10−5 3.45 × 10−7

6 4.24 × 10−4 2.86 × 103 2.75 × 10−6 1.39 × 10−8

still be detectable. The error of ε can be found using Gaussian
error propagation, "ε ≈ (

∑
k ε2

k"µ2
k)1/2 # {3.68 × 10−9, 3.53 ×

10−9, 3.14 × 10−9, 2.84 × 10−9}, where the numbers show, respec-
tively, uncertainties when all modes, all but µ1, all but µk with k ≤
2 and all but µk with k ≤ 3 are included. Another estimator for the
residual distortion is the modulus of the residual distortion vector
|R|2 ≈

∑
k S(k) · S(k) µ2

k . The required scalar product amplitudes
are also given in Table 1. Similar to ε, the error of |R|2 scales like
"|R|2 ≈ 2(

∑
k[S(k) · S(k)µk]2"µ2

k)1/2. Both ε and |R|2 can be used
to estimate how much information is left in the residual when the
mode hierarchy is truncated at some fixed value k. If the signal-to-
noise ratio is larger than unity, more modes should be added.

4 PARAMETER ESTIMATION USING
E N E R G Y- R E L E A S E E I G E N M O D E S

In the previous sections, we created a set of orthogonal signal modes
that can be constrained by future SD experiments and used to re-
cover part of the energy-release history in a model-independent
way. We derived a set of energy-release eigenmodes that describes
the residual distortion signal that cannot be expressed as simple
superposition of temperature shift, µ- and y-distortion.

As explained above, nothing can be learned from the change in the
value of the CMB temperature caused by energy release. Thus, the
useful part of the primordial signal is determined by the parameters
pprim = {y, µ, µk}. The number of residual modes, µk, that can
be constrained depends on the typical amplitude of the distortion
and instrumental aspects. To the primordial signal, we need to add
yre to describe the late-time y-distortion, and "T to parametrize the
uncertainty in the exact value of the CMB monopole. The total
distortion signal therefore takes the form

"Ii = "I T
i + "I

y
i + "I

µ
i + "IR

i

"I T
i = Gi,T"T [1 + "T ] + Yi,SZ "2

T /2

"I
y
i = Yi,SZ (yre + y)

"I
µ
i = Mi µ, (11)

where Gi,T, Yi,SZ and Mi are the average signals of GT, YSZ and M
over the ith channel. The dependence of "I T

i on "T is quadratic, but
since "T ( 1, the problem remains quasi-linear, with the second-
order term leading to a negligible correction to the covariance
matrix, once expanded around the best-fitting value for "T. For
estimates one can thus set "I T

i ≈ Gi,T "T without loss of gener-
ality. This defines the parameter set p = {"T, y∗, µ, µk}, where
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y∗ = yre + y. Note that because of the low-z contribution, it is
hard to disentangle the primordial components of !T and y∗. The
primordial energy release, therefore, is best constrained with µ and
the µks.

4.1 Errors of !T, y∗ and µ

As a first step, we estimate the errors on the values of !T, y∗ and µ

assuming PIXIE-like settings. The relevant projections to construct
the Fisher matrix, analogous to equation (9), are

GT · (GT, Y SZ, M) = (2.46 × 103, 1.23 × 103, 4.60 × 102)

Y SZ · (Y SZ, M) = (5.37 × 103, 5.62 × 102)

M · M = 1.23 × 102, (12)

all in units of [10−18 W m−2 Hz−1 sr−1]2. Defining α = !Ic/[5 ×
10−26 W m−2 Hz−1 sr−1], we expect errors !!T ≈ 2.34 × 10−9 α (or
!T % 6.4 α nK), !y∗ ≈ 1.20 × 10−9 α and !µ ≈ 1.37 × 10−8 α

at 1σ level. These numbers are close to the estimates given by
Kogut et al. (2011) for the expected 1σ errors on y- and µ-
parameter, and show that a huge improvement over COBE/FIRAS
(!y∗ ≈ 7.5 × 10−6 and !µ ≈ 4.5 × 10−5 at 1σ level) can be ex-
pected. Adding the residual distortion eigenmodes to the parameter
estimation should not affect these estimates as they are constructed
to be orthogonal to the signals from !T, y and µ.

4.2 Simple parameter estimation example: proof of concept

To illustrate how the modes can be used to constrain the energy-
release history, let us consider Q(z) ≡ 5 × 10−8 in the redshift in-
terval 103 < z < 5 × 106. Using equation (6), this implies a total
energy release of !ργ /ργ = 4.26 × 10−7, with !ργ /ργ |dist = 4y +
µ/α + ε ≈ 4.00 × 10−7 going into distortions. We also expect
y % 4.85 × 10−8, µ % 2.93 × 10−7 and !prim % −8.46 × 10−9

for the primordial distortion. The first three mode amplitudes are
µ1 = 5.14 × 10−7, µ2 = 4.34 × 10−9, and µ3 = 3.38 × 10−7,
and thus µ1 should be detectable with a PIXIE-like experiment (see
the !µk in Table 1). For illustration, we furthermore assume that
the value of the monopole temperature is T0 = 2.726 K(1 + !f)
with !f = 1.2 × 10−4, and that a low redshift y-distortion with
yre = 4 × 10−7 is introduced.

We implemented a simple Markov Chain Monte Carlo (MCMC)
simulation of this problem using COSMOTHERM. To compute the pri-
mordial distortion signal we used equation (3), i.e. we did not de-
compose the signal explicitly, but included all contributions to the
distortion. We then added a temperature shift with !f = 1.2 × 10−4

and a y-distortion with yre = 4 × 10−7 to the input signal, and anal-
ysed it using the model, equation (11), with only µ1 included. Fig. 5
shows the results of this analysis. All the recovered values and er-
rors agree with the predictions. We can furthermore see that µ1 does
not correlate to any of the standard parameters ps = {!T, y∗, µ}, as
ensured by construction. The standard parameters are slightly cor-
related with each other, since in the analysis we used Gi,T, Yi,SZ and
Mi which themselves are not orthogonal. Alternatively, one could
use the orthogonal basis Gi,T,⊥, Yi,SZ and Mi, ⊥ (see Appendix A),
but since the interpretation of the results is fairly simple we pre-
ferred to keep the well-known parametrization. We confirmed that
adding more distortion eigenmodes to the estimation problem does
not alter any of the constraints on the other parameters. This demon-
strates that the eigenmodes constructed above can be directly used
for model-independent estimations and compression of the useful
information provided by the CMB spectrum.

Figure 5. Analysis of energy-release history with Q(z) = 5 × 10−8 in the
redshift interval 103 < z < 5 × 106 using signal eigenmode, S(1) (Fig. 4). We
assumed {νmin, νmax, !νs} = {30, 1000, 15}GHz and channel sensitivity
!Ic = 5 × 10−26 W m−2 Hz−1 sr−1. The dashed blue lines and red crosses
indicate the expected recovered values. Contours are for 68 per cent and
95 per cent confidence levels. All errors and recovered values agree with the
Fisher estimates. We shifted !T by !i = !f + !prim with !f = 1.2 × 10−4

and !prim % −8.46 × 10−9, where !prim is the primordial contribution.

4.3 Partial recovery of the energy-release history

The energy-release eigenmodes define an ortho-normal basis to de-
scribe the energy-release history over the considered redshift range.
In the limit of extremely high sensitivity and very fine spectral cov-
erage (≡ all modes can be measured) a complete reconstruction
of the input history would be possible. Since realistically only a
finite number of energy-release eigenmodes (two or three really)
might be measured, this means that a partial but model-independent
reconstruction of the input energy-release history can be derived.

Considering the simple example, Q = 5 × 10−8, in Fig. 6 we
show the comparison of input history and the corresponding

Figure 6. Partial recovery of the input energy-release history, Q =
5 × 10−8.

MNRAS 438, 2065–2082 (2014)

 at Johns H
opkins U

niversity on A
pril 28, 2014

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

Partial recovery of energy release history

JC & Jeong, 2013

• ‘wiggly’ recovery of 
input thermal history 
possible

• redshift resolution 
depends on 
sensitivity and 
distortion amplitude



10 Chluba

Figure 5. Posteriors for di↵erent combinations of data sets. In both panel, the red lines indicate the Planck TT,TE,EE+lowP+PIXIE (⌘ basically like without
PIXIE) constraints for the extended model with running. The black contours show the Planck+3.4⇥PIXIE (left panel) and Planck+10⇥PIXIE (right panel)
constraints. Vertical lines indicate the fiducial values for each data set. Adding spectral distortions helps diminishing the uncertainty in the values of nrun by a
factor of ' 3 for Planck+10⇥PIXIE.

Table 3. Improvement of constraints on the small-scale power spectrum by combining Planck with a PIXIE-like experiment for di↵erent channel sensitivities.
For the spectral distortion parameters, we also show the e↵ective significance of the signal with respect to the spectral distortion measurement. The distortion
amplitude µ2 remained undetectable (. 0.02�) with distortions alone and thus remains a derived parameter even for 10⇥PIXIE sensitivity. In the last column
we show the Planck ⇤CDM values for comparison.

Parameter Planck alone +PIXIE +3.4⇥PIXIE +10⇥PIXIE Planck ⇤CDM values

ln(1010As) 3.103+0.036
�0.036 3.103+0.037

�0.037 3.101+0.037
�0.037 3.100+0.036

�0.036 3.094+0.034
�0.034

nS 0.9639+0.0050
�0.0050 0.9640+0.0050

�0.0050 0.9647+0.0049
�0.0048 0.9653+0.0048

�0.0047 0.9645+0.0049
�0.0049

103nrun �5.7+7.1
�7.1 �5.2+6.9

�7.2 �2.8+4.6
�5.1 �0.81+2.4

�2.5 0

µ/10�8 1.59+0.54
�0.40 1.62+0.55

�0.42 (1.2�) 1.81+0.36
�0.33 (4.5�) 1.993+0.053

�0.053 (15�) 2.00+0.14
�0.13

µ1/10�8 3.39+0.58
�0.49 3.43+0.58

�0.52 (0.23�) 3.63+0.38
�0.38 (0.83�) 3.819+0.044

�0.044 (2.6�) 3.81+0.22
�0.20

µ2/10�9 �2.79+2.05
�1.53 �2.69+2.08

�1.61 (0�) �2.02+1.42
�1.31 (0�) �1.28+0.43

�0.43 (0�) �1.19+0.22
�0.20

2012b,a), or an enhanced cooling process through the coupling of
another non-relativistic particle to the CMB is required (e.g., Ali-
Haı̈moud et al. 2015). Conversely, if the µ-distortion signal is much
larger than expected, then the small-scale power spectrum could be
strongly enhanced, possibly containing a localized feature (Chluba
et al. 2012a, 2015b), or another heating mechanism (e.g., a decay-
ing particle Hu & Silk 1993b; Chluba & Sunyaev 2012; Chluba
2013a; Dimastrogiovanni et al. 2015) has to be at work. Thus, spec-
tral distortions provide a powerful new avenue for testing ⇤CDM
cosmology without purely relying on an extrapolation from large
(k . 1 Mpc�1) to small scales (1 Mpc�1 . k . few ⇥ 104 Mpc�1).

4.1 Importance of refined foreground modeling

It is clear that for the success of spectral distortion measurements,
the name of the game will be foregrounds. The biggest challenge
is that, aside from the large y-distortion introduced at late times,
all known foregrounds are orders of magnitudes larger than the pri-

mordial signals. This means that tiny e↵ects related to the spectral
and spatial variation of the foreground signals need to be taken into
account. Ways to tackle this problem are i) to measure the spec-
trum in as many individual channels as possible, ideally with high
angular resolution and sensitivity, and ii) to exploit synergies with
other future or existing datasets to inform the modeling of aver-
aged signals. In both cases, refined modeling of the foregrounds
with extended parametrizations are required to capture the e↵ects
of averaging of spatially varying components across the sky.

An FTS concept like PIXIE pushes us into a qualitatively dif-
ferent regime in terms of its spectral capabilities, where instead of
playing with a few channels we have a few hundred at our disposal.
Most of these channels are at high frequencies (⌫ & 1 THz), above
the CMB bands and can be used to subtract the dust and cosmic
infrared background components at lower frequencies (Kogut et al.
2011). Simple, commonly used two-temperature modified black-
body spectra (e.g., Finkbeiner et al. 1999) will not provide su�-
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Figure 5. Posteriors for di↵erent combinations of data sets. In both panel, the red lines indicate the Planck TT,TE,EE+lowP+PIXIE (⌘ basically like without
PIXIE) constraints for the extended model with running. The black contours show the Planck+3.4⇥PIXIE (left panel) and Planck+10⇥PIXIE (right panel)
constraints. Vertical lines indicate the fiducial values for each data set. Adding spectral distortions helps diminishing the uncertainty in the values of nrun by a
factor of ' 3 for Planck+10⇥PIXIE.

Table 3. Improvement of constraints on the small-scale power spectrum by combining Planck with a PIXIE-like experiment for di↵erent channel sensitivities.
For the spectral distortion parameters, we also show the e↵ective significance of the signal with respect to the spectral distortion measurement. The distortion
amplitude µ2 remained undetectable (. 0.02�) with distortions alone and thus remains a derived parameter even for 10⇥PIXIE sensitivity. In the last column
we show the Planck ⇤CDM values for comparison.

Parameter Planck alone +PIXIE +3.4⇥PIXIE +10⇥PIXIE Planck ⇤CDM values

ln(1010As) 3.103+0.036
�0.036 3.103+0.037

�0.037 3.101+0.037
�0.037 3.100+0.036

�0.036 3.094+0.034
�0.034

nS 0.9639+0.0050
�0.0050 0.9640+0.0050

�0.0050 0.9647+0.0049
�0.0048 0.9653+0.0048

�0.0047 0.9645+0.0049
�0.0049

103nrun �5.7+7.1
�7.1 �5.2+6.9

�7.2 �2.8+4.6
�5.1 �0.81+2.4

�2.5 0

µ/10�8 1.59+0.54
�0.40 1.62+0.55

�0.42 (1.2�) 1.81+0.36
�0.33 (4.5�) 1.993+0.053

�0.053 (15�) 2.00+0.14
�0.13

µ1/10�8 3.39+0.58
�0.49 3.43+0.58

�0.52 (0.23�) 3.63+0.38
�0.38 (0.83�) 3.819+0.044

�0.044 (2.6�) 3.81+0.22
�0.20

µ2/10�9 �2.79+2.05
�1.53 �2.69+2.08

�1.61 (0�) �2.02+1.42
�1.31 (0�) �1.28+0.43

�0.43 (0�) �1.19+0.22
�0.20

2012b,a), or an enhanced cooling process through the coupling of
another non-relativistic particle to the CMB is required (e.g., Ali-
Haı̈moud et al. 2015). Conversely, if the µ-distortion signal is much
larger than expected, then the small-scale power spectrum could be
strongly enhanced, possibly containing a localized feature (Chluba
et al. 2012a, 2015b), or another heating mechanism (e.g., a decay-
ing particle Hu & Silk 1993b; Chluba & Sunyaev 2012; Chluba
2013a; Dimastrogiovanni et al. 2015) has to be at work. Thus, spec-
tral distortions provide a powerful new avenue for testing ⇤CDM
cosmology without purely relying on an extrapolation from large
(k . 1 Mpc�1) to small scales (1 Mpc�1 . k . few ⇥ 104 Mpc�1).

4.1 Importance of refined foreground modeling

It is clear that for the success of spectral distortion measurements,
the name of the game will be foregrounds. The biggest challenge
is that, aside from the large y-distortion introduced at late times,
all known foregrounds are orders of magnitudes larger than the pri-

mordial signals. This means that tiny e↵ects related to the spectral
and spatial variation of the foreground signals need to be taken into
account. Ways to tackle this problem are i) to measure the spec-
trum in as many individual channels as possible, ideally with high
angular resolution and sensitivity, and ii) to exploit synergies with
other future or existing datasets to inform the modeling of aver-
aged signals. In both cases, refined modeling of the foregrounds
with extended parametrizations are required to capture the e↵ects
of averaging of spatially varying components across the sky.

An FTS concept like PIXIE pushes us into a qualitatively dif-
ferent regime in terms of its spectral capabilities, where instead of
playing with a few channels we have a few hundred at our disposal.
Most of these channels are at high frequencies (⌫ & 1 THz), above
the CMB bands and can be used to subtract the dust and cosmic
infrared background components at lower frequencies (Kogut et al.
2011). Simple, commonly used two-temperature modified black-
body spectra (e.g., Finkbeiner et al. 1999) will not provide su�-
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Figure 5. Posteriors for di↵erent combinations of data sets. In both panel, the red lines indicate the Planck TT,TE,EE+lowP+PIXIE (⌘ basically like without
PIXIE) constraints for the extended model with running. The black contours show the Planck+3.4⇥PIXIE (left panel) and Planck+10⇥PIXIE (right panel)
constraints. Vertical lines indicate the fiducial values for each data set. Adding spectral distortions helps diminishing the uncertainty in the values of nrun by a
factor of ' 3 for Planck+10⇥PIXIE.

Table 3. Improvement of constraints on the small-scale power spectrum by combining Planck with a PIXIE-like experiment for di↵erent channel sensitivities.
For the spectral distortion parameters, we also show the e↵ective significance of the signal with respect to the spectral distortion measurement. The distortion
amplitude µ2 remained undetectable (. 0.02�) with distortions alone and thus remains a derived parameter even for 10⇥PIXIE sensitivity. In the last column
we show the Planck ⇤CDM values for comparison.

Parameter Planck alone +PIXIE +3.4⇥PIXIE +10⇥PIXIE Planck ⇤CDM values

ln(1010As) 3.103+0.036
�0.036 3.103+0.037

�0.037 3.101+0.037
�0.037 3.100+0.036

�0.036 3.094+0.034
�0.034

nS 0.9639+0.0050
�0.0050 0.9640+0.0050

�0.0050 0.9647+0.0049
�0.0048 0.9653+0.0048

�0.0047 0.9645+0.0049
�0.0049

103nrun �5.7+7.1
�7.1 �5.2+6.9

�7.2 �2.8+4.6
�5.1 �0.81+2.4

�2.5 0

µ/10�8 1.59+0.54
�0.40 1.62+0.55

�0.42 (1.2�) 1.81+0.36
�0.33 (4.5�) 1.993+0.053

�0.053 (15�) 2.00+0.14
�0.13

µ1/10�8 3.39+0.58
�0.49 3.43+0.58

�0.52 (0.23�) 3.63+0.38
�0.38 (0.83�) 3.819+0.044

�0.044 (2.6�) 3.81+0.22
�0.20

µ2/10�9 �2.79+2.05
�1.53 �2.69+2.08

�1.61 (0�) �2.02+1.42
�1.31 (0�) �1.28+0.43

�0.43 (0�) �1.19+0.22
�0.20

2012b,a), or an enhanced cooling process through the coupling of
another non-relativistic particle to the CMB is required (e.g., Ali-
Haı̈moud et al. 2015). Conversely, if the µ-distortion signal is much
larger than expected, then the small-scale power spectrum could be
strongly enhanced, possibly containing a localized feature (Chluba
et al. 2012a, 2015b), or another heating mechanism (e.g., a decay-
ing particle Hu & Silk 1993b; Chluba & Sunyaev 2012; Chluba
2013a; Dimastrogiovanni et al. 2015) has to be at work. Thus, spec-
tral distortions provide a powerful new avenue for testing ⇤CDM
cosmology without purely relying on an extrapolation from large
(k . 1 Mpc�1) to small scales (1 Mpc�1 . k . few ⇥ 104 Mpc�1).

4.1 Importance of refined foreground modeling

It is clear that for the success of spectral distortion measurements,
the name of the game will be foregrounds. The biggest challenge
is that, aside from the large y-distortion introduced at late times,
all known foregrounds are orders of magnitudes larger than the pri-

mordial signals. This means that tiny e↵ects related to the spectral
and spatial variation of the foreground signals need to be taken into
account. Ways to tackle this problem are i) to measure the spec-
trum in as many individual channels as possible, ideally with high
angular resolution and sensitivity, and ii) to exploit synergies with
other future or existing datasets to inform the modeling of aver-
aged signals. In both cases, refined modeling of the foregrounds
with extended parametrizations are required to capture the e↵ects
of averaging of spatially varying components across the sky.

An FTS concept like PIXIE pushes us into a qualitatively dif-
ferent regime in terms of its spectral capabilities, where instead of
playing with a few channels we have a few hundred at our disposal.
Most of these channels are at high frequencies (⌫ & 1 THz), above
the CMB bands and can be used to subtract the dust and cosmic
infrared background components at lower frequencies (Kogut et al.
2011). Simple, commonly used two-temperature modified black-
body spectra (e.g., Finkbeiner et al. 1999) will not provide su�-
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Figure 5. Posteriors for di↵erent combinations of data sets. In both panel, the red lines indicate the Planck TT,TE,EE+lowP+PIXIE (⌘ basically like without
PIXIE) constraints for the extended model with running. The black contours show the Planck+3.4⇥PIXIE (left panel) and Planck+10⇥PIXIE (right panel)
constraints. Vertical lines indicate the fiducial values for each data set. Adding spectral distortions helps diminishing the uncertainty in the values of nrun by a
factor of ' 3 for Planck+10⇥PIXIE.

Table 3. Improvement of constraints on the small-scale power spectrum by combining Planck with a PIXIE-like experiment for di↵erent channel sensitivities.
For the spectral distortion parameters, we also show the e↵ective significance of the signal with respect to the spectral distortion measurement. The distortion
amplitude µ2 remained undetectable (. 0.02�) with distortions alone and thus remains a derived parameter even for 10⇥PIXIE sensitivity. In the last column
we show the Planck ⇤CDM values for comparison.

Parameter Planck alone +PIXIE +3.4⇥PIXIE +10⇥PIXIE Planck ⇤CDM values

ln(1010As) 3.103+0.036
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�0.49 3.43+0.58
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�0.38 (0.83�) 3.819+0.044
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�1.61 (0�) �2.02+1.42
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2012b,a), or an enhanced cooling process through the coupling of
another non-relativistic particle to the CMB is required (e.g., Ali-
Haı̈moud et al. 2015). Conversely, if the µ-distortion signal is much
larger than expected, then the small-scale power spectrum could be
strongly enhanced, possibly containing a localized feature (Chluba
et al. 2012a, 2015b), or another heating mechanism (e.g., a decay-
ing particle Hu & Silk 1993b; Chluba & Sunyaev 2012; Chluba
2013a; Dimastrogiovanni et al. 2015) has to be at work. Thus, spec-
tral distortions provide a powerful new avenue for testing ⇤CDM
cosmology without purely relying on an extrapolation from large
(k . 1 Mpc�1) to small scales (1 Mpc�1 . k . few ⇥ 104 Mpc�1).

4.1 Importance of refined foreground modeling

It is clear that for the success of spectral distortion measurements,
the name of the game will be foregrounds. The biggest challenge
is that, aside from the large y-distortion introduced at late times,
all known foregrounds are orders of magnitudes larger than the pri-

mordial signals. This means that tiny e↵ects related to the spectral
and spatial variation of the foreground signals need to be taken into
account. Ways to tackle this problem are i) to measure the spec-
trum in as many individual channels as possible, ideally with high
angular resolution and sensitivity, and ii) to exploit synergies with
other future or existing datasets to inform the modeling of aver-
aged signals. In both cases, refined modeling of the foregrounds
with extended parametrizations are required to capture the e↵ects
of averaging of spatially varying components across the sky.

An FTS concept like PIXIE pushes us into a qualitatively dif-
ferent regime in terms of its spectral capabilities, where instead of
playing with a few channels we have a few hundred at our disposal.
Most of these channels are at high frequencies (⌫ & 1 THz), above
the CMB bands and can be used to subtract the dust and cosmic
infrared background components at lower frequencies (Kogut et al.
2011). Simple, commonly used two-temperature modified black-
body spectra (e.g., Finkbeiner et al. 1999) will not provide su�-
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• CMB spectral distortions would extend our lever arm to k ~ 104 Mpc-1

• very complementary piece of information about early-universe physics

             

e.g., JC, Khatri & Sunyaev, 2012; JC, Erickcek & Ben-Dayan, 2012; JC & Jeong, 2013
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• Ultra-squeezed limit non-Gaussianity (Pajer & Zaldarriaga, 2012; Ganc & Komatsu, 2012)



Dissipation scenario: 1σ-detection limits for PIXIE

JC & Jeong, 2013

Distortion PCA 11

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5
n

S

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

A
ζ(k

0
 =

 4
5

 M
p

c-1
)

µ
µ

1
µ

2
µ

3

n run
 = 0.1

n
run = 0.1

n
run

 = 0.1

n
run

 = 0.1

Figure 10. 1�-detection limits for µ, µ1, µ2, and µ3 caused by dissipation
of small-scale acoustic modes for PIXIE-like settings. We used the standard
parametrization for the power spectrum with amplitude, A⇣ , spectral index,
nS, and running nrun around pivot scale k0 = 45 Mpc�1. The heavy lines are
for nrun = 0, while all other lines are for nrun = {�0.1, 0.1} in each group.
For reference we marked the case nrun = 0.1.

tor & 200 over PIXIE will be necessary, making this application of
spectral distortions very futuristic (see also Chluba 2013a).

The exact shape and amplitude of the small-scale power spec-
trum are, however, unknown, and a large range of viable early-
universe models producing enhanced small-scale power exist (see,
Chluba et al. 2012a, for examples). Observationally, the amplitude
of the small-scale power spectrum is limited to A⇣ . 10�7 � 10�6 at
wavenumber 3 Mpc�1 . k . few ⇥ 104 Mpc�1 (the range that is of
most interest for CMB distortions) using ultra-compact minihalos
(Bringmann et al. 2012; Scott et al. 2012). Although not absolutely
model-independent, this leaves lots of room for non-standard dissi-
pation scenarios.

Shifting the pivot scale to k0 = 45 Mpc�1 (corresponding to
heating around zdiss ' 4.5 ⇥ 105[k/103 Mpc�1]2/3 ' 5.7 ⇥ 104) and
using the standard parameterization for the power spectrum, we can
ask, how large A⇣(k0 = 45 Mpc�1) has to be to obtain a 1�-detection
of µ, µ1, µ2, and µ3, respectively. The results of this exercise are
shown in Fig. 10 for PIXIE settings. Around nS ' 1, detections of
µ are possible for A⇣ & 10�9, while A⇣ & 6 ⇥ 10�9 is necessary
to also have a detection of µ1. In this case two of the three model-
parameters can in principle be constrained independently. To also
access information from µ2 and µ3 one furthermore needs A⇣ &
10�7. In this case we could expect to break the degeneracy between
all three parameters.

These statements can be phrased in another way. Assuming
A⇣ ' 10�9, at least a factor of 5 improvement over PIXIE sensitivity
is needed to allow constraining combinations of two power spec-
trum parameters. To measure all p = {A⇣(k0 = 45 Mpc�1), nS, nrun}
independently an overall factor of ' 200 improvement over PIXIE
sensitivity is required, although in this (very conservative) case the
corresponding constraints would still not be competitive with those
reached at large scales using CMB anisotropy measurements.

We can also ask the question of how well the power spec-
trum parameters can be constrained for di↵erent cases. If only µ is
available, then the corresponding constraints on small-scale power
spectrum parameters remain rather weak, but could still be used to
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Figure 11. Parameter range of µ, µ1, and µ2 for dissipation scenarios. We
assumed PIXIE settings with 5 times its sensitivity, and power spectrum
amplitude A⇣ (k0 = 45 Mpc�1) = 5⇥10�8 (i.e. A ⌘ A⇣/5⇥10�8). The heavy
solid black lines are for nrun = 0, while the thin solid brown lines indicate
nS = const. The other light lines are for nrun = {�0.2,�0.1, 0.1, 0.2}. The
open symbols mark nS in steps �nS = 0.1. The blue symbols with error
bars (tiny in the upper panel) are for nS = {0.5, 1, 1.5, 1.8} and nrun = 0 and
illustrate how the error scales in di↵erent regions of the parameter space.
Measurements in the µ � ⇢1 plane can be used to fix the overall amplitude
of the small-scale power spectrum for a given pair nS and nrun, but no in-
dependent constraint on nS and nrun can be deduced. The constraints on ⇢1
and ⇢2 allow to partially break the remaining degeneracy.

limit the parameters space (e.g., Chluba et al. 2012b,a). If µ and µ1

can be accessed, we can limit the overall amplitude of the power
spectrum for given pairs of nS and nrun. This can be seen from the
upper panel of Fig. 11, where we illustrate the possible parameter
space of µ, ⇢1 / µ1/µ and ⇢2 / µ2/µ in some range of nS and
nrun. For the considered sensitivity, the errors on µ and ⇢1 are very
small, but since the overall amplitude, A⇣ , can be adjusted without
a↵ecting ⇢1, the measurement is not independent of nS and nrun.

If in addition µ2 can be constrained the degeneracy can be bro-
ken. As Fig. 11 (lower panel) indicates, the relative dependence
on nrun seems rather similar in all parts of parameter space: al-
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Figure 5. Resulting µ-parameter from heating due to tensor perturba-
tions. The two groups are for {AT , k0} = {2.4 ⇥ 10�10, 0.002 Mpc�1} and
{2.2 ⇥ 10�10, 0.05 Mpc�1}. We used Eq. (18) to compute the heating rate,
but for the red dashed line we only included modes with k  2⇥104 Mpc�1.
The stars show the result obtained with approximation Eq. (19). For the sim-
plest parametrizations of the primordial tensor power spectrum, the shaded
region is ruled out by BBN/CMB constraints (Smith et al. 2006; Boyle &
Buonanno 2008).

accounts for the e�ciency of thermalization at early times. Correc-
tions to the shape of the spectral distortion caused by dissipation of
tensor perturbations in the µ � y transition era (104 . z . 3 ⇥ 105)
can be included using the Green’s function method of the CosmoTh-
erm

6 software package (Chluba & Sunyaev 2012; Chluba 2013b),
but for the purpose of this work, Eq. (24) is su�cient.

For k0 = 0.05 Mpc, with the approximation Eq. (19) for the
tensor heating rate, we find µ ⇡ {7.3 ⇥ 10�5, 7.8 ⇥ 10�3, 5.8} AT for
nT = {0, 0.5, 1}, respectively. Thus with AT ' 0.1A⇣ ' 2.2 ⇥ 10�10

we have a distortion µ ⇡ {1.6 ⇥ 10�14, 1.7 ⇥ 10�12, 1.3 ⇥ 10�9}. For
nT . 1, this agrees to within ' 10% � 30% with our more detailed
calculation (see Fig. 5). Generally, our numerical results show that
for nearly scale invariant tensor power spectra, the µ-distortion re-
mains six orders of magnitudes smaller than for the dissipation of
adiabatic modes, which for standard curvature power spectrum with
A⇣ = 2.2 ⇥ 10�9 at pivot scale k0 = 0.05 Mpc and nS = 0.96 gives
µ⇣ ' 1.4⇥10�8 (Chluba et al. 2012b). The adiabatic signal is just at
the detection limit of PIXIE (Kogut et al. 2011), showing that a de-
tection of the tensor contribution is very futuristic. For blue power
spectra, the distortion can become comparable to the signal caused
by adiabatic modes. However, in this case constraints on tensors
from CMB and big bang nucleosynthesis (BBN) become impor-
tant (Smith et al. 2006), limiting nT < 0.36 for r ' 0.1 (Boyle &
Buonanno 2008). Overall, the distortion signal from tensors is thus
expected to be much smaller than for adiabatic modes (see Fig. 5).

5.1 Comparing with Ota et al.

Our conclusions from the previous section are in broad agree-
ment with those of Ota et al. (2014). To compare more directly,
we change the power spectrum parameters to k0 = 0.002 Mpc
and AT = 2.4 ⇥ 10�10 and introduce a hard small-scale cuto↵

6 Available at www.Chluba.de/CosmoTherm
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Figure 6. Di↵erential contribution to the µ-distortion from di↵erent scales.
Transfer e↵ects introduce a cuto↵ at very small scales. The dotted vertical
line indicates the position of the cuto↵ used by Ota et al. (2014), while the
dashed-dotted lines are the data taken from their Fig. 2 (and divided by 2 to
convert to r = 0.1). See Sect. 5.1 text for more detailed explanation.

at kcut = 2 ⇥ 104 Mpc�1. Numerically integrating Eq. (13) with
Eq. (24), we find µ ⇡ {1.8 ⇥ 10�14, 6.0 ⇥ 10�9} for nT = {0, 1}.
This is about 10% � 20% smaller than the values reported in their
paper, µOta ⇡ {2.2⇥10�14, 7⇥10�9} for r = 0.1. A part of this di↵er-
ence can be explained by adding the other terms for ` = 2, Eq. (17),
which then gives µ ⇡ {1.9 ⇥ 10�14, 6.3 ⇥ 10�9}, but in particular for
nT = 0, the di↵erence remains comparable to ' 20%.

To understand the remaining di↵erence a little better, in Fig. 6
we show the digitized points (purple, dash-dotted) for dµ/ d ln k
taken from Fig. 2 of Ota et al. (2014) in comparison with our nu-
merical results. For the solid lines we used Eq. (13) for the heating
rate, while the dotted lines were computed with Eq. (18) for the
photon transfer function. For illustration, we also show the result
for dµ/ d ln k, when neglecting any photon transfer e↵ects (dashed
lines), which emphasizes the importance of free streaming e↵ects.
At the largest scales (k ' 0.3 Mpc�1), our curves for dµ/ d ln k prac-
tically coincide, although we find slightly larger contributions at
k . 0.1 Mpc�1. However, at smaller scales the curves of Ota et al.
(2014) are roughly 1.5 times larger than ours. Ota et al. (2014) used
the numerical output from the CLASS code (Lesgourgues 2011;
Blas et al. 2011; Tram & Lesgourgues 2013) to obtain the trans-
fer functions. The e↵ect of neutrino damping was only included
to CLASS recently (version 2.2; private communication, Lesgour-
gues). We find that after neglecting the damping e↵ect of neutrinos
our curves practically agree. Nevertheless, these corrections do not
change any of the main conclusions.

However, we do find that modes at k & 2 ⇥ 104 Mpc�1, which
were neglected by Ota et al. (2014), contribute significantly to
the heating, in particular for blue tensor power spectra. Includ-
ing all modes relevant at smaller scales, k0 = 0.002 Mpc and
AT = 2.4 ⇥ 10�10 we find µ ⇡ {1.9 ⇥ 10�14, 5.3 ⇥ 10�8}. Due to
the logarithmic dependence of the heating rate on the small-scale
cuto↵ [cf., Eq. (19)], for nT = 0 this did not make much of a di↵er-
ence. However, for nT ' 1, the distortion is underestimated roughly
7 times when neglecting modes at k > 2 ⇥ 104 Mpc�1 (see Fig. 5).
This becomes apparent when looking at the di↵erential contribu-
tion to µ as a function of scale (Fig. 6). For nT = 1, even scales
up to k ' 108 Mpc�1 contribute significantly to the value of µ,
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4.4 Energy release in the y-distortion era

For modes entering the horizon during the y-era (z . 104), we
have to include modifications related to the transition from radi-
ation to matter domination around z ' 3 ⇥ 103. Even if gener-
ally y-distortion constraints are harder to interpret because a very
large signal is produced at late times by structure formation and
reionization, it is still interesting to ask how large the tensor con-
tribution to the photon heating is. For modes that enter the hori-
zon in the matter-dominated era (k < keq ' 10�2 Mpc�1), the free
streaming damping from neutrinos can be neglected (they become
dynamically subdominant). In this case, the approximate solution
of the tensor transfer function reads (Watanabe & Komatsu 2006)
h0 ' 3 j2(k⌘)/⌘, with ⌘ = 2c/(Ha) / a�1/2 for matter domination.
The partial heating rate from these large-scale modes thus is

d(Q/⇢�)
dt

������
T,late
⇡ 4

45⌧̇
H2

4

Z keq

0

k2dk
2⇡2 PT (k)Th(k⌘)

Th(x) ⇡ 18 j2
2(x), (20)

where we scaled out the leading term / c2/(a⌘)2 ⇡ H2/4(/ a�3)
of the transfer function of h0. For nT = 0, we can evaluate the
k-space integral, Imat =

R keq

0
k2dk
2⇡2 PT (k)Th(k⌘), numerically. If we

instead use the transfer function for the radiation dominated era,
Th(x) ⇡ 2(k⌘)2 j2

1(k⌘), and compare the results, we find that typi-
cally Imat/Irad ' 0.36 � 0.9. For the heating rates shown in Fig. 4,
we assumed that the transfer function of h0 is given by the one for
radiation domination. Since in the radiation dominated era we have
c2/(a⌘)2 ⇡ H2(/ a�4), in Fig. 4 we overestimated the contributions
from modes with k < keq at least by a factor of Irad/(Imat/4) ' 5.
Since our numerical computations already show that the heating
in the y-era remains very small (see Fig. 4 around z ' 103 � 104;
although not shown, at z . 103 we find the heating rate to drop
sharply), we conclude that the late time heating always remains
small and thus can be neglected.

4.5 Alternative derivation for the tensor heating rate

To check the consistency of our derivations, we can obtain the ex-
pression for the e↵ective heating rate caused by tensors in another
way, starting from the gravitational wave energy density, ⇢gw(z).
The gravitational wave contribution to the energy density of the
Universe can be written as5 (e.g., Boyle & Steinhardt 2008; Watan-
abe & Komatsu 2006)

⇢gw(z) ⇡ ⇢tot

Z kcut

0

k2dk
2⇡2

PT (k)
12

Th(k⌘)
2

e���⌘, (21)

where kcut is a small scale cuto↵ that will be discussed below. The
tensor energy transfer function, Th(k⌘), is given by Eq. (12) and
⇢tot ⇡ ⇢�/(1 � R⌫) denotes the total energy density of the Universe.

It is clear that without any energy exchange between gravity
waves, neutrinos and photons one has ⇢gw / a�4 in the radiation
dominated era. The time derivative a�4d(a4⇢gw)/dt thus describes
the real exchange of energy between di↵erent fluid components:

d(a4⇢gw)
a4 dt

⇡ ⇢tot

Z kcut

0

k2dk
2⇡2

PT (k)
12

d
dt

 Th(k⌘)
2

e���⌘
!
. (22)

The remaining time derivative describes the heating of the neutrino
fluid, / Ṫh, and the heating of the photon fluid, proportional to

d
dt

e���⌘ = �32H2(1 � R⌫)
15⌧̇

e���⌘,

where we used the definition of �� given in Appendix D2. Thus,
the transfer of energy from tensors to the photon field is given by

d(a4⇢gw)
a4 dt

������
�

⇡ ⇢tot

Z kcut

0

k2dk
2⇡2

PT (k)
12

Th(k⌘)
2

d
dt

e���⌘

= �32H2⇢tot(1 � R⌫)
15⌧̇

Z kcut

0

k2dk
2⇡2

PT (k)
12

Th(k⌘)
2

e���⌘

= �4H2

45⌧̇
⇢�

Z kcut

0

k2dk
2⇡2 PT (k)Th(k⌘) e���⌘. (23)

Comparing this with Eq. (12), we can confirm our expression for
the e↵ective heating rate of photons by tensors. For the shear vis-
cosity from photons, transfer e↵ects were neglected, which lead
to a scale-dependent correction of the damping factor, �⇤�(k, ⌘), that
can be deduced from Eq. (13). Also, in principle additional changes
due to modifications of the e↵ective number of relativistic degrees
of freedom can be accounted for, which leads to modulation of the
tensor power relative to the ⇢gw / a�4 scaling, but the basic conclu-
sion does not change.

5 RESULTS FOR µ-DISTORTION FROM TENSORS

Given the heating rate from tensor perturbations, we can estimate
the amplitude of the µ-distortion using (e.g., Hu & Silk 1993)

µ ⇡ 1.4
Z 1

zµ,y

d(Q/⇢�)
dz

������
T

e�(z/zdc)5/2
dz, (24)

with zµ,y ' 5 ⇥ 104 and zdc ' 2 ⇥ 106. Here, J(z) = e�(z/zdc)5/2 gives
a simple approximation of the distortion visibility function, which

5 We obtained this expression from Eq. (23) of Boyle & Steinhardt (2008),
identifying the initial tensor power spectrum as �2

h(k) = k3PT (k)/(2⇡2) and
using k2 |h|2 = |h0 |2 with the transfer function Th to relate the initial power
to later time. We also included the tiny correction to the energy density
caused by dissipation of energy in the photon fluid, Appendix D2, which
energetically is not important for the tensor perturbations but it is the origin
of the heating for photons.
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Figure 5. Resulting µ-parameter from heating due to tensor perturba-
tions. The two groups are for {AT , k0} = {2.4 ⇥ 10�10, 0.002 Mpc�1} and
{2.2 ⇥ 10�10, 0.05 Mpc�1}. We used Eq. (18) to compute the heating rate,
but for the red dashed line we only included modes with k  2⇥104 Mpc�1.
The stars show the result obtained with approximation Eq. (19). For the sim-
plest parametrizations of the primordial tensor power spectrum, the shaded
region is ruled out by BBN/CMB constraints (Smith et al. 2006; Boyle &
Buonanno 2008).

accounts for the e�ciency of thermalization at early times. Correc-
tions to the shape of the spectral distortion caused by dissipation of
tensor perturbations in the µ � y transition era (104 . z . 3 ⇥ 105)
can be included using the Green’s function method of the CosmoTh-
erm

6 software package (Chluba & Sunyaev 2012; Chluba 2013b),
but for the purpose of this work, Eq. (24) is su�cient.

For k0 = 0.05 Mpc, with the approximation Eq. (19) for the
tensor heating rate, we find µ ⇡ {7.3 ⇥ 10�5, 7.8 ⇥ 10�3, 5.8} AT for
nT = {0, 0.5, 1}, respectively. Thus with AT ' 0.1A⇣ ' 2.2 ⇥ 10�10

we have a distortion µ ⇡ {1.6 ⇥ 10�14, 1.7 ⇥ 10�12, 1.3 ⇥ 10�9}. For
nT . 1, this agrees to within ' 10% � 30% with our more detailed
calculation (see Fig. 5). Generally, our numerical results show that
for nearly scale invariant tensor power spectra, the µ-distortion re-
mains six orders of magnitudes smaller than for the dissipation of
adiabatic modes, which for standard curvature power spectrum with
A⇣ = 2.2 ⇥ 10�9 at pivot scale k0 = 0.05 Mpc and nS = 0.96 gives
µ⇣ ' 1.4⇥10�8 (Chluba et al. 2012b). The adiabatic signal is just at
the detection limit of PIXIE (Kogut et al. 2011), showing that a de-
tection of the tensor contribution is very futuristic. For blue power
spectra, the distortion can become comparable to the signal caused
by adiabatic modes. However, in this case constraints on tensors
from CMB and big bang nucleosynthesis (BBN) become impor-
tant (Smith et al. 2006), limiting nT < 0.36 for r ' 0.1 (Boyle &
Buonanno 2008). Overall, the distortion signal from tensors is thus
expected to be much smaller than for adiabatic modes (see Fig. 5).

5.1 Comparing with Ota et al.

Our conclusions from the previous section are in broad agree-
ment with those of Ota et al. (2014). To compare more directly,
we change the power spectrum parameters to k0 = 0.002 Mpc
and AT = 2.4 ⇥ 10�10 and introduce a hard small-scale cuto↵
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at kcut = 2 ⇥ 104 Mpc�1. Numerically integrating Eq. (13) with
Eq. (24), we find µ ⇡ {1.8 ⇥ 10�14, 6.0 ⇥ 10�9} for nT = {0, 1}.
This is about 10% � 20% smaller than the values reported in their
paper, µOta ⇡ {2.2⇥10�14, 7⇥10�9} for r = 0.1. A part of this di↵er-
ence can be explained by adding the other terms for ` = 2, Eq. (17),
which then gives µ ⇡ {1.9 ⇥ 10�14, 6.3 ⇥ 10�9}, but in particular for
nT = 0, the di↵erence remains comparable to ' 20%.

To understand the remaining di↵erence a little better, in Fig. 6
we show the digitized points (purple, dash-dotted) for dµ/ d ln k
taken from Fig. 2 of Ota et al. (2014) in comparison with our nu-
merical results. For the solid lines we used Eq. (13) for the heating
rate, while the dotted lines were computed with Eq. (18) for the
photon transfer function. For illustration, we also show the result
for dµ/ d ln k, when neglecting any photon transfer e↵ects (dashed
lines), which emphasizes the importance of free streaming e↵ects.
At the largest scales (k ' 0.3 Mpc�1), our curves for dµ/ d ln k prac-
tically coincide, although we find slightly larger contributions at
k . 0.1 Mpc�1. However, at smaller scales the curves of Ota et al.
(2014) are roughly 1.5 times larger than ours. Ota et al. (2014) used
the numerical output from the CLASS code (Lesgourgues 2011;
Blas et al. 2011; Tram & Lesgourgues 2013) to obtain the trans-
fer functions. The e↵ect of neutrino damping was only included
to CLASS recently (version 2.2; private communication, Lesgour-
gues). We find that after neglecting the damping e↵ect of neutrinos
our curves practically agree. Nevertheless, these corrections do not
change any of the main conclusions.

However, we do find that modes at k & 2 ⇥ 104 Mpc�1, which
were neglected by Ota et al. (2014), contribute significantly to
the heating, in particular for blue tensor power spectra. Includ-
ing all modes relevant at smaller scales, k0 = 0.002 Mpc and
AT = 2.4 ⇥ 10�10 we find µ ⇡ {1.9 ⇥ 10�14, 5.3 ⇥ 10�8}. Due to
the logarithmic dependence of the heating rate on the small-scale
cuto↵ [cf., Eq. (19)], for nT = 0 this did not make much of a di↵er-
ence. However, for nT ' 1, the distortion is underestimated roughly
7 times when neglecting modes at k > 2 ⇥ 104 Mpc�1 (see Fig. 5).
This becomes apparent when looking at the di↵erential contribu-
tion to µ as a function of scale (Fig. 6). For nT = 1, even scales
up to k ' 108 Mpc�1 contribute significantly to the value of µ,
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Figure 7. Comparison of the k-space window functions for adiabatic modes
and tensors. To illustrate the redshift dependence of the heating rate, we
also vary the lower redshift in the integrals, Eq. (26). In each group we used
zmin = {5⇥104(⌘ zµ,y), 3⇥105, 106, 2⇥106}, respectively. We also indicated
the scales that are relevant for the integrated constraints of the tensor power
from the CMB damping tail and BBN measurements (see Smith et al. 2006).

which again emphasizes that for tensors spectral distortions are sen-
sitive to much smaller scales than for scalars. We mention, however,
that even our results need refinements in this regime, since we ne-
glected several e↵ects that modify the tensor power spectrum at
small scales by ' 10% � 30% [see discussion in Sect. 4.1].

5.2 Window function in k-space for scalar and tensor modes

Another way to illustrate the dependence of the distortion signal on
scale is to introduce k-space window functions that determine the
contributions to the µ-distortion from di↵erent modes. A similar
procedure was used by Chluba et al. (2012a) and Chluba & Grin
(2013) to compute the signals for adiabatic and isocurvature modes.
The window function can be directly obtained from the definition of
the e↵ective heating rates, Eq. (8) and (18), and the approximation
for µ, Eq. (24). With this, for scalars and tensors we may write

µi ⇡
Z 1

0

k2dk
2⇡2 Pi(k)Wi(k), (25)

where i = {⇣,T }. The window functions are

W⇣(k) ⇡ 1.4
Z 1

zµ,y

32c2k2

45a2⌧̇
D2 sin2(krs) e�2k2/k2

D e�(z/zdc)5/2
dz (26a)

WT (k) ⇡ 1.4
Z 1

zµ,y

4H2

45⌧̇
Th(k⌘)T⇥(k/⌧0) e��

⇤
�⌘ e�(z/zdc)5/2

dz. (26b)

The results for Wi are shown in Fig. 7. For adiabatic perturba-
tions, most of the contributions to the value of µ arise from scales
few Mpc�1 . k . few ⇥ 104 Mpc�1, while for tensor perturbations
modes with wavenumbers 0.1 Mpc�1 . k . few ⇥ 105 Mpc�1 con-
tribute significantly for nearly scale invariant power spectra. As
explained above, this is due to the fact that for adiabatic modes
the damping by photon di↵usion plays an important role, while for
tensors free streaming is relevant. We can furthermore see that for
adiabatic perturbations, the heating at early times is dominated by
the smallest scales, while for tensors the heating in di↵erent epochs
is less scale dependent.

From Fig. 7, we can also conclude that CMB spectral distor-
tion measurements from COBE/FIRAS for individual modes do
not give any stringent constraint on the tensor power spectrum at
small scales. Directly translating µ . 9 ⇥ 10�5 (95% c.l.) yields
k3PT (k)/(2⇡2) . 10 at 0.45 Mpc�1 . k . 250 Mpc�1 and even
weaker otherwise. For adiabatic modes, we have the much stronger
limit k3P⇣(k)/(2⇡2) . 8 ⇥ 10�5 at 50 Mpc�1 . k . 103 Mpc�1

(see, Chluba et al. 2012a). Even for the integrated power the limit
remains extremely weak, only giving

R
k2 dk PT (k)/(2⇡2) . 1 at

0.45 Mpc�1 . k . 250 Mpc�1. With a PIXIE-like experiment this
could tighten by a factor of ' 103 � 104, providing a constraint
on a part of the tensor power spectrum that is complementary (al-
though weaker) to, e.g., pulsar timing measurements, CMB and fu-
ture gravitational wave observatories (e.g., Smith et al. 2006; Boyle
& Buonanno 2008). In principle, this could help to rule out very
non-standard early-universe scenarios.

6 CONCLUSIONS

We obtained general expressions for the e↵ective heating rate
caused by scalar, vector and tensor perturbations (Sect. 4). These
expressions include previously neglected terms from polarization
states and contributions from higher multipoles, which become no-
ticeable when the tight coupling approximation breaks down. We
explicitly confirmed that only scattering terms are relevant for the
dissipation process of scalar, vector and tensor perturbations (Ap-
pendix B). We furthermore showed that the heating rate due to
tensors can be approximated very well using tight coupling solu-
tions with additional radiative transfer corrections in the quasi-free
streaming regime [see Eq. (13)]. The required photon transfer func-
tions can be derived analytically, as we explain in Appendix E.
These expressions represent both the amplitude and phase of the
photon transfer functions for ` = 2 very well. Using energetics ar-
guments, we also directly linked the photon heating term to the loss
of energy from the tensor perturbations (see Sect. 4.5), confirming
the normalization of our analytic expressions for the heating rate.

Without additional radiative transfer corrections, the heating
rate from tensors is practically scale independent. However, scale
dependence is introduced due to free streaming. This is in stark
contrast to adiabatic perturbations, for which the relevant scales
is related to photon di↵usion. Since the free streaming scales is
smaller than the damping scale for adiabatic modes, spectral distor-
tions probe tensor perturbations to significantly smaller scales. In
particular, we find that for scale invariant tensor power spectrum,
distortions in the µ-era are sourced by tensor perturbations modes
with wavenumbers 0.1 Mpc�1 . k . few ⇥ 105 Mpc�1 (see Fig. 7).
Even smaller scales become important for blue tensor power spec-
tra, since the k-space distortion window function only decays as
a power law ' k�2 (instead of exponentially as for adiabatic per-
turbations). The small-scale contributions were previously ignored,
but can a↵ect the distortion amplitude significantly (see Fig. 5). We
also show that the heating from tensors caused during the y-era re-
mains subdominant (see Sect. 4.4).

For scale independent tensor power spectra with tensor am-
plitude AT = 2.2 ⇥ 10�10 at pivot scale k0 = 0.05 Mpc we find
a distortion µ ' 1.8 ⇥ 10�14, while for AT = 2.4 ⇥ 10�10 at
pivot scale k0 = 0.002 Mpc, we have µ ' 1.9 ⇥ 10�14. This is
some 6 orders of magnitudes smaller than for adiabatic modes
and thus extremely challenging to detect. For very blue tensor
power spectra with nT ' 1 we obtain µ ' 1.9 ⇥ 10�9, while us-
ing AT = 2.4 ⇥ 10�10 at pivot scale k0 = 0.002 Mpc, we find
µ ' 5.3 ⇥ 10�8. This signal is comparable to the one for adiabatic
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and tensors. To illustrate the redshift dependence of the heating rate, we
also vary the lower redshift in the integrals, Eq. (26). In each group we used
zmin = {5⇥104(⌘ zµ,y), 3⇥105, 106, 2⇥106}, respectively. We also indicated
the scales that are relevant for the integrated constraints of the tensor power
from the CMB damping tail and BBN measurements (see Smith et al. 2006).

which again emphasizes that for tensors spectral distortions are sen-
sitive to much smaller scales than for scalars. We mention, however,
that even our results need refinements in this regime, since we ne-
glected several e↵ects that modify the tensor power spectrum at
small scales by ' 10% � 30% [see discussion in Sect. 4.1].

5.2 Window function in k-space for scalar and tensor modes

Another way to illustrate the dependence of the distortion signal on
scale is to introduce k-space window functions that determine the
contributions to the µ-distortion from di↵erent modes. A similar
procedure was used by Chluba et al. (2012a) and Chluba & Grin
(2013) to compute the signals for adiabatic and isocurvature modes.
The window function can be directly obtained from the definition of
the e↵ective heating rates, Eq. (8) and (18), and the approximation
for µ, Eq. (24). With this, for scalars and tensors we may write

µi ⇡
Z 1

0

k2dk
2⇡2 Pi(k)Wi(k), (25)

where i = {⇣,T }. The window functions are
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The results for Wi are shown in Fig. 7. For adiabatic perturba-
tions, most of the contributions to the value of µ arise from scales
few Mpc�1 . k . few ⇥ 104 Mpc�1, while for tensor perturbations
modes with wavenumbers 0.1 Mpc�1 . k . few ⇥ 105 Mpc�1 con-
tribute significantly for nearly scale invariant power spectra. As
explained above, this is due to the fact that for adiabatic modes
the damping by photon di↵usion plays an important role, while for
tensors free streaming is relevant. We can furthermore see that for
adiabatic perturbations, the heating at early times is dominated by
the smallest scales, while for tensors the heating in di↵erent epochs
is less scale dependent.

From Fig. 7, we can also conclude that CMB spectral distor-
tion measurements from COBE/FIRAS for individual modes do
not give any stringent constraint on the tensor power spectrum at
small scales. Directly translating µ . 9 ⇥ 10�5 (95% c.l.) yields
k3PT (k)/(2⇡2) . 10 at 0.45 Mpc�1 . k . 250 Mpc�1 and even
weaker otherwise. For adiabatic modes, we have the much stronger
limit k3P⇣(k)/(2⇡2) . 8 ⇥ 10�5 at 50 Mpc�1 . k . 103 Mpc�1

(see, Chluba et al. 2012a). Even for the integrated power the limit
remains extremely weak, only giving
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k2 dk PT (k)/(2⇡2) . 1 at

0.45 Mpc�1 . k . 250 Mpc�1. With a PIXIE-like experiment this
could tighten by a factor of ' 103 � 104, providing a constraint
on a part of the tensor power spectrum that is complementary (al-
though weaker) to, e.g., pulsar timing measurements, CMB and fu-
ture gravitational wave observatories (e.g., Smith et al. 2006; Boyle
& Buonanno 2008). In principle, this could help to rule out very
non-standard early-universe scenarios.

6 CONCLUSIONS

We obtained general expressions for the e↵ective heating rate
caused by scalar, vector and tensor perturbations (Sect. 4). These
expressions include previously neglected terms from polarization
states and contributions from higher multipoles, which become no-
ticeable when the tight coupling approximation breaks down. We
explicitly confirmed that only scattering terms are relevant for the
dissipation process of scalar, vector and tensor perturbations (Ap-
pendix B). We furthermore showed that the heating rate due to
tensors can be approximated very well using tight coupling solu-
tions with additional radiative transfer corrections in the quasi-free
streaming regime [see Eq. (13)]. The required photon transfer func-
tions can be derived analytically, as we explain in Appendix E.
These expressions represent both the amplitude and phase of the
photon transfer functions for ` = 2 very well. Using energetics ar-
guments, we also directly linked the photon heating term to the loss
of energy from the tensor perturbations (see Sect. 4.5), confirming
the normalization of our analytic expressions for the heating rate.

Without additional radiative transfer corrections, the heating
rate from tensors is practically scale independent. However, scale
dependence is introduced due to free streaming. This is in stark
contrast to adiabatic perturbations, for which the relevant scales
is related to photon di↵usion. Since the free streaming scales is
smaller than the damping scale for adiabatic modes, spectral distor-
tions probe tensor perturbations to significantly smaller scales. In
particular, we find that for scale invariant tensor power spectrum,
distortions in the µ-era are sourced by tensor perturbations modes
with wavenumbers 0.1 Mpc�1 . k . few ⇥ 105 Mpc�1 (see Fig. 7).
Even smaller scales become important for blue tensor power spec-
tra, since the k-space distortion window function only decays as
a power law ' k�2 (instead of exponentially as for adiabatic per-
turbations). The small-scale contributions were previously ignored,
but can a↵ect the distortion amplitude significantly (see Fig. 5). We
also show that the heating from tensors caused during the y-era re-
mains subdominant (see Sect. 4.4).

For scale independent tensor power spectra with tensor am-
plitude AT = 2.2 ⇥ 10�10 at pivot scale k0 = 0.05 Mpc we find
a distortion µ ' 1.8 ⇥ 10�14, while for AT = 2.4 ⇥ 10�10 at
pivot scale k0 = 0.002 Mpc, we have µ ' 1.9 ⇥ 10�14. This is
some 6 orders of magnitudes smaller than for adiabatic modes
and thus extremely challenging to detect. For very blue tensor
power spectra with nT ' 1 we obtain µ ' 1.9 ⇥ 10�9, while us-
ing AT = 2.4 ⇥ 10�10 at pivot scale k0 = 0.002 Mpc, we find
µ ' 5.3 ⇥ 10�8. This signal is comparable to the one for adiabatic
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The cosmological recombination radiation



Simple estimates for hydrogen recombination

Hydrogen recombination:

• per recombined hydrogen atom an energy 
 of ~ 13.6 eV in form of photons is released 

• at z ~ 1100 ! Δε/ε ~ 13.6 eV Nb / (Nγ 2.7kTr) ~ 10-9 -10-8  

! recombination occurs at redshifts z < 104

! At that time the thermalization process doesn’t work anymore!

! There should be some small spectral distortion due to  
additional Ly-α and 2s-1s photons! 

   (Zeldovich, Kurt & Sunyaev, 1968, ZhETF, 55, 278; Peebles, 1968, ApJ, 153, 1) 

! In 1975 Viktor Dubrovich emphasized the possibility to 
observe the recombinational lines from n > 3 and Δn << n!



First recombination computations completed in 1968!

Yakov Zeldovich

Vladimir Kurt 
(UV astronomer)

Rashid Sunyaev Jim Peebles

Moscow Princeton



1 10 100 1000 3000
ν [ GHz ]

10-28

10-27

10-26
I ν

 [J
 m

-2
 s-1

 H
z-1

 sr
-1

 ]

Hydrogen only
Hydrogen and Helium

Spectral distortion reaches level of ~10-7-10-6

relative to CMB

Cosmological Recombination Spectrum

Ly
m

an
-α

B
al

m
er

-α

Pa
sc

he
n-
α

B
ra

ck
et

t-α

transitions among 
highly excited states

Photons released 
at redshift z~1400

Features due to presence 
of Helium in the Universe

Changes in the line shape 
due to presence of Helium 
in the Universe

Shifts in the line positions 
due to presence of Helium 
in the Universe

Rubino-Martin et al. 2006, 2008; Sunyaev & JC, 2009



1 10 100 1000 3000
ν [ GHz ]

10-28

10-27

10-26
I ν

 [J
 m

-2
 s-1

 H
z-1

 sr
-1

 ]

Hydrogen only
Hydrogen and Helium

Spectral distortion reaches level of ~10-7-10-6

relative to CMB

Cosmological Recombination Spectrum

Ly
m

an
-α

B
al

m
er

-α

Pa
sc

he
n-
α

B
ra

ck
et

t-α

transitions among 
highly excited states

Photons released 
at redshift z~1400

Features due to presence 
of Helium in the Universe

Changes in the line shape 
due to presence of Helium 
in the Universe

Shifts in the line positions 
due to presence of Helium 
in the Universe

Rubino-Martin et al. 2006, 2008; Sunyaev & JC, 2009

Another way to do CMB-based cosmology!
Direct probe of recombination physics!



New detailed and fast computation!

JC & Ali-Haimoud, arXiv:1510.03877

0.1 1 10 100 1000
ν  [GHz]

10-30

10-29

10-28

10-27

10-26
Δ
I ν

[J
 m

-2
 s-1

 H
z-1

 sr
-1
]

HI spectrum
HeI spectrum
HeII spectrum
Total distortion
Total distortion /w feedback

Effect of free-free

HeI absorption features

High-ν
distortion 
re-processed



CosmoSpec: fast and accurate computation of the CRR

JC & Ali-Haimoud, arXiv:1510.03877

• Like in old days of CMB anisotropies!

• detailed forecasts and feasibility studies

• non-standard physics (variation of α, 
energy injection etc.)

CosmoSpec will be available here:

www.Chluba.de/CosmoSpec
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• Free electron fraction determines the shape of the 
Thomson visibility function / last scattering surface 
(maximum at z~1100 where Ne / NH ~ 16% )

• Uncertainties in the computation of Ne(z) will affect the 
theoretical predictions for the CMB power spectra

• This will bias the inferred values of the cosmological 
parameters

• Experimental goal of 0.1% - 1% requires 0.1% - 1% 
understanding of Ne(z) at z~1100

• Errors in Ne(z) in particular compromise our ability to 
measure ns (→ inflation)

• ,Getting 1016 GeV physics right means we have to 
understand eV physics with high precision’ (quote D. Scott)



Evolution of the HI Lyman-series distortion

JC & Thomas, MNRAS, 2010

 Ly α  Ly β Ly γ

Computation includes all important radiative 
transfer processes (e.g. photon diffusion; 
two-photon processes; Raman-scattering) 
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This is where it 
matters most!
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• change in ‘tilt’ of CMB power 
spectra ↔ width of visibility 
function ↔ ns & Ωbh2

• ‘wiggles’  ↔ change in 
position of last scattering 
surface ↔ Ωbh2

Shaw & JC, MNRAS, 2011



Planck Collaboration, 2015, paper XX

Importance of recombination for inflation constraints

• Analysis uses refined recombination model (CosmoRec/HyRec)



Planck Collaboration, 2015, paper XX

Importance of recombination for inflation constraints

• Analysis uses refined recombination model (CosmoRec/HyRec)

Without improved recombination 
modules people would be talking 
about different inflation models!
(e.g., Shaw & JC, 2011)



0.0216 0.0224 0.0232

Wbh2

0.108 0.112 0.116

Wch2

0.0216 0.0224 0.0232

0.108

0.112

0.116

68 70 72

H0

0.0216 0.0224 0.0232

68

70

72

0.108 0.112 0.116

68

70

72

0.07 0.08 0.09 0.10

t

0.0216 0.0224 0.0232
0.07

0.08

0.09

0.10

0.108 0.112 0.116
0.07

0.08

0.09

0.10

68 70 72
0.07

0.08

0.09

0.10

0.945 0.960 0.975

ns

0.0216 0.0224 0.0232

0.945

0.960

0.975

0.108 0.112 0.116

0.945

0.960

0.975

68 70 72

0.945

0.960

0.975

0.07 0.08 0.09 0.10

0.945

0.960

0.975

3.000 3.025 3.050 3.075

log(1010As)

0.0216 0.0224 0.0232
3.000

3.025

3.050

3.075

0.108 0.112 0.116
3.000

3.025

3.050

3.075

68 70 72
3.000

3.025

3.050

3.075

0.07 0.08 0.09 0.10
3.000

3.025

3.050

3.075

0.945 0.960 0.975
3.000

3.025

3.050

3.075

CosmoRec
Recfast++
Recfast++ (correction factor)

Importance of recombination

- 2.1 σ | - 2.8 x 10-4

Planck 143GHz channel forecast

-0.8 σ | - 0.5

-3.2 σ | - 0.012

-1.1 σ | - 0.01

Understanding the 
recombination history is crucial 
for understanding the inflation!

0.0216 0.0224 0.0232

Wbh2

0.108 0.112 0.116

Wch2

0.0216 0.0224 0.0232

0.108

0.112

0.116

68 70 72

H0

0.0216 0.0224 0.0232

68

70

72

0.108 0.112 0.116

68

70

72

0.07 0.08 0.09 0.10

t

0.0216 0.0224 0.0232
0.07

0.08

0.09

0.10

0.108 0.112 0.116
0.07

0.08

0.09

0.10

68 70 72
0.07

0.08

0.09

0.10

0.945 0.960 0.975

ns

0.0216 0.0224 0.0232

0.945

0.960

0.975

0.108 0.112 0.116

0.945

0.960

0.975

68 70 72

0.945

0.960

0.975

0.07 0.08 0.09 0.10

0.945

0.960

0.975

3.000 3.025 3.050 3.075

log(1010As)

0.0216 0.0224 0.0232
3.000

3.025

3.050

3.075

0.108 0.112 0.116
3.000

3.025

3.050

3.075

68 70 72
3.000

3.025

3.050

3.075

0.07 0.08 0.09 0.10
3.000

3.025

3.050

3.075

0.945 0.960 0.975
3.000

3.025

3.050

3.075

CosmoRec
Recfast++
Recfast++ (correction factor)

Shaw & JC, 2011, and references therein



Biases as they would have been for Planck

- 1.8 σ | - 2.4 x 10-4

-0.5 σ | - 0.24

-2.6 σ | - 0.010

RECFAST (original) ⟺ CosmoRec

• Biases a little less 
significant with real 
Planck data

• absolute biases 
very similar

• In particular ns 
would be biased 
significantly

Planck Collaboration, XIII 2015⌦bh
2 ⌦ch

2 H0 ⌧ ns

ln(1010As)
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Planck TT,TE,EE + lowP + ext



Average CMB spectral distortions
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Average CMB spectral distortions
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Factor of ~ 10 
needed to detect 
recombination 
lines...
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Dark matter annihilations / decays

JC, 2009, arXiv:0910.3663
•  Additional photons at all frequencies
•  Broadening of spectral features

•  Shifts in the positions



CMB spectral distortions after single energy release
25 shell HI and HeII bb&fb spectra: dependence on y

JC & Sunyaev, 2008, astro-ph/0803.3584

Hydrogen Helium +
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CMB spectral distortions after single energy release
25 shell HI and HeII bb&fb spectra: dependence on y

# Large increase in the total amplitude of the distortions with value of y!

# Strong emission-absorption feature in the Wien-part of CMB (absent for y=0!!!)

# HeII contribution to the pre-recombinational emission as strong as the one from 
Hydrogen alone !

JC & Sunyaev, 2008, astro-ph/0803.3584

Hydrogen Helium +



CMB spectral distortions after single energy release
25 shell HI and HeII bb&fb spectra: dependence on z

# Large increase in the total amplitude of the distortions with injection redshift!

# Number of spectral features depends on injection redshift!

# Emission-Absorption feature increases ~2 for energy injection z ⇒11000

JC & Sunyaev, 2008, astro-ph/0803.3584

Hydrogen and Helium +

Value allowed by Cobe/Firas
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Annihilating/decaying (dark matter) particles 



Why is this interesting?

• A priori no specific particle in mind

• But: we do not know what dark matter is and where it 
really came from!

• Was dark matter thermally produced or as a decay 
product of some heavy particle?

• is dark matter structureless or does it have internal 
(excited) states?

• sterile neutrinos? moduli? Some other relic particle?

• From the theoretical point of view really no shortage of 
particles to play with...



Why is this interesting?

• A priori no specific particle in mind

• But: we do not know what dark matter is and where it 
really came from!

• Was dark matter thermally produced or as a decay 
product of some heavy particle?

• is dark matter structureless or does it have internal 
(excited) states?

• sterile neutrinos? moduli? Some other relic particle?

• From the theoretical point of view really no shortage of 
particles to play with...

CMB spectral distortions offer a new independent way 
to constrain these kind of models
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Latest Planck limits on annihilation cross section

• AMS/Pamela 
models in tension

• but interpretation 
model-dependent

• Sommerfeld 
enhancement?

• clumping factors?

• annihilation 
channels?
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Fig. 40. 2-dimensional marginal distributions in the pann–ns
plane for Planck TT+lowP (red), EE+lowP (yellow), TE+lowP
(green), and Planck TT,TE,EE+lowP (blue) data combinations.
We also show the constraints obtained using WMAP9 data (light
blue).

We then add pann as an additional parameter to those of the base
⇤CDM cosmology. Table 6 shows the constraints for various
data combinations.

Table 6. Constraints on pann in units of cm3 s�1 GeV�1.

Data combinations pann (95 % upper limits)

TT+lowP . . . . . . . . . . . . . . . . . < 5.7 ⇥ 10�27

EE+lowP . . . . . . . . . . . . . . . . . < 1.4 ⇥ 10�27

TE+lowP . . . . . . . . . . . . . . . . . < 5.9 ⇥ 10�28

TT+lowP+lensing . . . . . . . . . . . < 4.4 ⇥ 10�27

TT,TE,EE+lowP . . . . . . . . . . . . < 4.1 ⇥ 10�28

TT,TE,EE+lowP+lensing . . . . . . < 3.4 ⇥ 10�28

TT,TE,EE+lowP+ext . . . . . . . . . < 3.5 ⇥ 10�28

The constraints on pann from the Planck TT+lowP spec-
tra are about 3 times weaker than the 95 % limit of pann <
2.1 ⇥ 10�27 cm3 s�1 GeV�1 derived from WMAP9, which in-
cludes WMAP polarization data at low multipoles. However, the
Planck T E or E E spectra improve the constraints on pann by
about an order of magnitude compared to those from Planck T T
alone. This is because the main e↵ect of dark matter annihila-
tion is to increase the width of last scattering, leading to a sup-
pression of the amplitude of the peaks both in temperature and
polarization. As a result, the e↵ects of DM annihilation on the
power spectra at high multipole are degenerate with other param-
eters of base ⇤CDM, such as ns and As (Chen & Kamionkowski
2004; Padmanabhan & Finkbeiner 2005). At large angular scales
(` . 200), however, dark matter annihilation can produce an
enhancement in polarization caused by the increased ionization
fraction in the freeze-out tail following recombination. As a re-
sult, large-angle polarization information is crucial in breaking
the degeneracies between parameters, as illustrated in Fig. 40.
The strongest constraints on pann therefore come from the full
Planck temperature and polarization likelihood and there is little
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Fig. 41. Constraints on the self-annihilation cross-section at re-
combination, h�3iz ⇤ , times the e�ciency parameter, fe↵ (Eq. 81).
The blue area shows the parameter space excluded by the Planck
TT,TE,EE+lowP data at 95 % CL. The yellow line indicates the
constraint using WMAP9 data. The dashed green line delineates
the region ultimately accessible by a cosmic variance limited ex-
periment with angular resolution comparable to that of Planck.
The horizontal red band includes the values of the thermal-relic
cross-section multiplied by the appropriate fe↵ for di↵erent DM
annihilation channels. The dark grey circles show the best-fit
DM models for the PAMELA/AMS-02/Fermi cosmic-ray ex-
cesses, as calculated in Cholis & Hooper (2013) (caption of their
figure 6). The light grey stars show the best-fit DM models for
the Fermi Galactic centre gamma-ray excess, as calculated by
Calore et al. (2014) (their tables I, II, and III), with the light
grey area indicating the astrophysical uncertainties on the best-
fit cross-sections.

improvement if other astrophysical data, or Planck lensing, are
added.30

We verified the robustness of the Planck TT,TE,EE+lowP
constraint by also allowing other extensions of ⇤CDM (Ne↵ ,
dns/d ln k, or YP) to vary together with pann. We found that the
constraint is weakened by up to 20 %. Furthermore, we have ver-
ified that we obtain consistent results when relaxing the priors
on the amplitudes of the Galactic dust templates or if we use the
CamSpec likelihood instead of the baseline Plik likelihood.

Figure 41 shows the constraints from WMAP9, Planck
TT,TE,EE+lowP, and a forecast for a cosmic variance limited
experiment with similar angular resolution to Planck31. The hor-
izontal red band includes the values of the thermal-relic cross-
section multiplied by the appropriate fe↵ for di↵erent DM anni-
hilation channels. For example, the upper red line corresponds to
fe↵ = 0.67, which is appropriate for a DM particle of mass m� =
10 GeV annihilating into e+e�, while the lower red line corre-
sponds to fe↵ = 0.13, for a DM particle annihilating into 2⇡+⇡�
through an intermediate mediator (see e.g., Arkani-Hamed et al.
2009). The Planck data exclude at 95 % confidence level a ther-

30It is interesting to note that the constraint derived from Planck
TT,TE,EE+lowP is consistent with the forecast given in Galli et al.
(2009), pann < 3 ⇥ 10�28 cm3 s�1 GeV�1.

31We assumed that the cosmic variance limited experiment would
measure the angular power spectra up to a maximum multipole of
`max = 2500, observing a sky fraction fsky = 0.65.
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TT,TE,EE+lowP+lensing . . . . . . < 3.4 ⇥ 10�28

TT,TE,EE+lowP+ext . . . . . . . . . < 3.5 ⇥ 10�28

The constraints on pann from the Planck TT+lowP spec-
tra are about 3 times weaker than the 95 % limit of pann <
2.1 ⇥ 10�27 cm3 s�1 GeV�1 derived from WMAP9, which in-
cludes WMAP polarization data at low multipoles. However, the
Planck T E or E E spectra improve the constraints on pann by
about an order of magnitude compared to those from Planck T T
alone. This is because the main e↵ect of dark matter annihila-
tion is to increase the width of last scattering, leading to a sup-
pression of the amplitude of the peaks both in temperature and
polarization. As a result, the e↵ects of DM annihilation on the
power spectra at high multipole are degenerate with other param-
eters of base ⇤CDM, such as ns and As (Chen & Kamionkowski
2004; Padmanabhan & Finkbeiner 2005). At large angular scales
(` . 200), however, dark matter annihilation can produce an
enhancement in polarization caused by the increased ionization
fraction in the freeze-out tail following recombination. As a re-
sult, large-angle polarization information is crucial in breaking
the degeneracies between parameters, as illustrated in Fig. 40.
The strongest constraints on pann therefore come from the full
Planck temperature and polarization likelihood and there is little
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Fig. 41. Constraints on the self-annihilation cross-section at re-
combination, h�3iz ⇤ , times the e�ciency parameter, fe↵ (Eq. 81).
The blue area shows the parameter space excluded by the Planck
TT,TE,EE+lowP data at 95 % CL. The yellow line indicates the
constraint using WMAP9 data. The dashed green line delineates
the region ultimately accessible by a cosmic variance limited ex-
periment with angular resolution comparable to that of Planck.
The horizontal red band includes the values of the thermal-relic
cross-section multiplied by the appropriate fe↵ for di↵erent DM
annihilation channels. The dark grey circles show the best-fit
DM models for the PAMELA/AMS-02/Fermi cosmic-ray ex-
cesses, as calculated in Cholis & Hooper (2013) (caption of their
figure 6). The light grey stars show the best-fit DM models for
the Fermi Galactic centre gamma-ray excess, as calculated by
Calore et al. (2014) (their tables I, II, and III), with the light
grey area indicating the astrophysical uncertainties on the best-
fit cross-sections.

improvement if other astrophysical data, or Planck lensing, are
added.30

We verified the robustness of the Planck TT,TE,EE+lowP
constraint by also allowing other extensions of ⇤CDM (Ne↵ ,
dns/d ln k, or YP) to vary together with pann. We found that the
constraint is weakened by up to 20 %. Furthermore, we have ver-
ified that we obtain consistent results when relaxing the priors
on the amplitudes of the Galactic dust templates or if we use the
CamSpec likelihood instead of the baseline Plik likelihood.

Figure 41 shows the constraints from WMAP9, Planck
TT,TE,EE+lowP, and a forecast for a cosmic variance limited
experiment with similar angular resolution to Planck31. The hor-
izontal red band includes the values of the thermal-relic cross-
section multiplied by the appropriate fe↵ for di↵erent DM anni-
hilation channels. For example, the upper red line corresponds to
fe↵ = 0.67, which is appropriate for a DM particle of mass m� =
10 GeV annihilating into e+e�, while the lower red line corre-
sponds to fe↵ = 0.13, for a DM particle annihilating into 2⇡+⇡�
through an intermediate mediator (see e.g., Arkani-Hamed et al.
2009). The Planck data exclude at 95 % confidence level a ther-

30It is interesting to note that the constraint derived from Planck
TT,TE,EE+lowP is consistent with the forecast given in Galli et al.
(2009), pann < 3 ⇥ 10�28 cm3 s�1 GeV�1.

31We assumed that the cosmic variance limited experiment would
measure the angular power spectra up to a maximum multipole of
`max = 2500, observing a sky fraction fsky = 0.65.
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For current constraint only (weak) upper limits from distortion...
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Shape of the distortions depends 
on the particle lifetime!
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Decaying particle scenarios (information in residual)

Distortion constraints 7
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Figure 5. Lifetime e↵ect for di↵erent decaying particle scenarios. The up-
per panel shows the energy release rate for all cases, while the central panel
illustrates the distortion in comparison with a y-distortion of y = 2 ⇥ 10�7.
The lower panel shows the residual distortion after subtracting the best-fit
µ- and y-superposition.

a pure µ-distortion is insensitive to when it was created and thus
does not allow di↵erentiating between scenarios with di↵erent par-
ticle lifetimes at z & few ⇥ 105. Still, a tight upper limit on the
total amount of energy that is release can be placed, constrain-
ing the possible abundance of decaying particles with lifetimes
tX ' 6 ⇥ 106 sec � 3 ⇥ 108 sec.

These statements, however, depend strongly on the sensitiv-
ity of the experiment and on how large the average distortion is.
As explained above, the information about the particle lifetime is
largely encoded in the deviations from a pure superposition of µ and
y-distortion, however, the residual is a correction and thus higher
sensitivity or a larger distortion are needed to make use of that in-
formation. Assuming fX/zX = 1 eV and zX = 2 ⇥ 104, a PIXIE-
type experiment is unable to constrain the lifetime of the particle.
The degeneracy is already broken at twice the sensitivity of PIXIE,
yielding ' 29% error on fX/zX and ' 17% error on zX. This fur-
ther improves to ' 14% error on fX/zX and ' 9% error on zX for
four times the sensitivity of PIXIE. This energy release scenario
corresponds to �⇢�/⇢� ' 6.4 ⇥ 10�7, so that the distortion is com-
parable in amplitude to the y-signal from late times. Assuming that
less energy is liberated by the decaying particle increases the er-
rors (and hence the degeneracy), and conversely, for larger decay
energy the errors diminish. Overall, a PIXIE-type experiment will
provide a pretty good probe for long-lived particles with lifetimes
tX ' 5.8 ⇥ 108 sec � 1.4 ⇥ 1010 sec and fX/zX & 1 eV.

5 DISSIPATION OF SMALL-SCALE ACOUSTIC MODES

The prospect of accurate measurements of the CMB spectrum with
a PIXIE-type experiment spurred renewed interests in how primor-
dial perturbations at small-scales dissipate their energy (Chluba
& Sunyaev 2012; Khatri et al. 2012a; Pajer & Zaldarriaga 2012;
Chluba et al. 2012b; Dent et al. 2012; Ganc & Komatsu 2012;
Chluba et al. 2012a; Powell 2012; Khatri & Sunyaev 2013; Chluba
& Grin 2013). It was shown, that this e↵ect can be used to place
tight limits on the amplitude and shape of the power spectrum at
scales far smaller than what is probed with measurements of the
CMB anisotropies, in principle allowing to discover the distortion
signatures from several classes of early universe models (e.g., see
Chluba et al. 2012a).

Taking a conservative perspective, one can assume that the
power spectrum of curvature perturbations is fully determined by
CMB anisotropy measurements at large scales, implying an ampli-
tude A⇣ ' 2.2 ⇥ 10�9, spectral index nS ' 0.96, and its running
nrun ' �0.02, at pivot scale k0 = 0.05 Mpc�1 (Planck Collaboration
et al. 2013b). This is a significant extrapolation from wavenumbers
k < 1 Mpc�1 all the way to k ' few⇥104 Mpc�1, and it was already
argued that for a PIXIE-type experiment the signal remains just
short of the 1�-detection limit (Chluba & Sunyaev 2012; Chluba
et al. 2012b). Improving the sensitivity a few times will allow a de-
tection of this signal, however, given that the errors on A⇣ , nS, and
nrun from CMB data are now . 1%, to use spectral distortion as
a competitive probe, factors of ' 20 � 50 improvement are neces-
sary3. The strongest dependence of the distortion signal is due to
nrun (see Fig. 6 for illustration), since small changes a↵ect the am-
plitude of the small-scale power spectrum and hence the associated
spectral distortion by a large amount (Khatri et al. 2012a; Chluba

3 See Powell (2012) and Khatri & Sunyaev (2013) for some more in depth
discussion of this challenge.

c� 0000 RAS, MNRAS 000, 000–000

JC & Sunyaev, 2011, Arxiv:1109.6552
JC, 2013, Arxiv:1304.6120

Best-fit µ + y-distortion 
was removed
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Figure 5. Lifetime e↵ect for di↵erent decaying particle scenarios. The up-
per panel shows the energy release rate for all cases, while the central panel
illustrates the distortion in comparison with a y-distortion of y = 2 ⇥ 10�7.
The lower panel shows the residual distortion after subtracting the best-fit
µ- and y-superposition.

a pure µ-distortion is insensitive to when it was created and thus
does not allow di↵erentiating between scenarios with di↵erent par-
ticle lifetimes at z & few ⇥ 105. Still, a tight upper limit on the
total amount of energy that is release can be placed, constrain-
ing the possible abundance of decaying particles with lifetimes
tX ' 6 ⇥ 106 sec � 3 ⇥ 108 sec.

These statements, however, depend strongly on the sensitiv-
ity of the experiment and on how large the average distortion is.
As explained above, the information about the particle lifetime is
largely encoded in the deviations from a pure superposition of µ and
y-distortion, however, the residual is a correction and thus higher
sensitivity or a larger distortion are needed to make use of that in-
formation. Assuming fX/zX = 1 eV and zX = 2 ⇥ 104, a PIXIE-
type experiment is unable to constrain the lifetime of the particle.
The degeneracy is already broken at twice the sensitivity of PIXIE,
yielding ' 29% error on fX/zX and ' 17% error on zX. This fur-
ther improves to ' 14% error on fX/zX and ' 9% error on zX for
four times the sensitivity of PIXIE. This energy release scenario
corresponds to �⇢�/⇢� ' 6.4 ⇥ 10�7, so that the distortion is com-
parable in amplitude to the y-signal from late times. Assuming that
less energy is liberated by the decaying particle increases the er-
rors (and hence the degeneracy), and conversely, for larger decay
energy the errors diminish. Overall, a PIXIE-type experiment will
provide a pretty good probe for long-lived particles with lifetimes
tX ' 5.8 ⇥ 108 sec � 1.4 ⇥ 1010 sec and fX/zX & 1 eV.

5 DISSIPATION OF SMALL-SCALE ACOUSTIC MODES

The prospect of accurate measurements of the CMB spectrum with
a PIXIE-type experiment spurred renewed interests in how primor-
dial perturbations at small-scales dissipate their energy (Chluba
& Sunyaev 2012; Khatri et al. 2012a; Pajer & Zaldarriaga 2012;
Chluba et al. 2012b; Dent et al. 2012; Ganc & Komatsu 2012;
Chluba et al. 2012a; Powell 2012; Khatri & Sunyaev 2013; Chluba
& Grin 2013). It was shown, that this e↵ect can be used to place
tight limits on the amplitude and shape of the power spectrum at
scales far smaller than what is probed with measurements of the
CMB anisotropies, in principle allowing to discover the distortion
signatures from several classes of early universe models (e.g., see
Chluba et al. 2012a).

Taking a conservative perspective, one can assume that the
power spectrum of curvature perturbations is fully determined by
CMB anisotropy measurements at large scales, implying an ampli-
tude A⇣ ' 2.2 ⇥ 10�9, spectral index nS ' 0.96, and its running
nrun ' �0.02, at pivot scale k0 = 0.05 Mpc�1 (Planck Collaboration
et al. 2013b). This is a significant extrapolation from wavenumbers
k < 1 Mpc�1 all the way to k ' few⇥104 Mpc�1, and it was already
argued that for a PIXIE-type experiment the signal remains just
short of the 1�-detection limit (Chluba & Sunyaev 2012; Chluba
et al. 2012b). Improving the sensitivity a few times will allow a de-
tection of this signal, however, given that the errors on A⇣ , nS, and
nrun from CMB data are now . 1%, to use spectral distortion as
a competitive probe, factors of ' 20 � 50 improvement are neces-
sary3. The strongest dependence of the distortion signal is due to
nrun (see Fig. 6 for illustration), since small changes a↵ect the am-
plitude of the small-scale power spectrum and hence the associated
spectral distortion by a large amount (Khatri et al. 2012a; Chluba

3 See Powell (2012) and Khatri & Sunyaev (2013) for some more in depth
discussion of this challenge.
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Figure 12. Expected uncertainties of A⇣ (k0 = 45 Mpc�1), nS, and nrun using
measurements of µ, µ1, and µ2. We assumed 5 times the sensitivity of PIXIE
and A⇣ = 5⇥10�8 as reference value (other cases can be estimated by simple
rescaling). For the upper panel we also varied nrun as indicated, while in the
lower panel it was fixed to nrun = 0. The corresponding error in the particle
lifetime is �tX/tX ' 2�zX/zX.

though the absolute distance between line varies relative to the er-
ror bars they seem rather constant. To show this more explicitly,
from µ, µ1, and µ2 we computed we the expected 1�-errors on
A⇣(k0 = 45 Mpc�1), nS, and nrun around the maximum likelihood
value using the Fisher information matrix, Fi j = �µ�2 @piµ @p jµ +P

k �µ
�2
k @piµk@p jµk, with p ⌘ {A⇣ , nS, nrun}. Figure 12 shows the

corresponding forecasts assuming PIXIE-setting but with 5 times
its sensitivity. If only p ⌘ {A⇣ , nS} are estimate for fixed nrun, the
errors of A⇣ and nS are only a few percent. Also trying to constrain
nrun we see that the errors increase significantly, with an absolute
error on �nrun ' 0.07 rather independent of nS. If we change the
sensitivity by a factor f = �Ic/[10�26 W m�2 Hz�1 sr�1, all curved
can be rescaled by this factor to obtain the new estimate. Similarly,
if A⇣(k0 = 45 Mpc�1) di↵ers by f⇣ = A⇣/5 ⇥ 10�8, we have to
rescale the error estimates by f �1

⇣ . Overall, our analysis shows that
CMB spectral distortion measurement provide an unique probe of
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Figure 13. Detectability of µ, µ1, µ2, and µ3. For a given particle lifetime,
we compute the required value of ✏X = fX/zX for which a 1�-detection of
the corresponding variable is possible with PIXIE. The violet shaded area is
excluded by measurements of the primordial 3He/D abundance ratio (65%
c.l., adapted from Fig. 42 of Kawasaki et al. 2005).

the small-scale power spectrum, which can be utilized to directly
constraint inflationary models.

5.2.3 Decaying relic particles

The distortion signals for the three decaying particle scenarios pre-
sented in Table 1 will all be detectable with a PIXIE-like experi-
ment. More generally, Fig. 13 shows the 1�-detection limits for µ,
µ1, µ2, and µ3, as a function of the particle lifetime. CMB spec-
tral distortions are sensitive to decaying particles with ✏X as low as
' 10�2 eV for particle lifetimes 107 sec . tX . 1010 sec. To directly
constrain tX, at least a measurement of µ1 is needed. At PIXIE sen-
sitivity this means that the lifetime of particles with 2 ⇥ 109 sec .
tX . 6⇥1010 sec for ✏X & 0.1 eV and 3⇥108 sec . tX . 1012 sec for
✏X & 1 eV will be directly measurable. Most of this parameter space
is completely unconstrained [see upper limit from measurements of
the primordial 3He/D abundance ratio2 (from Fig. 42 of Kawasaki
et al. 2005) in Fig. 13]. Higher sensitivity will allow cutting deeper
into the parameter space and widen the range over which the parti-
cle lifetime can be directly constrained.

To illustrate this even further we can again look at the µ �
⇢k-parameter space covered by decaying particles. The projections
into the µ � ⇢1 and ⇢1 � ⇢2-plane are shown in Fig. 14 for ✏X =
1 eV and PIXIE settings. Varying ✏X moves the µ�⇢1 trajectory left
or right, as indicated. Furthermore, all error bars of ⇢k have to be
rescales by f = [✏X/1 eV]�1 under this transformation. Measuring
µ and ⇢1 is in principle su�cient for determination of ✏X and the
particle lifetime, tX = [4.9⇥109/(1+zX)]2 sec, with most sensitivity
around zX ' 5 ⇥ 104 � 105 or tX ' 2.4 ⇥ 109 � 9.6 ⇥ 109 sec for
the shown scenario. For short lifetime, the signal is very close to a

2 In the particle physics community the abundance yield, YX = NX/S ,
and deposited particle energy, Evis [GeV], are commonly used. Here NX
is the particle number density at t ⌧ tX and S = 4

3
⇢

kT ' 7 N� '
2.9 ⇥ 103 (1 + z)3 cm�3 denotes the total entropy density. We thus find
✏X ⌘ (Evis YX) 109S/[NH (1 + zX)] ' 1.5 ⇥ 1019(Evis YX)/(1 + zX).
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Figure 12. Expected uncertainties of A⇣ (k0 = 45 Mpc�1), nS, and nrun using
measurements of µ, µ1, and µ2. We assumed 5 times the sensitivity of PIXIE
and A⇣ = 5⇥10�8 as reference value (other cases can be estimated by simple
rescaling). For the upper panel we also varied nrun as indicated, while in the
lower panel it was fixed to nrun = 0. The corresponding error in the particle
lifetime is �tX/tX ' 2�zX/zX.

though the absolute distance between line varies relative to the er-
ror bars they seem rather constant. To show this more explicitly,
from µ, µ1, and µ2 we computed we the expected 1�-errors on
A⇣(k0 = 45 Mpc�1), nS, and nrun around the maximum likelihood
value using the Fisher information matrix, Fi j = �µ�2 @piµ @p jµ +P

k �µ
�2
k @piµk@p jµk, with p ⌘ {A⇣ , nS, nrun}. Figure 12 shows the

corresponding forecasts assuming PIXIE-setting but with 5 times
its sensitivity. If only p ⌘ {A⇣ , nS} are estimate for fixed nrun, the
errors of A⇣ and nS are only a few percent. Also trying to constrain
nrun we see that the errors increase significantly, with an absolute
error on �nrun ' 0.07 rather independent of nS. If we change the
sensitivity by a factor f = �Ic/[10�26 W m�2 Hz�1 sr�1, all curved
can be rescaled by this factor to obtain the new estimate. Similarly,
if A⇣(k0 = 45 Mpc�1) di↵ers by f⇣ = A⇣/5 ⇥ 10�8, we have to
rescale the error estimates by f �1

⇣ . Overall, our analysis shows that
CMB spectral distortion measurement provide an unique probe of
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Figure 13. Detectability of µ, µ1, µ2, and µ3. For a given particle lifetime,
we compute the required value of ✏X = fX/zX for which a 1�-detection of
the corresponding variable is possible with PIXIE. The violet shaded area is
excluded by measurements of the primordial 3He/D abundance ratio (65%
c.l., adapted from Fig. 42 of Kawasaki et al. 2005).

the small-scale power spectrum, which can be utilized to directly
constraint inflationary models.

5.2.3 Decaying relic particles

The distortion signals for the three decaying particle scenarios pre-
sented in Table 1 will all be detectable with a PIXIE-like experi-
ment. More generally, Fig. 13 shows the 1�-detection limits for µ,
µ1, µ2, and µ3, as a function of the particle lifetime. CMB spec-
tral distortions are sensitive to decaying particles with ✏X as low as
' 10�2 eV for particle lifetimes 107 sec . tX . 1010 sec. To directly
constrain tX, at least a measurement of µ1 is needed. At PIXIE sen-
sitivity this means that the lifetime of particles with 2 ⇥ 109 sec .
tX . 6⇥1010 sec for ✏X & 0.1 eV and 3⇥108 sec . tX . 1012 sec for
✏X & 1 eV will be directly measurable. Most of this parameter space
is completely unconstrained [see upper limit from measurements of
the primordial 3He/D abundance ratio2 (from Fig. 42 of Kawasaki
et al. 2005) in Fig. 13]. Higher sensitivity will allow cutting deeper
into the parameter space and widen the range over which the parti-
cle lifetime can be directly constrained.

To illustrate this even further we can again look at the µ �
⇢k-parameter space covered by decaying particles. The projections
into the µ � ⇢1 and ⇢1 � ⇢2-plane are shown in Fig. 14 for ✏X =
1 eV and PIXIE settings. Varying ✏X moves the µ�⇢1 trajectory left
or right, as indicated. Furthermore, all error bars of ⇢k have to be
rescales by f = [✏X/1 eV]�1 under this transformation. Measuring
µ and ⇢1 is in principle su�cient for determination of ✏X and the
particle lifetime, tX = [4.9⇥109/(1+zX)]2 sec, with most sensitivity
around zX ' 5 ⇥ 104 � 105 or tX ' 2.4 ⇥ 109 � 9.6 ⇥ 109 sec for
the shown scenario. For short lifetime, the signal is very close to a

2 In the particle physics community the abundance yield, YX = NX/S ,
and deposited particle energy, Evis [GeV], are commonly used. Here NX
is the particle number density at t ⌧ tX and S = 4

3
⇢

kT ' 7 N� '
2.9 ⇥ 103 (1 + z)3 cm�3 denotes the total entropy density. We thus find
✏X ⌘ (Evis YX) 109S/[NH (1 + zX)] ' 1.5 ⇥ 1019(Evis YX)/(1 + zX).
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Figure 12. Expected uncertainties of A⇣ (k0 = 45 Mpc�1), nS, and nrun using
measurements of µ, µ1, and µ2. We assumed 5 times the sensitivity of PIXIE
and A⇣ = 5⇥10�8 as reference value (other cases can be estimated by simple
rescaling). For the upper panel we also varied nrun as indicated, while in the
lower panel it was fixed to nrun = 0. The corresponding error in the particle
lifetime is �tX/tX ' 2�zX/zX.

though the absolute distance between line varies relative to the er-
ror bars they seem rather constant. To show this more explicitly,
from µ, µ1, and µ2 we computed we the expected 1�-errors on
A⇣(k0 = 45 Mpc�1), nS, and nrun around the maximum likelihood
value using the Fisher information matrix, Fi j = �µ�2 @piµ @p jµ +P

k �µ
�2
k @piµk@p jµk, with p ⌘ {A⇣ , nS, nrun}. Figure 12 shows the

corresponding forecasts assuming PIXIE-setting but with 5 times
its sensitivity. If only p ⌘ {A⇣ , nS} are estimate for fixed nrun, the
errors of A⇣ and nS are only a few percent. Also trying to constrain
nrun we see that the errors increase significantly, with an absolute
error on �nrun ' 0.07 rather independent of nS. If we change the
sensitivity by a factor f = �Ic/[10�26 W m�2 Hz�1 sr�1, all curved
can be rescaled by this factor to obtain the new estimate. Similarly,
if A⇣(k0 = 45 Mpc�1) di↵ers by f⇣ = A⇣/5 ⇥ 10�8, we have to
rescale the error estimates by f �1

⇣ . Overall, our analysis shows that
CMB spectral distortion measurement provide an unique probe of
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Figure 13. Detectability of µ, µ1, µ2, and µ3. For a given particle lifetime,
we compute the required value of ✏X = fX/zX for which a 1�-detection of
the corresponding variable is possible with PIXIE. The violet shaded area is
excluded by measurements of the primordial 3He/D abundance ratio (65%
c.l., adapted from Fig. 42 of Kawasaki et al. 2005).

the small-scale power spectrum, which can be utilized to directly
constraint inflationary models.

5.2.3 Decaying relic particles

The distortion signals for the three decaying particle scenarios pre-
sented in Table 1 will all be detectable with a PIXIE-like experi-
ment. More generally, Fig. 13 shows the 1�-detection limits for µ,
µ1, µ2, and µ3, as a function of the particle lifetime. CMB spec-
tral distortions are sensitive to decaying particles with ✏X as low as
' 10�2 eV for particle lifetimes 107 sec . tX . 1010 sec. To directly
constrain tX, at least a measurement of µ1 is needed. At PIXIE sen-
sitivity this means that the lifetime of particles with 2 ⇥ 109 sec .
tX . 6⇥1010 sec for ✏X & 0.1 eV and 3⇥108 sec . tX . 1012 sec for
✏X & 1 eV will be directly measurable. Most of this parameter space
is completely unconstrained [see upper limit from measurements of
the primordial 3He/D abundance ratio2 (from Fig. 42 of Kawasaki
et al. 2005) in Fig. 13]. Higher sensitivity will allow cutting deeper
into the parameter space and widen the range over which the parti-
cle lifetime can be directly constrained.

To illustrate this even further we can again look at the µ �
⇢k-parameter space covered by decaying particles. The projections
into the µ � ⇢1 and ⇢1 � ⇢2-plane are shown in Fig. 14 for ✏X =
1 eV and PIXIE settings. Varying ✏X moves the µ�⇢1 trajectory left
or right, as indicated. Furthermore, all error bars of ⇢k have to be
rescales by f = [✏X/1 eV]�1 under this transformation. Measuring
µ and ⇢1 is in principle su�cient for determination of ✏X and the
particle lifetime, tX = [4.9⇥109/(1+zX)]2 sec, with most sensitivity
around zX ' 5 ⇥ 104 � 105 or tX ' 2.4 ⇥ 109 � 9.6 ⇥ 109 sec for
the shown scenario. For short lifetime, the signal is very close to a

2 In the particle physics community the abundance yield, YX = NX/S ,
and deposited particle energy, Evis [GeV], are commonly used. Here NX
is the particle number density at t ⌧ tX and S = 4

3
⇢

kT ' 7 N� '
2.9 ⇥ 103 (1 + z)3 cm�3 denotes the total entropy density. We thus find
✏X ⌘ (Evis YX) 109S/[NH (1 + zX)] ' 1.5 ⇥ 1019(Evis YX)/(1 + zX).

c� 0000 RAS, MNRAS 000, 000–000

Distortions could shed light on decaying (DM) particles!

JC & Jeong, 2013

Kawasaki et al., 2005

Estimated 1σ detection 
limits for PIXIE

             

PRISM sensitive to 
lifetime over even 
wider range!



12 Chluba and Jeong

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

n
S

10
-3

10
-2

10
-1

R
el

at
iv

e 
E

rr
o
r 

x
 [

 5
 x

 1
0

-8
 /

 A
ζ ]

A
ζ

n
S

5 times PIXIE sensitivity

Reference A
ζ
 = 5 x 10

-8

n
run  = -0.2

n
run

 = 0.2

n
run  = 0

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

n
S

10
-2

10
-1

E
rr

o
rs

 x
 [

 5
 x

 1
0

-8
 /

 A
ζ ]

A
ζ

n
S

n
run

5 times PIXIE sensitivity

Reference A
ζ
 = 5 x 10

-8
 and n

run
 = 0

Relative error

Absolute error

Figure 12. Expected uncertainties of A⇣ (k0 = 45 Mpc�1), nS, and nrun using
measurements of µ, µ1, and µ2. We assumed 5 times the sensitivity of PIXIE
and A⇣ = 5⇥10�8 as reference value (other cases can be estimated by simple
rescaling). For the upper panel we also varied nrun as indicated, while in the
lower panel it was fixed to nrun = 0. The corresponding error in the particle
lifetime is �tX/tX ' 2�zX/zX.

though the absolute distance between line varies relative to the er-
ror bars they seem rather constant. To show this more explicitly,
from µ, µ1, and µ2 we computed we the expected 1�-errors on
A⇣(k0 = 45 Mpc�1), nS, and nrun around the maximum likelihood
value using the Fisher information matrix, Fi j = �µ�2 @piµ @p jµ +P

k �µ
�2
k @piµk@p jµk, with p ⌘ {A⇣ , nS, nrun}. Figure 12 shows the

corresponding forecasts assuming PIXIE-setting but with 5 times
its sensitivity. If only p ⌘ {A⇣ , nS} are estimate for fixed nrun, the
errors of A⇣ and nS are only a few percent. Also trying to constrain
nrun we see that the errors increase significantly, with an absolute
error on �nrun ' 0.07 rather independent of nS. If we change the
sensitivity by a factor f = �Ic/[10�26 W m�2 Hz�1 sr�1, all curved
can be rescaled by this factor to obtain the new estimate. Similarly,
if A⇣(k0 = 45 Mpc�1) di↵ers by f⇣ = A⇣/5 ⇥ 10�8, we have to
rescale the error estimates by f �1

⇣ . Overall, our analysis shows that
CMB spectral distortion measurement provide an unique probe of
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Figure 13. Detectability of µ, µ1, µ2, and µ3. For a given particle lifetime,
we compute the required value of ✏X = fX/zX for which a 1�-detection of
the corresponding variable is possible with PIXIE. The violet shaded area is
excluded by measurements of the primordial 3He/D abundance ratio (65%
c.l., adapted from Fig. 42 of Kawasaki et al. 2005).

the small-scale power spectrum, which can be utilized to directly
constraint inflationary models.

5.2.3 Decaying relic particles

The distortion signals for the three decaying particle scenarios pre-
sented in Table 1 will all be detectable with a PIXIE-like experi-
ment. More generally, Fig. 13 shows the 1�-detection limits for µ,
µ1, µ2, and µ3, as a function of the particle lifetime. CMB spec-
tral distortions are sensitive to decaying particles with ✏X as low as
' 10�2 eV for particle lifetimes 107 sec . tX . 1010 sec. To directly
constrain tX, at least a measurement of µ1 is needed. At PIXIE sen-
sitivity this means that the lifetime of particles with 2 ⇥ 109 sec .
tX . 6⇥1010 sec for ✏X & 0.1 eV and 3⇥108 sec . tX . 1012 sec for
✏X & 1 eV will be directly measurable. Most of this parameter space
is completely unconstrained [see upper limit from measurements of
the primordial 3He/D abundance ratio2 (from Fig. 42 of Kawasaki
et al. 2005) in Fig. 13]. Higher sensitivity will allow cutting deeper
into the parameter space and widen the range over which the parti-
cle lifetime can be directly constrained.

To illustrate this even further we can again look at the µ �
⇢k-parameter space covered by decaying particles. The projections
into the µ � ⇢1 and ⇢1 � ⇢2-plane are shown in Fig. 14 for ✏X =
1 eV and PIXIE settings. Varying ✏X moves the µ�⇢1 trajectory left
or right, as indicated. Furthermore, all error bars of ⇢k have to be
rescales by f = [✏X/1 eV]�1 under this transformation. Measuring
µ and ⇢1 is in principle su�cient for determination of ✏X and the
particle lifetime, tX = [4.9⇥109/(1+zX)]2 sec, with most sensitivity
around zX ' 5 ⇥ 104 � 105 or tX ' 2.4 ⇥ 109 � 9.6 ⇥ 109 sec for
the shown scenario. For short lifetime, the signal is very close to a

2 In the particle physics community the abundance yield, YX = NX/S ,
and deposited particle energy, Evis [GeV], are commonly used. Here NX
is the particle number density at t ⌧ tX and S = 4

3
⇢

kT ' 7 N� '
2.9 ⇥ 103 (1 + z)3 cm�3 denotes the total entropy density. We thus find
✏X ⌘ (Evis YX) 109S/[NH (1 + zX)] ' 1.5 ⇥ 1019(Evis YX)/(1 + zX).

c� 0000 RAS, MNRAS 000, 000–000

Distortions could shed light on decaying (DM) particles!

JC & Jeong, 2013

Kawasaki et al., 2005

Estimated 1σ detection 
limits for PIXIE

             

PRISM sensitive to 
lifetime over even 
wider range!

Complementary to 
CMB anisotropies!



Green’s function for photon injection

JC 2015, ArXiv:1506.06582

• Photon injection Green’s function gives even richer phenomenology 
of distortion signals

• Depends on the details of the photon production process for 
redshifts z < few x 105

• difference between high and low frequency photon injection 
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• motion with respect to CMB 
blackbody monopole

⇒  CMB temperature dipole

• including primordial distortions 
of the CMB    

⇒  CMB dipole is distorted

• spectrum of the dipole is 
sensitive to the derivative of 
the monopole spectrum

• anisotropy does not need 
absolute calibration but just 
inter-channel calibration

• but signal is ~1000 times 
smaller...    

• foregrounds will also leak into 
the dipole in this way

• check of systematics
Balashev, Kholupenko, JC, Ivanchik & Varshalovich, ApJ, 2015 (ArXiv:1505.06028)
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Other extremely interesting new signals

• Scattering signals from the dark ages 
(e.g., Basu et al., 2004; Hernandez-Monteagudo et al., 2007; Schleicher et al., 2009)

- constrain abundances of chemical elements at high redshift

- learn about star formation history

• Rayleigh / HI scattering signals
(e.g., Yu et al., 2001; Rubino-Martin et al., 2005; Lewis 2013)

- provides way to constrain recombination history

- important when asking questions about Neff and Yp

• Free-free signals from reionization
(e.g., Burigana et al. 1995; Trombetti & Burigana, 2013)

- constrains reionization history

- depends on clumpiness of the medium

Rayleigh scattering 

Constraints on various elements

All these effects give spectral-spatial 
signals, and an absolute spectrometer 
will help with channel cross calibration!



Conclusions

• CMB spectral distortions will open a new window to 
the early Universe

• new probe of the inflation epoch and particle physics

• complementary and independent source of 
information not just confirmation

• in standard cosmology several processes lead to 
early energy release at a level that                         
will be detectable in the future

• extremely interesting future for                            
CMB-based science!
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will be detectable in the future

• extremely interesting future for                            
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We should make use of 
all this information!
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