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Main Goals for this Lecture

• Convince you that future CMB distortions science 
will be extremely exciting!

• Provide an overview for different sources of early-
energy release

• Show why the CMB spectrum is a complementary 
probe of inflation physics and particle physics



Cosmic Microwave Background Anisotropies

Planck all sky map • CMB has a blackbody spectrum in every direction

• tiny variations of the CMB temperature ΔT/T ~ 10-5



Cosmic Microwave Background Anisotropies

Planck all sky map • CMB has a blackbody spectrum in every direction

• tiny variations of the CMB temperature ΔT/T ~ 10-5

Not today!!!



Today we are Interested in the CMB Monopole Signal!!!

Mather et al., 1994, ApJ, 420, 439
Fixsen et al., 1996, ApJ, 473, 576 
Fixsen, 2003, ApJ, 594, 67
Fixsen, 2009, ApJ, 707, 916  

COBE/FIRAS

• CMB monopole is 10000 - 100000 times  
larger than fluctuations!

T0 = (2.726± 0.001)K



Mather et al., 1994, ApJ, 420, 439
Fixsen et al., 1996, ApJ, 473, 576 
Fixsen et al., 2003, ApJ, 594, 67  

COBE / FIRAS (Far InfraRed Absolute Spectrophotometer)

Nobel Prize in Physics 2006!

 Error bars a small fraction 
of the line thickness!

Theory and Observations

Average spectrum



(Te >> Tγ)

thermal SZ effect

Sunyaev & Zeldovich, 1980, ARAA, 18, 537

Compton y-distortion

• also known from thSZ effect
• up-scattering of CMB photon
• important at late times (z<50000)
• scattering inefficient • important at very times (z>50000)

• scattering very efficient

Chemical potential µ-distortion

Sunyaev & Zeldovich, 1970, ApSS, 2, 66

Small Sneak Preview....

Blackbody 
restored



Mather et al., 1994, ApJ, 420, 439
Fixsen et al., 1996, ApJ, 473, 576 
Fixsen et al., 2003, ApJ, 594, 67  

COBE / FIRAS (Far InfraRed Absolute Spectrophotometer)

Nobel Prize in Physics 2006!

 Error bars a small fraction 
of the line thickness!

Theory and Observations

Only very small distortions of CMB spectrum are still allowed!

Average spectrum
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Full thermodynamic equilibrium (certainly valid at very high redshift)

• CMB has a blackbody spectrum at every time (not affected by expansion)

• Photon number density and energy density determined by temperature Tγ

 Tγ  ~ 2.726 (1+z) K
  Nγ ~ 411 cm-3 (1+z)3 ~ 2×109 Nb   (entropy density dominated by photons)

 ργ  ~ 5.1×10-7 mec² cm-3 (1+z)4 ~ ρb x (1+z) / 925 ~ 0.26 eV cm-3 (1+z)4
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Why should one expect some spectral distortion?

Full thermodynamic equilibrium (certainly valid at very high redshift)

• CMB has a blackbody spectrum at every time (not affected by expansion)

• Photon number density and energy density determined by temperature Tγ

 Tγ  ~ 2.726 (1+z) K
  Nγ ~ 411 cm-3 (1+z)3 ~ 2×109 Nb   (entropy density dominated by photons)

 ργ  ~ 5.1×10-7 mec² cm-3 (1+z)4 ~ ρb x (1+z) / 925 ~ 0.26 eV cm-3 (1+z)4

Perturbing full equilibrium by 

• Energy injection  (interaction matter  photons)
• Production of (energetic) photons and/or particles (i.e. change of entropy)

 CMB spectrum deviates from a pure blackbody
 thermalization process (partially) erases distortions            

(Compton scattering, double Compton and Bremsstrahlung in the expanding Universe)

Measurements of CMB spectrum place very tight 
limits on the thermal history of our Universe!



Why bother? No distortion detected so far!??



Physical mechanisms that lead to spectral distortions

• Cooling by adiabatically expanding ordinary matter: Tγ ~ (1+z) ↔ Tm ~ (1+z)²                                                                     

(JC, 2005; JC & Sunyaev 2011; Khatri, Sunyaev & JC, 2011)

• continuous cooling of photons until redshift z ~ 150 via Compton scattering
• due to huge heat capacity of photon field distortion very small  ( Δρ/ρ ~ 10-10-10-9 )

• Heating by decaying or annihilating relic particles
• How is energy transferred to the medium?
• lifetimes, decay channels, neutrino fraction, (at low redshifts: environments), ... 

• Evaporation of primordial black holes & superconducting strings                                                                            
(Carr et al.  2010; Ostriker & Thompson, 1987; Tashiro et al. 2012)

• rather fast, quasi-instantaneous but also extended energy release

• Dissipation of primordial acoustic modes & magnetic fields                                                                
(Sunyaev & Zeldovich, 1970; Daly 1991; Hu et al. 1994; Jedamzik et al. 2000)

• Cosmological recombination
•                                                                                  

• Signatures due to first supernovae and their remnants                                        
(Oh, Cooray & Kamionkowski, 2003)

• Shock waves arising due to large-scale structure formation                                    
(Sunyaev & Zeldovich, 1972; Cen & Ostriker, 1999)

• SZ-effect from clusters; effects of reionization (Heating of medium by X-Rays, Cosmic Rays, etc) 

„high“ redshifts

„low“   redshifts
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PIXIE: Primordial Inflation Explorer

• 400 spectral channel in the frequency 
range 30 GHz and 6THz (Δν ~ 15GHz)

• about 1000 (!!!) times more sensitive than 
COBE/FIRAS 

• B-mode polarization from inflation (r ≈ 10-3)
• improved limits on µ and y 
• was proposed 2011 as NASA EX mission 

(i.e. cost ~ 200 M$)

Kogut et al, JCAP, 2011, arXiv:1105.2044

Average spectrum



Instruments:
• L-class ESA mission
• White paper, May 24th, 2013
• Imager:

- polarization sensitive
- 3.5m telescope [arcmin resolution 
at highest frequencies]

- 30GHz-6THz [30 broad (Δν/ν~25%) 
and 300 narrow (Δν/ν~2.5%) bands] 

• Spectrometer:
- FTS similar to PIXIE
- 30GHz-6THz (Δν~15 & 0.5 GHz) 

Sign up at:
http://www.prism-mission.org/

Polarized Radiation Imaging and Spectroscopy Mission 

Spokesperson: Paolo de Bernardis 
e-mail: paolo.debernardis@roma1.infn.it — tel: + 39 064 991 4271 

PRISM 
Probing cosmic structures and radiation  
with the ultimate polarimetric spectro-imaging  
of the microwave and far-infrared sky 

1

Some of the science goals:
• B-mode polarization from 

inflation (r ≈ 5x10-4)
• count all SZ clusters >1014 Msun

• CIB/large scale structure
• Galactic science
• CMB spectral distortions

http://www.prism-mission.org
http://www.prism-mission.org
http://www.prism-mission.org
http://www.prism-mission.org
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     CMB distortions probe the 
thermal history of the 
Universe at z < few x 106

pre- post-recombination epoch

Di
sc

ov
er

y
sp

ac
e!

Measurements of CMB spectrum will open a new 
unexplored window to the early Universe!



How does the thermalization process work?
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 free electrons, protons and helium nuclei
 photon dominated (~2 Billion photons per baryon)
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• Plasma fully ionized before recombination (z~1000)

 free electrons, protons and helium nuclei
 photon dominated (~2 Billion photons per baryon)

• Coulomb scattering 
  electrons in full thermal equilibrium with baryons 

  electrons follow thermal Maxwell-Boltzmann distribution

  efficient down to very low redshifts (z ~ 10-100)

• Medium homogeneous and isotropic on large scales
  

  thermalization problem rather simple!
  in principle allows very precise computations

• Hubble expansion
  

  adiabatic cooling of photons [Tγ ~ (1+z)] and ordinary matter [Tm ~ (1+z)2]      
  redshifting of photons 

Some important conditions



Redistribution of photons by Compton scattering

• Compton scattering 

  redistribution of photons in frequency

• up-scattering due to the Doppler effect for 
 

• down-scattering because of recoil (and stimulated recoil) 
for

• Doppler broadening 

  strongly couples (free) electrons to the CMB 
photon down to redshifts z~150

Sunyaev& Zeldovich, 1980, Ann. Rev. Astr. Astrophy., 18, pp.537
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Redistribution of photons by Compton scattering

• Compton scattering 

  redistribution of photons in frequency

• up-scattering due to the Doppler effect for 
 

• down-scattering because of recoil (and stimulated recoil) 
for

• Doppler broadening 

  strongly couples (free) electrons to the CMB 
photon down to redshifts z~150

 

• Kompaneets Equation   ‘pure’ y-distortion

Sunyaev& Zeldovich, 1980, Ann. Rev. Astr. Astrophy., 18, pp.537
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• Bremsstrahlung  
 1. order α correction to Coulomb scattering

 production of low frequency photons

 important for the evolution of the distortion at  
low frequencies and late times (z< 2 x 105)

 

• Double Compton scattering                 
(Lightman 1981; Thorne, 1981)

 1. order α correction to Compton scattering

 was only included later (Danese & De Zotti, 1982)

 production of low frequency photons

 very important at high redshifts (z > 2 x 105)

Illarionov & Sunyaev, 1975, Sov. Astr, 18, pp.413

Adjusting the photon number

Comptonization & 
free-free emission

DC emission not 
yet included
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Quasi-Exact Treatment of the Thermalization Problem

• But: distortions are small ⇒ thermalization problem becomes linear!

• Case-by-case computation of the distortion (e.g., with CosmoTherm, JC & 
Sunyaev, 2012, ArXiv:1109.6552) still rather time-consuming 

• Simple solution: compute “response function” of the thermalization 
problem ⇒ Green’s function approach (JC, 2013, ArXiv:1304.6120) 

• Final distortion for fixed energy-release history given by

�I⌫ ⇡
Z 1

0
Gth(⌫, z

0)
d(Q/⇢�)

dz0
dz0

• Fast and quasi-exact! No additional approximations!

• For real forecasts of future prospects a precise & fast method for 
computing the spectral distortion is needed!

Thermalization Green’s function



What does the spectrum look like after energy injection?
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Physical mechanisms that lead to spectral distortions

• Cooling by adiabatically expanding ordinary matter: Tγ ~ (1+z) ↔ Tm ~ (1+z)²                                                                     

(JC, 2005; JC & Sunyaev 2011; Khatri, Sunyaev & JC, 2011)

• continuous cooling of photons until redshift z ~ 150 via Compton scattering
• due to huge heat capacity of photon field distortion very small  ( Δρ/ρ ~ 10-10-10-9 )

• Heating by decaying or annihilating relic particles
• How is energy transferred to the medium?
• lifetimes, decay channels, neutrino fraction, (at low redshifts: environments), ... 

• Evaporation of primordial black holes & superconducting strings                                                                            
(Carr et al.  2010; Ostriker & Thompson, 1987; Tashiro et al. 2012)

• rather fast, quasi-instantaneous but also extended energy release

• Dissipation of primordial acoustic modes & magnetic fields                                                                
(Sunyaev & Zeldovich, 1970; Daly 1991; Hu et al. 1994; Jedamzik et al. 2000)

• Cosmological recombination
•                                                                                  

• Signatures due to first supernovae and their remnants                                        
(Oh, Cooray & Kamionkowski, 2003)

• Shock waves arising due to large-scale structure formation                                    
(Sunyaev & Zeldovich, 1972; Cen & Ostriker, 1999)

• SZ-effect from clusters; effects of reionization (Heating of medium by X-Rays, Cosmic Rays, etc) 

„high“ redshifts

„low“   redshifts
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Reionization and structure formation



=) y ' kTe

mec2
' 2⇥ 10�7

Simple estimates for the distortion

• Gas temperature T ≃ 104 K

• Thomson optical depth  ! ≃ 0.1

• second order Doppler effect y ≃ few x 10-8

• structure formation / SZ effect (e.g., Refregier et al., 2003)   y ≃ few x 10-7-10-6



Average CMB spectral distortions
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Average CMB spectral distortions

10 30 60 100 300 600 1000
ν [GHz]

10-28

10-27

10-26

10-25

10-24

10-23
Δ
I ν

 [ 
W

 m
-2

 s-1
 H

z-1
 sr

-1
 ]

Reionization

Monopole distortion signals

y-distortion ~ 10 -7 - 10-6

PIXIE’s sensitivity  

negative branch: ‘thin’

A
bs

ol
ut

e 
va

lu
e 

of
 In

te
ns

ity
 s

ig
na

l positive branch: ‘heavy’

Signal detectable with very 
high significance using 
present day technology!



Fluctuations of the y-parameter at large scales

Example: 
Simulation of reionization process 
(1Gpc/h) by Alvarez & Abel

• spatial variations of the 
optical depth and 
temperature cause 
small-spatial variations 
of the y-parameter at 
different angular scales

• could tell us about the 
reionization sources 
and structure formation 
process

• additional independent 
piece of information! 

• Cross-correlations with 
other signals 



Decaying particles



• Yield variable ⇒ 
parametrizes the total 
energy release relative to 
total entropy density of 
the Universe

• Evis parametrizes physics 
of energy deposition      
(decay channels, neutrino 
fraction, etc.)

• current CMB limit rather 
weak....

YX ' NX/S

Constraints from measurements of light elements

Figure from Kawasaki, Kohri and Moroi, 2005

(FIRAS)

“Yield” variable



• Energy release rate

• For computations:                                        and

• Efficiency factor       contains all the physics describing the cascade 
of decay products

• At high redshift deposited energy goes into heat

• Around recombination and after things become more complicated
     (Slatyer et al. 2009; Cirelli et al. 2009; Huts et al. 2009; Slatyer et al. 2013)

⇒ branching ratios into heat, ionizations, and atomic excitation

d(Q/⇢�)

dz
⇡ f⇤MXc

2

H(z)(1 + z)

NX(z)

⇢�(z)
�Xe

��Xt

"X =
fX
zX

f⇤

fX = f⇤MXc
2NX/NH

Energy release by decaying particles



Average CMB spectral distortions
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Average CMB spectral distortions
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Spectral distortions provide 
probe of particle physics!
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Figure 5. Lifetime e↵ect for di↵erent decaying particle scenarios. The up-
per panel shows the energy release rate for all cases, while the central panel
illustrates the distortion in comparison with a y-distortion of y = 2 ⇥ 10�7.
The lower panel shows the residual distortion after subtracting the best-fit
µ- and y-superposition.

a pure µ-distortion is insensitive to when it was created and thus
does not allow di↵erentiating between scenarios with di↵erent par-
ticle lifetimes at z & few ⇥ 105. Still, a tight upper limit on the
total amount of energy that is release can be placed, constrain-
ing the possible abundance of decaying particles with lifetimes
tX ' 6 ⇥ 106 sec � 3 ⇥ 108 sec.

These statements, however, depend strongly on the sensitiv-
ity of the experiment and on how large the average distortion is.
As explained above, the information about the particle lifetime is
largely encoded in the deviations from a pure superposition of µ and
y-distortion, however, the residual is a correction and thus higher
sensitivity or a larger distortion are needed to make use of that in-
formation. Assuming fX/zX = 1 eV and zX = 2 ⇥ 104, a PIXIE-
type experiment is unable to constrain the lifetime of the particle.
The degeneracy is already broken at twice the sensitivity of PIXIE,
yielding ' 29% error on fX/zX and ' 17% error on zX. This fur-
ther improves to ' 14% error on fX/zX and ' 9% error on zX for
four times the sensitivity of PIXIE. This energy release scenario
corresponds to �⇢�/⇢� ' 6.4 ⇥ 10�7, so that the distortion is com-
parable in amplitude to the y-signal from late times. Assuming that
less energy is liberated by the decaying particle increases the er-
rors (and hence the degeneracy), and conversely, for larger decay
energy the errors diminish. Overall, a PIXIE-type experiment will
provide a pretty good probe for long-lived particles with lifetimes
tX ' 5.8 ⇥ 108 sec � 1.4 ⇥ 1010 sec and fX/zX & 1 eV.

5 DISSIPATION OF SMALL-SCALE ACOUSTIC MODES

The prospect of accurate measurements of the CMB spectrum with
a PIXIE-type experiment spurred renewed interests in how primor-
dial perturbations at small-scales dissipate their energy (Chluba
& Sunyaev 2012; Khatri et al. 2012a; Pajer & Zaldarriaga 2012;
Chluba et al. 2012b; Dent et al. 2012; Ganc & Komatsu 2012;
Chluba et al. 2012a; Powell 2012; Khatri & Sunyaev 2013; Chluba
& Grin 2013). It was shown, that this e↵ect can be used to place
tight limits on the amplitude and shape of the power spectrum at
scales far smaller than what is probed with measurements of the
CMB anisotropies, in principle allowing to discover the distortion
signatures from several classes of early universe models (e.g., see
Chluba et al. 2012a).

Taking a conservative perspective, one can assume that the
power spectrum of curvature perturbations is fully determined by
CMB anisotropy measurements at large scales, implying an ampli-
tude A⇣ ' 2.2 ⇥ 10�9, spectral index nS ' 0.96, and its running
nrun ' �0.02, at pivot scale k0 = 0.05 Mpc�1 (Planck Collaboration
et al. 2013b). This is a significant extrapolation from wavenumbers
k < 1 Mpc�1 all the way to k ' few⇥104 Mpc�1, and it was already
argued that for a PIXIE-type experiment the signal remains just
short of the 1�-detection limit (Chluba & Sunyaev 2012; Chluba
et al. 2012b). Improving the sensitivity a few times will allow a de-
tection of this signal, however, given that the errors on A⇣ , nS, and
nrun from CMB data are now . 1%, to use spectral distortion as
a competitive probe, factors of ' 20 � 50 improvement are neces-
sary3. The strongest dependence of the distortion signal is due to
nrun (see Fig. 6 for illustration), since small changes a↵ect the am-
plitude of the small-scale power spectrum and hence the associated
spectral distortion by a large amount (Khatri et al. 2012a; Chluba

3 See Powell (2012) and Khatri & Sunyaev (2013) for some more in depth
discussion of this challenge.
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Figure 5. Lifetime e↵ect for di↵erent decaying particle scenarios. The up-
per panel shows the energy release rate for all cases, while the central panel
illustrates the distortion in comparison with a y-distortion of y = 2 ⇥ 10�7.
The lower panel shows the residual distortion after subtracting the best-fit
µ- and y-superposition.

a pure µ-distortion is insensitive to when it was created and thus
does not allow di↵erentiating between scenarios with di↵erent par-
ticle lifetimes at z & few ⇥ 105. Still, a tight upper limit on the
total amount of energy that is release can be placed, constrain-
ing the possible abundance of decaying particles with lifetimes
tX ' 6 ⇥ 106 sec � 3 ⇥ 108 sec.

These statements, however, depend strongly on the sensitiv-
ity of the experiment and on how large the average distortion is.
As explained above, the information about the particle lifetime is
largely encoded in the deviations from a pure superposition of µ and
y-distortion, however, the residual is a correction and thus higher
sensitivity or a larger distortion are needed to make use of that in-
formation. Assuming fX/zX = 1 eV and zX = 2 ⇥ 104, a PIXIE-
type experiment is unable to constrain the lifetime of the particle.
The degeneracy is already broken at twice the sensitivity of PIXIE,
yielding ' 29% error on fX/zX and ' 17% error on zX. This fur-
ther improves to ' 14% error on fX/zX and ' 9% error on zX for
four times the sensitivity of PIXIE. This energy release scenario
corresponds to �⇢�/⇢� ' 6.4 ⇥ 10�7, so that the distortion is com-
parable in amplitude to the y-signal from late times. Assuming that
less energy is liberated by the decaying particle increases the er-
rors (and hence the degeneracy), and conversely, for larger decay
energy the errors diminish. Overall, a PIXIE-type experiment will
provide a pretty good probe for long-lived particles with lifetimes
tX ' 5.8 ⇥ 108 sec � 1.4 ⇥ 1010 sec and fX/zX & 1 eV.

5 DISSIPATION OF SMALL-SCALE ACOUSTIC MODES

The prospect of accurate measurements of the CMB spectrum with
a PIXIE-type experiment spurred renewed interests in how primor-
dial perturbations at small-scales dissipate their energy (Chluba
& Sunyaev 2012; Khatri et al. 2012a; Pajer & Zaldarriaga 2012;
Chluba et al. 2012b; Dent et al. 2012; Ganc & Komatsu 2012;
Chluba et al. 2012a; Powell 2012; Khatri & Sunyaev 2013; Chluba
& Grin 2013). It was shown, that this e↵ect can be used to place
tight limits on the amplitude and shape of the power spectrum at
scales far smaller than what is probed with measurements of the
CMB anisotropies, in principle allowing to discover the distortion
signatures from several classes of early universe models (e.g., see
Chluba et al. 2012a).

Taking a conservative perspective, one can assume that the
power spectrum of curvature perturbations is fully determined by
CMB anisotropy measurements at large scales, implying an ampli-
tude A⇣ ' 2.2 ⇥ 10�9, spectral index nS ' 0.96, and its running
nrun ' �0.02, at pivot scale k0 = 0.05 Mpc�1 (Planck Collaboration
et al. 2013b). This is a significant extrapolation from wavenumbers
k < 1 Mpc�1 all the way to k ' few⇥104 Mpc�1, and it was already
argued that for a PIXIE-type experiment the signal remains just
short of the 1�-detection limit (Chluba & Sunyaev 2012; Chluba
et al. 2012b). Improving the sensitivity a few times will allow a de-
tection of this signal, however, given that the errors on A⇣ , nS, and
nrun from CMB data are now . 1%, to use spectral distortion as
a competitive probe, factors of ' 20 � 50 improvement are neces-
sary3. The strongest dependence of the distortion signal is due to
nrun (see Fig. 6 for illustration), since small changes a↵ect the am-
plitude of the small-scale power spectrum and hence the associated
spectral distortion by a large amount (Khatri et al. 2012a; Chluba

3 See Powell (2012) and Khatri & Sunyaev (2013) for some more in depth
discussion of this challenge.
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Figure 3. Large distortion s- and p-wave annihilation scenario. Contours
and lines are as before. Degeneracies between the parameters prevent a dis-
tinction of the signatures of both particles, even for high sensitivity.

nature should be possible, the two signals are simply too similar
and strong correlations cause large uncertainties and biases in the
parameters, which only disappear at high sensitivity. This makes
the projected 2D probability distributions shown in Fig. 3 very non-
Gaussian. At ' 20 times the sensitivity of PIXIE we find a ' 2�
detection of the s-wave annihilation signature and fann,p ' 1% from
the p-wave annihilation signal.

Considering a small distortion scenario with more compara-
ble contributions from s- and p-wave annihilations ( fann,s ' 2 ⇥
10�23 eV sec�1 and fann,p ' 10�28 eV sec�1), we find that an im-
provement of the sensitivity by a factor of ' 40 is needed to start
distinguishing the signals from both particles, rendering an analysis
along these lines more futuristic. This is because for this scenario
the signal is close to the detection limit of PIXIE, and the di↵er-
ences with respect to a pure superposition of µ- and y-distortion,
which could be used to distinguish the two cases, are only a small
correction, necessitating this large improvement of the sensitivity.

4 DECAYING PARTICLE SCENARIOS

Decaying relic particle with lifetimes ' 380 kyr (corresponding to
the time of recombination) are again tightly constrained by mea-
surement of the CMB anisotropies (Zhang et al. 2007; Giesen et al.
2012), while particles with lifetimes comparable to minutes can af-
fect the light element abundances and bounds derived from BBN
apply (Kawasaki et al. 2005; Jedamzik 2008). However, experi-
mental constraints for particles with lifetimes ' 106 � 1012 sec are
less stringent, still leaving rather large room for extra energy re-
lease �⇢�/⇢� . 10�6 � 10�5 (e.g., Hu & Silk 1993b; Kogut et al.
2011). Large energy-release rates are especially possible for very
light particles with masses . MeV. A PIXIE-type CMB experi-
ment thus has a large potential to discover the signature of some
long-lived relic particle, or at least provide complementary and in-
dependent constraints to these scenarios. If most of the energy is
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yre = 4 ⇥ 10�7

fX = 104 eV

zX = 5 ⇥ 104 (�X ' 1.1 ⇥ 10�8sec�1)

Figure 4. Large and small distortion decaying particle scenario. Contours
and lines are as before. For large energy release the distortion can be easily
constrained, however, for small energy release the parameter space becomes
more complicated and higher sensitivity improves matters significantly.

released at z & 3 ⇥ 105 a pure µ-distortion is created, so that this
case is practically degenerate, e.g., with scenarios that include an
annihilating particle with p-wave annihilation cross section. How-
ever, for energy release around z ' 5 ⇥ 104 the distortion can di↵er
su�ciently to become distinguishable.

In Fig. 4 we show the projected constraints for a large and
small distortion scenario, with energy release �⇢�/⇢� ' 6.4 ⇥ 10�6

and �⇢�/⇢� ' 1.3⇥10�7, respectively. Since the total energy release
scales as �⇢�/⇢� / fX/zX (cf. Chluba & Sunyaev 2012), it is best
to consider the variables fX/zX and zX ' 4.8 ⇥ 109 �1/2

X sec1/2 as
parameters. This reduces the parameter covariance significantly. To
accelerate the computation we furthermore tabulate the distortion
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case is practically degenerate, e.g., with scenarios that include an
annihilating particle with p-wave annihilation cross section. How-
ever, for energy release around z ' 5 ⇥ 104 the distortion can di↵er
su�ciently to become distinguishable.
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• Principle component 
decomposition of the 
distortion signal

• compression of the 
useful information 
given instrumental 
settings

• new set of 
observables         
 p={y, µ, µ1, µ2, ...}

• model-comparison + 
forecasts of errors 
very simple!

Signal-Eigenmodes of 
residual distortion

Using signal eigenmodes to compress the distortion data
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Figure 12. Expected uncertainties of A⇣ (k0 = 45 Mpc�1), nS, and nrun using
measurements of µ, µ1, and µ2. We assumed 5 times the sensitivity of PIXIE
and A⇣ = 5⇥10�8 as reference value (other cases can be estimated by simple
rescaling). For the upper panel we also varied nrun as indicated, while in the
lower panel it was fixed to nrun = 0. The corresponding error in the particle
lifetime is �tX/tX ' 2�zX/zX.

though the absolute distance between line varies relative to the er-
ror bars they seem rather constant. To show this more explicitly,
from µ, µ1, and µ2 we computed we the expected 1�-errors on
A⇣(k0 = 45 Mpc�1), nS, and nrun around the maximum likelihood
value using the Fisher information matrix, Fi j = �µ�2 @piµ @p jµ +P

k �µ
�2
k @piµk@p jµk, with p ⌘ {A⇣ , nS, nrun}. Figure 12 shows the

corresponding forecasts assuming PIXIE-setting but with 5 times
its sensitivity. If only p ⌘ {A⇣ , nS} are estimate for fixed nrun, the
errors of A⇣ and nS are only a few percent. Also trying to constrain
nrun we see that the errors increase significantly, with an absolute
error on �nrun ' 0.07 rather independent of nS. If we change the
sensitivity by a factor f = �Ic/[10�26 W m�2 Hz�1 sr�1, all curved
can be rescaled by this factor to obtain the new estimate. Similarly,
if A⇣(k0 = 45 Mpc�1) di↵ers by f⇣ = A⇣/5 ⇥ 10�8, we have to
rescale the error estimates by f �1

⇣ . Overall, our analysis shows that
CMB spectral distortion measurement provide an unique probe of
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Figure 13. Detectability of µ, µ1, µ2, and µ3. For a given particle lifetime,
we compute the required value of ✏X = fX/zX for which a 1�-detection of
the corresponding variable is possible with PIXIE. The violet shaded area is
excluded by measurements of the primordial 3He/D abundance ratio (65%
c.l., adapted from Fig. 42 of Kawasaki et al. 2005).

the small-scale power spectrum, which can be utilized to directly
constraint inflationary models.

5.2.3 Decaying relic particles

The distortion signals for the three decaying particle scenarios pre-
sented in Table 1 will all be detectable with a PIXIE-like experi-
ment. More generally, Fig. 13 shows the 1�-detection limits for µ,
µ1, µ2, and µ3, as a function of the particle lifetime. CMB spec-
tral distortions are sensitive to decaying particles with ✏X as low as
' 10�2 eV for particle lifetimes 107 sec . tX . 1010 sec. To directly
constrain tX, at least a measurement of µ1 is needed. At PIXIE sen-
sitivity this means that the lifetime of particles with 2 ⇥ 109 sec .
tX . 6⇥1010 sec for ✏X & 0.1 eV and 3⇥108 sec . tX . 1012 sec for
✏X & 1 eV will be directly measurable. Most of this parameter space
is completely unconstrained [see upper limit from measurements of
the primordial 3He/D abundance ratio2 (from Fig. 42 of Kawasaki
et al. 2005) in Fig. 13]. Higher sensitivity will allow cutting deeper
into the parameter space and widen the range over which the parti-
cle lifetime can be directly constrained.

To illustrate this even further we can again look at the µ �
⇢k-parameter space covered by decaying particles. The projections
into the µ � ⇢1 and ⇢1 � ⇢2-plane are shown in Fig. 14 for ✏X =
1 eV and PIXIE settings. Varying ✏X moves the µ�⇢1 trajectory left
or right, as indicated. Furthermore, all error bars of ⇢k have to be
rescales by f = [✏X/1 eV]�1 under this transformation. Measuring
µ and ⇢1 is in principle su�cient for determination of ✏X and the
particle lifetime, tX = [4.9⇥109/(1+zX)]2 sec, with most sensitivity
around zX ' 5 ⇥ 104 � 105 or tX ' 2.4 ⇥ 109 � 9.6 ⇥ 109 sec for
the shown scenario. For short lifetime, the signal is very close to a

2 In the particle physics community the abundance yield, YX = NX/S ,
and deposited particle energy, Evis [GeV], are commonly used. Here NX
is the particle number density at t ⌧ tX and S = 4

3
⇢

kT ' 7 N� '
2.9 ⇥ 103 (1 + z)3 cm�3 denotes the total entropy density. We thus find
✏X ⌘ (Evis YX) 109S/[NH (1 + zX)] ' 1.5 ⇥ 1019(Evis YX)/(1 + zX).
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Figure 12. Expected uncertainties of A⇣ (k0 = 45 Mpc�1), nS, and nrun using
measurements of µ, µ1, and µ2. We assumed 5 times the sensitivity of PIXIE
and A⇣ = 5⇥10�8 as reference value (other cases can be estimated by simple
rescaling). For the upper panel we also varied nrun as indicated, while in the
lower panel it was fixed to nrun = 0. The corresponding error in the particle
lifetime is �tX/tX ' 2�zX/zX.

though the absolute distance between line varies relative to the er-
ror bars they seem rather constant. To show this more explicitly,
from µ, µ1, and µ2 we computed we the expected 1�-errors on
A⇣(k0 = 45 Mpc�1), nS, and nrun around the maximum likelihood
value using the Fisher information matrix, Fi j = �µ�2 @piµ @p jµ +P

k �µ
�2
k @piµk@p jµk, with p ⌘ {A⇣ , nS, nrun}. Figure 12 shows the

corresponding forecasts assuming PIXIE-setting but with 5 times
its sensitivity. If only p ⌘ {A⇣ , nS} are estimate for fixed nrun, the
errors of A⇣ and nS are only a few percent. Also trying to constrain
nrun we see that the errors increase significantly, with an absolute
error on �nrun ' 0.07 rather independent of nS. If we change the
sensitivity by a factor f = �Ic/[10�26 W m�2 Hz�1 sr�1, all curved
can be rescaled by this factor to obtain the new estimate. Similarly,
if A⇣(k0 = 45 Mpc�1) di↵ers by f⇣ = A⇣/5 ⇥ 10�8, we have to
rescale the error estimates by f �1

⇣ . Overall, our analysis shows that
CMB spectral distortion measurement provide an unique probe of
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Figure 13. Detectability of µ, µ1, µ2, and µ3. For a given particle lifetime,
we compute the required value of ✏X = fX/zX for which a 1�-detection of
the corresponding variable is possible with PIXIE. The violet shaded area is
excluded by measurements of the primordial 3He/D abundance ratio (65%
c.l., adapted from Fig. 42 of Kawasaki et al. 2005).

the small-scale power spectrum, which can be utilized to directly
constraint inflationary models.

5.2.3 Decaying relic particles

The distortion signals for the three decaying particle scenarios pre-
sented in Table 1 will all be detectable with a PIXIE-like experi-
ment. More generally, Fig. 13 shows the 1�-detection limits for µ,
µ1, µ2, and µ3, as a function of the particle lifetime. CMB spec-
tral distortions are sensitive to decaying particles with ✏X as low as
' 10�2 eV for particle lifetimes 107 sec . tX . 1010 sec. To directly
constrain tX, at least a measurement of µ1 is needed. At PIXIE sen-
sitivity this means that the lifetime of particles with 2 ⇥ 109 sec .
tX . 6⇥1010 sec for ✏X & 0.1 eV and 3⇥108 sec . tX . 1012 sec for
✏X & 1 eV will be directly measurable. Most of this parameter space
is completely unconstrained [see upper limit from measurements of
the primordial 3He/D abundance ratio2 (from Fig. 42 of Kawasaki
et al. 2005) in Fig. 13]. Higher sensitivity will allow cutting deeper
into the parameter space and widen the range over which the parti-
cle lifetime can be directly constrained.

To illustrate this even further we can again look at the µ �
⇢k-parameter space covered by decaying particles. The projections
into the µ � ⇢1 and ⇢1 � ⇢2-plane are shown in Fig. 14 for ✏X =
1 eV and PIXIE settings. Varying ✏X moves the µ�⇢1 trajectory left
or right, as indicated. Furthermore, all error bars of ⇢k have to be
rescales by f = [✏X/1 eV]�1 under this transformation. Measuring
µ and ⇢1 is in principle su�cient for determination of ✏X and the
particle lifetime, tX = [4.9⇥109/(1+zX)]2 sec, with most sensitivity
around zX ' 5 ⇥ 104 � 105 or tX ' 2.4 ⇥ 109 � 9.6 ⇥ 109 sec for
the shown scenario. For short lifetime, the signal is very close to a

2 In the particle physics community the abundance yield, YX = NX/S ,
and deposited particle energy, Evis [GeV], are commonly used. Here NX
is the particle number density at t ⌧ tX and S = 4

3
⇢

kT ' 7 N� '
2.9 ⇥ 103 (1 + z)3 cm�3 denotes the total entropy density. We thus find
✏X ⌘ (Evis YX) 109S/[NH (1 + zX)] ' 1.5 ⇥ 1019(Evis YX)/(1 + zX).
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Figure 12. Expected uncertainties of A⇣ (k0 = 45 Mpc�1), nS, and nrun using
measurements of µ, µ1, and µ2. We assumed 5 times the sensitivity of PIXIE
and A⇣ = 5⇥10�8 as reference value (other cases can be estimated by simple
rescaling). For the upper panel we also varied nrun as indicated, while in the
lower panel it was fixed to nrun = 0.

dependence on nrun seems rather similar in all parts of parameter
space: although the absolute distance between line varies relative
to the error bars they seem rather constant. To show this more ex-
plicitly, from µ, µ1, and µ2 we compute the expected 1�-errors on
A⇣(k0 = 45 Mpc�1), nS, and nrun around the maximum likelihood
value using the Fisher information matrix, Fi j = �µ�2 @piµ @p jµ +P

k �µ
�2
k @piµk@p jµk, with p ⌘ {A⇣ , nS, nrun}. Figure 12 shows the

corresponding forecasts assuming PIXIE-setting but with 5 times
its sensitivity. If only p ⌘ {A⇣ , nS} are estimated for fixed nrun, the
errors of A⇣ and nS are only a few percent. When also trying to con-
strain nrun, we see that the uncertainties in the values of A⇣ and nS

increase by about one order of magnitude, with an absolute error
�nrun ' 0.07 rather independent of nS. Little information is added
when also µ3 can be measured (we find small di↵erences for small
nS when nrun is varied), although for model-comparison µ3 could
become important.

We can also use the results of Figure 12 to estimate the ex-
pected uncertainties for other cases. Adjusting the spectral sensi-
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Figure 13. Detectability of µ, µ1, µ2, and µ3. For a given particle lifetime,
we compute the required value of ✏X = fX/zX for which a 1�-detection of
the corresponding variable is possible with PIXIE. The violet shaded area is
excluded by measurements of the primordial 3He/D abundance ratio (1�-
level, adapted from Fig. 42 of Kawasaki et al. 2005).

tivity by a factor f = �Ic/[10�26 W m�2 Hz�1 sr�1], all curves can
be rescaled by this factor to obtain the new estimates for the er-
rors. Similarly, if A⇣(k0 = 45 Mpc�1) di↵ers by f⇣ = A⇣/5 ⇥ 10�8,
we have to rescale the error estimates by f �1

⇣ . We checked the pre-
dicted uncertainties for some representative cases using the MCMC
method of Chluba (2013a), finding excellent agreement Overall,
our analysis shows that CMB SD measurement provide an unique
probe of the small-scale power spectrum, which can be utilized
to directly constraint inflationary models. Especially, if the small-
scale power spectrum is close to scale-invariant with small running,
very robust constraints can be expected from PIXIE and PRISM, if
A⇣(k0 = 45 Mpc�1) ' 10�8 � 10�7.

5.3.3 Decaying relic particles

The distortion signals for the three decaying particle scenarios pre-
sented in Table 2 will all be detectable with a PIXIE-like experi-
ment. More generally, Fig. 13 shows the 1�-detection limits for µ,
µ1, µ2, and µ3, as a function of the particle lifetime. CMB SDs are
sensitive to decaying particles with ✏X = fX/zX as low as ' 10�2 eV
for particle lifetimes 107 sec . tX . 1010 sec. To directly constrain
tX, at least a measurement of µ1 is needed. At PIXIE sensitivity
this means that the lifetime of particles with 2 ⇥ 109 sec . tX .
6 ⇥ 1010 sec for ✏X & 0.1 eV and 3 ⇥ 108 sec . tX . 1012 sec for
✏X & 1 eV will be directly measurable. Most of this parameter space
is completely unconstrained [see upper limit from measurements of
the primordial 3He/D abundance ratio8 (from Fig. 42 of Kawasaki
et al. 2005) in Fig. 13]. Higher sensitivity will allow cutting deeper

8 In the particle physics community the abundance yield, YX = NX/S ,
and deposited particle energy, Evis [GeV], are commonly used. Here, NX
is the particle number density at t ⌧ tX and S = 4

3
⇢

kT ' 7 N� '
2.9 ⇥ 103 (1 + z)3 cm�3 denotes the total entropy density. We thus find
✏X ⌘ (Evis YX) 109S/[NH (1 + zX)] ' 1.5 ⇥ 1019(Evis YX)/(1 + zX).
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Figure 12. Expected uncertainties of A⇣ (k0 = 45 Mpc�1), nS, and nrun using
measurements of µ, µ1, and µ2. We assumed 5 times the sensitivity of PIXIE
and A⇣ = 5⇥10�8 as reference value (other cases can be estimated by simple
rescaling). For the upper panel we also varied nrun as indicated, while in the
lower panel it was fixed to nrun = 0.

dependence on nrun seems rather similar in all parts of parameter
space: although the absolute distance between line varies relative
to the error bars they seem rather constant. To show this more ex-
plicitly, from µ, µ1, and µ2 we compute the expected 1�-errors on
A⇣(k0 = 45 Mpc�1), nS, and nrun around the maximum likelihood
value using the Fisher information matrix, Fi j = �µ�2 @piµ @p jµ +P

k �µ
�2
k @piµk@p jµk, with p ⌘ {A⇣ , nS, nrun}. Figure 12 shows the

corresponding forecasts assuming PIXIE-setting but with 5 times
its sensitivity. If only p ⌘ {A⇣ , nS} are estimated for fixed nrun, the
errors of A⇣ and nS are only a few percent. When also trying to con-
strain nrun, we see that the uncertainties in the values of A⇣ and nS

increase by about one order of magnitude, with an absolute error
�nrun ' 0.07 rather independent of nS. Little information is added
when also µ3 can be measured (we find small di↵erences for small
nS when nrun is varied), although for model-comparison µ3 could
become important.

We can also use the results of Figure 12 to estimate the ex-
pected uncertainties for other cases. Adjusting the spectral sensi-
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Figure 13. Detectability of µ, µ1, µ2, and µ3. For a given particle lifetime,
we compute the required value of ✏X = fX/zX for which a 1�-detection of
the corresponding variable is possible with PIXIE. The violet shaded area is
excluded by measurements of the primordial 3He/D abundance ratio (1�-
level, adapted from Fig. 42 of Kawasaki et al. 2005).

tivity by a factor f = �Ic/[10�26 W m�2 Hz�1 sr�1], all curves can
be rescaled by this factor to obtain the new estimates for the er-
rors. Similarly, if A⇣(k0 = 45 Mpc�1) di↵ers by f⇣ = A⇣/5 ⇥ 10�8,
we have to rescale the error estimates by f �1

⇣ . We checked the pre-
dicted uncertainties for some representative cases using the MCMC
method of Chluba (2013a), finding excellent agreement Overall,
our analysis shows that CMB SD measurement provide an unique
probe of the small-scale power spectrum, which can be utilized
to directly constraint inflationary models. Especially, if the small-
scale power spectrum is close to scale-invariant with small running,
very robust constraints can be expected from PIXIE and PRISM, if
A⇣(k0 = 45 Mpc�1) ' 10�8 � 10�7.

5.3.3 Decaying relic particles

The distortion signals for the three decaying particle scenarios pre-
sented in Table 2 will all be detectable with a PIXIE-like experi-
ment. More generally, Fig. 13 shows the 1�-detection limits for µ,
µ1, µ2, and µ3, as a function of the particle lifetime. CMB SDs are
sensitive to decaying particles with ✏X = fX/zX as low as ' 10�2 eV
for particle lifetimes 107 sec . tX . 1010 sec. To directly constrain
tX, at least a measurement of µ1 is needed. At PIXIE sensitivity
this means that the lifetime of particles with 2 ⇥ 109 sec . tX .
6 ⇥ 1010 sec for ✏X & 0.1 eV and 3 ⇥ 108 sec . tX . 1012 sec for
✏X & 1 eV will be directly measurable. Most of this parameter space
is completely unconstrained [see upper limit from measurements of
the primordial 3He/D abundance ratio8 (from Fig. 42 of Kawasaki
et al. 2005) in Fig. 13]. Higher sensitivity will allow cutting deeper

8 In the particle physics community the abundance yield, YX = NX/S ,
and deposited particle energy, Evis [GeV], are commonly used. Here, NX
is the particle number density at t ⌧ tX and S = 4

3
⇢

kT ' 7 N� '
2.9 ⇥ 103 (1 + z)3 cm�3 denotes the total entropy density. We thus find
✏X ⌘ (Evis YX) 109S/[NH (1 + zX)] ' 1.5 ⇥ 1019(Evis YX)/(1 + zX).
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Figure 12. Expected uncertainties of A⇣ (k0 = 45 Mpc�1), nS, and nrun using
measurements of µ, µ1, and µ2. We assumed 5 times the sensitivity of PIXIE
and A⇣ = 5⇥10�8 as reference value (other cases can be estimated by simple
rescaling). For the upper panel we also varied nrun as indicated, while in the
lower panel it was fixed to nrun = 0.

dependence on nrun seems rather similar in all parts of parameter
space: although the absolute distance between line varies relative
to the error bars they seem rather constant. To show this more ex-
plicitly, from µ, µ1, and µ2 we compute the expected 1�-errors on
A⇣(k0 = 45 Mpc�1), nS, and nrun around the maximum likelihood
value using the Fisher information matrix, Fi j = �µ�2 @piµ @p jµ +P

k �µ
�2
k @piµk@p jµk, with p ⌘ {A⇣ , nS, nrun}. Figure 12 shows the

corresponding forecasts assuming PIXIE-setting but with 5 times
its sensitivity. If only p ⌘ {A⇣ , nS} are estimated for fixed nrun, the
errors of A⇣ and nS are only a few percent. When also trying to con-
strain nrun, we see that the uncertainties in the values of A⇣ and nS

increase by about one order of magnitude, with an absolute error
�nrun ' 0.07 rather independent of nS. Little information is added
when also µ3 can be measured (we find small di↵erences for small
nS when nrun is varied), although for model-comparison µ3 could
become important.

We can also use the results of Figure 12 to estimate the ex-
pected uncertainties for other cases. Adjusting the spectral sensi-

48004.8x10
6

2x10
6

5x10
5

10
5

5x10
4

2x10
4

10
4

2x10
5

z
X

10
-17

10
-16

10
-15

10
-14

10
-13

10
-12

E
v

is
Y

X
  

[ 
G

eV
 ]

µ

µ
1

µ
2

µ
3

10
6

10
7

10
8

10
9

10
10

10
11

10
12

t
X

 [ sec ]

3
He / D 

 bound

Figure 13. Detectability of µ, µ1, µ2, and µ3. For a given particle lifetime,
we compute the required value of ✏X = fX/zX for which a 1�-detection of
the corresponding variable is possible with PIXIE. The violet shaded area is
excluded by measurements of the primordial 3He/D abundance ratio (1�-
level, adapted from Fig. 42 of Kawasaki et al. 2005).

tivity by a factor f = �Ic/[10�26 W m�2 Hz�1 sr�1], all curves can
be rescaled by this factor to obtain the new estimates for the er-
rors. Similarly, if A⇣(k0 = 45 Mpc�1) di↵ers by f⇣ = A⇣/5 ⇥ 10�8,
we have to rescale the error estimates by f �1

⇣ . We checked the pre-
dicted uncertainties for some representative cases using the MCMC
method of Chluba (2013a), finding excellent agreement Overall,
our analysis shows that CMB SD measurement provide an unique
probe of the small-scale power spectrum, which can be utilized
to directly constraint inflationary models. Especially, if the small-
scale power spectrum is close to scale-invariant with small running,
very robust constraints can be expected from PIXIE and PRISM, if
A⇣(k0 = 45 Mpc�1) ' 10�8 � 10�7.

5.3.3 Decaying relic particles

The distortion signals for the three decaying particle scenarios pre-
sented in Table 2 will all be detectable with a PIXIE-like experi-
ment. More generally, Fig. 13 shows the 1�-detection limits for µ,
µ1, µ2, and µ3, as a function of the particle lifetime. CMB SDs are
sensitive to decaying particles with ✏X = fX/zX as low as ' 10�2 eV
for particle lifetimes 107 sec . tX . 1010 sec. To directly constrain
tX, at least a measurement of µ1 is needed. At PIXIE sensitivity
this means that the lifetime of particles with 2 ⇥ 109 sec . tX .
6 ⇥ 1010 sec for ✏X & 0.1 eV and 3 ⇥ 108 sec . tX . 1012 sec for
✏X & 1 eV will be directly measurable. Most of this parameter space
is completely unconstrained [see upper limit from measurements of
the primordial 3He/D abundance ratio8 (from Fig. 42 of Kawasaki
et al. 2005) in Fig. 13]. Higher sensitivity will allow cutting deeper

8 In the particle physics community the abundance yield, YX = NX/S ,
and deposited particle energy, Evis [GeV], are commonly used. Here, NX
is the particle number density at t ⌧ tX and S = 4

3
⇢

kT ' 7 N� '
2.9 ⇥ 103 (1 + z)3 cm�3 denotes the total entropy density. We thus find
✏X ⌘ (Evis YX) 109S/[NH (1 + zX)] ' 1.5 ⇥ 1019(Evis YX)/(1 + zX).
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Figure 12. Expected uncertainties of A⇣ (k0 = 45 Mpc�1), nS, and nrun using
measurements of µ, µ1, and µ2. We assumed 5 times the sensitivity of PIXIE
and A⇣ = 5⇥10�8 as reference value (other cases can be estimated by simple
rescaling). For the upper panel we also varied nrun as indicated, while in the
lower panel it was fixed to nrun = 0.

dependence on nrun seems rather similar in all parts of parameter
space: although the absolute distance between line varies relative
to the error bars they seem rather constant. To show this more ex-
plicitly, from µ, µ1, and µ2 we compute the expected 1�-errors on
A⇣(k0 = 45 Mpc�1), nS, and nrun around the maximum likelihood
value using the Fisher information matrix, Fi j = �µ�2 @piµ @p jµ +P

k �µ
�2
k @piµk@p jµk, with p ⌘ {A⇣ , nS, nrun}. Figure 12 shows the

corresponding forecasts assuming PIXIE-setting but with 5 times
its sensitivity. If only p ⌘ {A⇣ , nS} are estimated for fixed nrun, the
errors of A⇣ and nS are only a few percent. When also trying to con-
strain nrun, we see that the uncertainties in the values of A⇣ and nS

increase by about one order of magnitude, with an absolute error
�nrun ' 0.07 rather independent of nS. Little information is added
when also µ3 can be measured (we find small di↵erences for small
nS when nrun is varied), although for model-comparison µ3 could
become important.

We can also use the results of Figure 12 to estimate the ex-
pected uncertainties for other cases. Adjusting the spectral sensi-
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Figure 13. Detectability of µ, µ1, µ2, and µ3. For a given particle lifetime,
we compute the required value of ✏X = fX/zX for which a 1�-detection of
the corresponding variable is possible with PIXIE. The violet shaded area is
excluded by measurements of the primordial 3He/D abundance ratio (1�-
level, adapted from Fig. 42 of Kawasaki et al. 2005).

tivity by a factor f = �Ic/[10�26 W m�2 Hz�1 sr�1], all curves can
be rescaled by this factor to obtain the new estimates for the er-
rors. Similarly, if A⇣(k0 = 45 Mpc�1) di↵ers by f⇣ = A⇣/5 ⇥ 10�8,
we have to rescale the error estimates by f �1

⇣ . We checked the pre-
dicted uncertainties for some representative cases using the MCMC
method of Chluba (2013a), finding excellent agreement Overall,
our analysis shows that CMB SD measurement provide an unique
probe of the small-scale power spectrum, which can be utilized
to directly constraint inflationary models. Especially, if the small-
scale power spectrum is close to scale-invariant with small running,
very robust constraints can be expected from PIXIE and PRISM, if
A⇣(k0 = 45 Mpc�1) ' 10�8 � 10�7.

5.3.3 Decaying relic particles

The distortion signals for the three decaying particle scenarios pre-
sented in Table 2 will all be detectable with a PIXIE-like experi-
ment. More generally, Fig. 13 shows the 1�-detection limits for µ,
µ1, µ2, and µ3, as a function of the particle lifetime. CMB SDs are
sensitive to decaying particles with ✏X = fX/zX as low as ' 10�2 eV
for particle lifetimes 107 sec . tX . 1010 sec. To directly constrain
tX, at least a measurement of µ1 is needed. At PIXIE sensitivity
this means that the lifetime of particles with 2 ⇥ 109 sec . tX .
6 ⇥ 1010 sec for ✏X & 0.1 eV and 3 ⇥ 108 sec . tX . 1012 sec for
✏X & 1 eV will be directly measurable. Most of this parameter space
is completely unconstrained [see upper limit from measurements of
the primordial 3He/D abundance ratio8 (from Fig. 42 of Kawasaki
et al. 2005) in Fig. 13]. Higher sensitivity will allow cutting deeper

8 In the particle physics community the abundance yield, YX = NX/S ,
and deposited particle energy, Evis [GeV], are commonly used. Here, NX
is the particle number density at t ⌧ tX and S = 4

3
⇢

kT ' 7 N� '
2.9 ⇥ 103 (1 + z)3 cm�3 denotes the total entropy density. We thus find
✏X ⌘ (Evis YX) 109S/[NH (1 + zX)] ' 1.5 ⇥ 1019(Evis YX)/(1 + zX).
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Sensitive to lifetime 
over a wider range!

Complementary to 
CMB anisotropies!



The dissipation of small-scale acoustic modes



Dissipation of small-scale acoustic modes



Dissipation of small-scale acoustic modes

Keisler et al., 2011, ApJ

Damping Tail

nS = 0.9663 ± 0.0112

TestTest



Hu & White, 1997, ApJ

Silk-damping is 
equivalent to 
energy release!

Dissipation of small-scale acoustic modes



Energy release caused by dissipation process

‘Obvious’ dependencies:
• Amplitude of the small-scale power spectrum

• Shape of the small-scale power spectrum

• Dissipation scale → kD ~ (H0 Ωrel1/2 Ne,0)1/2 (1+z)3/2 at early times

not so ‘obvious’ dependencies:
• primordial non-Gaussianity in the squeezed limit                          

(Pajer & Zaldarriaga, 2012; Ganc & Komatsu, 2012)

• Type of the perturbations (adiabatic ↔ isocurvature)                               
(Barrow & Coles, 1991; Hu et al., 1994; Dent et al, 2012, JC & Grin, 2012)

• Neutrinos (or any extra relativistic degree of freedom)
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CMB Spectral distortions provide probe of Inflation physics!!!
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Superpositions of blackbody spectra

Zeldovich, Illarionov & Sunyaev, 1972 
JC & Sunyaev 2004

 Average spectrum is NOT 
a blackbody at the 
average temperature T0 !

y-distortionstemperature shift

<T> = (T1+T2)/2==T0 t

0

⇒ 2/3 of the stored energy 
appears as temperature shift
⇒ 1/3 as y-distortion!



Distortion caused by superposition of blackbodies

• average spectrum

⇒  

• known with very high precision 

JC & Sunyaev, 2004
JC, Khatri & Sunyaev, 2012
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Distortion caused by superposition of blackbodies

• average spectrum

⇒  

• known with very high precision 

JC & Sunyaev, 2004
JC, Khatri & Sunyaev, 2012

y ' 1
2

*✓
�T

T

◆2
+
⇡ 8⇥ 10�10

�Tsup ' T

*✓
�T

T

◆2
+
⇡ 4.4nK

• CMB dipole ( βc ~ 1.23x10-3)

⇒  

• electrons are up-scattered
• can be taken out at the level 

of ~ 10-9

�Tsup ' T
�2

c

3
⇡ 1.4µK

y ' �2
c

6
⇡ 2.6⇥ 10�7

COBE/DMR: ΔT = 3.353 mK



Our computation for the effective energy release

JC, Khatri & Sunyaev, 2012

WMAP7 case

Power spectrum 
with running

scaled such that constant for nS =1

• Amplitude of the distortion 
depends on the small-
scale power spectrum

• Computation carried out 
with CosmoTherm              
(JC & Sunyaev 2011)

• Our 2. order perturbation 
calculation showed that 
the classical picture was 
slightly inconsistent

Primordial power spectrum of curvature 
perturbations is input for the calculation



Which modes dissipate in the µ and y-eras?

JC, Erickcek & Ben-Dayan, 2012

• Modes with wavenumber                  
50 Mpc-1 < k < 104 Mpc-1  
dissipate their energy 
during the µ-era

• Modes with k < 50 Mpc-1 
cause y-distortion

• Single mode with 
wavenumber k 
dissipates its energy at 

    

  zd ~ 4.5x105(k Mpc/103)2/3
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But this is not all that one could look at !!!



Power spectrum constraints

• Amplitude of power spectrum rather uncertain at k > 3 Mpc-1

• improving limits at smaller scales would constrain inflationary models

Bringmann, Scott & Akrami, 2011, ArXiv:1110.2484 

CMB et al.

rather model dependent



Power spectrum constraints

• Amplitude of power spectrum rather uncertain at k > 3 Mpc-1

• improving limits at smaller scales would constrain inflationary models

Bringmann, Scott & Akrami, 2011, ArXiv:1110.2484 

CMB et al.

rather model dependent

CMB distortions

• CMB spectral distortions could allow extending our lever arm to k ~ 104 Mpc-1

• See JC, Erickcek & Ben-Dayan, 2012 for constraints on more general P(k)
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Probing the small-scale power spectrum

JC, 2013, Arxiv:1304.6120

8 Chluba

type experiment is unable to constrain the lifetime of the particle.
The degeneracy is already broken at twice the sensitivity of PIXIE,
yielding ' 29% error on fX/zX and ' 17% error on zX. This fur-
ther improves to ' 14% uncertainty in fX/zX and a ' 9% error on
zX for four times the sensitivity of PIXIE. This energy-release sce-
nario corresponds to �⇢�/⇢� ' 6.4 ⇥ 10�7, so that the distortion is
comparable in amplitude to the y-signal from late times. Assuming
that less energy is liberated by the decaying particle increases the
errors (and hence the degeneracy), and conversely, for larger decay
energy the errors diminish. Overall, a PIXIE-type experiment will
provide a pretty good probe for long-lived particles with lifetimes
tX ' 6 ⇥ 108 sec � 1010 sec and fX/zX & 1 eV.

5 DISSIPATION OF SMALL-SCALE ACOUSTIC MODES

The prospect of accurate measurements of the CMB spectrum with
a PIXIE-type experiment spurred renewed interests in how primor-
dial perturbations at small-scales dissipate their energy (Chluba
& Sunyaev 2012; Khatri et al. 2012a; Pajer & Zaldarriaga 2012;
Chluba et al. 2012b; Dent et al. 2012; Ganc & Komatsu 2012;
Chluba et al. 2012a; Powell 2012; Khatri & Sunyaev 2013; Chluba
& Grin 2013). It was shown, that this e↵ect can be used to place
tight limits on the amplitude and shape of the power spectrum at
scales far smaller than what is probed with measurements of the
CMB anisotropies, in principle allowing to discover the distortion
signatures from several classes of early universe models (e.g., see
Chluba et al. 2012a).

Taking a conservative perspective, one can assume that the
power spectrum of curvature perturbations is fully determined by
CMB anisotropy measurements at large scales, implying an ampli-
tude A⇣ ' 2.2 ⇥ 10�9, spectral index nS ' 0.96, and its running
nrun ' �0.02, at pivot scale k0 = 0.05 Mpc�1 (Planck Collaboration
et al. 2013b). This is a significant extrapolation from wavenumbers
k < 1 Mpc�1 all the way to k ' few⇥104 Mpc�1, and it was already
argued that for a PIXIE-type experiment the signal remains just
short of the 1�-detection limit (Chluba & Sunyaev 2012; Chluba
et al. 2012b). Improving the sensitivity a few times will allow a de-
tection of this signal, however, given that the errors on A⇣ and nS

from CMB data are now . 1%, to use spectral distortion alone as
a competitive probe, we find that a factor of ' 100 � 200 improve-
ment in the sensitivity is necessary. The strongest dependence of
the distortion signal is due to nrun (see Fig. 6 for illustration), since
small changes a↵ect the amplitude of the small-scale power spec-
trum and hence the associated spectral distortion by a large amount
(Khatri et al. 2012a; Chluba et al. 2012b), providing some ampli-
fication. Still, this application of spectral distortion measurements
remains futuristic, being comparable to the challenge of measuring
the cosmological hydrogen and helium recombination features with
high precision.

Both from the theoretical and observational point of view,
there is, however, no reason to believe that the small-scale power
spectrum is described by what is dictated by large-scale measure-
ments. There is no shortage of models that create, bumps, kinks,
steps, or oscillatory features in the primordial power spectrum (e.g.,
Salopek et al. 1989; Starobinskij 1992; Ivanov et al. 1994; Ran-
dall et al. 1996; Stewart 1997b; Copeland et al. 1998; Starobinsky
1998; Chung et al. 2000; Hunt & Sarkar 2007; Joy et al. 2008;
Barnaby et al. 2009; Barnaby 2010a; Ben-Dayan & Brustein 2010;
Achúcarro et al. 2011; Céspedes et al. 2012), and direct observa-
tional constraints (e.g., see Bringmann et al. 2012, for overview)
leave large room for excess power at k & few ⇥Mpc�1. The recent
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Figure 6. E↵ective heating rate (upper panel) and associated spectral dis-
tortion (lower panel) caused by the dissipation of small-scale acoustic
modes in di↵erent scenarios. For reference we show a y-distortion with
y = 2 ⇥ 10�9. For the standard power spectrum we used A⇣ = 2.2 ⇥ 10�9

and nS = 0.96 at pivot scale k0 = 0.05 Mpc�1. All but one case are without
running. The two scenarios with a step and bend of the primordial power
spectrum lead to rather similar distortions (modulo and overall factor), and
thus become hard to distinguish, although each model should be detectable
with a PIXIE-like experiment at more than 5�-confidence.

results obtained with Planck, e.g., from limits to non-Gaussianity
(Planck Collaboration et al. 2013e), certainly further reduce the
allowed parameter space for di↵erent models, but the existence
of large-scale anomalies (Planck Collaboration et al. 2013d), and
possible small-scale power spectrum features (Planck Collabora-
tion et al. 2013c) indicate that matters might be more complex. A
PIXIE-type experiment will therefore open up a new window to
early-universe models, no matter if a distortion is detected or not.

Given the range of possibilities, we shall pick a few illustrative
cases, representing simple classes of models. Detailed constraints
on specific models should be derived in a case-by-case basis, how-
ever, our selection provides some intuition for what could be possi-
ble in the future. We start with a simple step, �A⇣ > 0, in the ampli-
tude of the curvature power spectrum at di↵erent k & few⇥Mpc�1,
assuming a spectral index n0S. If n0S ' 1 and ks ' 3 Mpc�1, from
the practical point of view this case is degenerate with the spectral
distortion produced by s-wave annihilation [both have a heating

c� 0000 RAS, MNRAS 000, 000–000
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spectrum lead to rather similar distortions (modulo and overall factor), and
thus become hard to distinguish, although each model should be detectable
with a PIXIE-like experiment at more than 5�-confidence.

results obtained with Planck, e.g., from limits to non-Gaussianity
(Planck Collaboration et al. 2013e), certainly further reduce the
allowed parameter space for di↵erent models, but the existence
of large-scale anomalies (Planck Collaboration et al. 2013d), and
possible small-scale power spectrum features (Planck Collabora-
tion et al. 2013c) indicate that matters might be more complex. A
PIXIE-type experiment will therefore open up a new window to
early-universe models, no matter if a distortion is detected or not.

Given the range of possibilities, we shall pick a few illustrative
cases, representing simple classes of models. Detailed constraints
on specific models should be derived in a case-by-case basis, how-
ever, our selection provides some intuition for what could be possi-
ble in the future. We start with a simple step, �A⇣ > 0, in the ampli-
tude of the curvature power spectrum at di↵erent k & few⇥Mpc�1,
assuming a spectral index n0S. If n0S ' 1 and ks ' 3 Mpc�1, from
the practical point of view this case is degenerate with the spectral
distortion produced by s-wave annihilation [both have a heating
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many models with excess 
small-scale power can be ruled 
out already with a PIXIE-type 
experiment!



Dissipation scenario: 1σ-detection limits for PIXIE

JC & Jeong, 2013

Distortion PCA 11
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Figure 10. 1�-detection limits for µ, µ1, µ2, and µ3 caused by dissipation
of small-scale acoustic modes for PIXIE-like settings. We used the standard
parametrization for the power spectrum with amplitude, A⇣ , spectral index,
nS, and running nrun around pivot scale k0 = 45 Mpc�1. The heavy lines are
for nrun = 0, while all other lines are for nrun = {�0.1, 0.1} in each group.
For reference we marked the case nrun = 0.1.

tor & 200 over PIXIE will be necessary, making this application of
spectral distortions very futuristic (see also Chluba 2013a).

The exact shape and amplitude of the small-scale power spec-
trum are, however, unknown, and a large range of viable early-
universe models producing enhanced small-scale power exist (see,
Chluba et al. 2012a, for examples). Observationally, the amplitude
of the small-scale power spectrum is limited to A⇣ . 10�7 � 10�6 at
wavenumber 3 Mpc�1 . k . few ⇥ 104 Mpc�1 (the range that is of
most interest for CMB distortions) using ultra-compact minihalos
(Bringmann et al. 2012; Scott et al. 2012). Although not absolutely
model-independent, this leaves lots of room for non-standard dissi-
pation scenarios.

Shifting the pivot scale to k0 = 45 Mpc�1 (corresponding to
heating around zdiss ' 4.5 ⇥ 105[k/103 Mpc�1]2/3 ' 5.7 ⇥ 104) and
using the standard parameterization for the power spectrum, we can
ask, how large A⇣(k0 = 45 Mpc�1) has to be to obtain a 1�-detection
of µ, µ1, µ2, and µ3, respectively. The results of this exercise are
shown in Fig. 10 for PIXIE settings. Around nS ' 1, detections of
µ are possible for A⇣ & 10�9, while A⇣ & 6 ⇥ 10�9 is necessary
to also have a detection of µ1. In this case two of the three model-
parameters can in principle be constrained independently. To also
access information from µ2 and µ3 one furthermore needs A⇣ &
10�7. In this case we could expect to break the degeneracy between
all three parameters.

These statements can be phrased in another way. Assuming
A⇣ ' 10�9, at least a factor of 5 improvement over PIXIE sensitivity
is needed to allow constraining combinations of two power spec-
trum parameters. To measure all p = {A⇣(k0 = 45 Mpc�1), nS, nrun}
independently an overall factor of ' 200 improvement over PIXIE
sensitivity is required, although in this (very conservative) case the
corresponding constraints would still not be competitive with those
reached at large scales using CMB anisotropy measurements.

We can also ask the question of how well the power spec-
trum parameters can be constrained for di↵erent cases. If only µ is
available, then the corresponding constraints on small-scale power
spectrum parameters remain rather weak, but could still be used to
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Figure 11. Parameter range of µ, µ1, and µ2 for dissipation scenarios. We
assumed PIXIE settings with 5 times its sensitivity, and power spectrum
amplitude A⇣ (k0 = 45 Mpc�1) = 5⇥10�8 (i.e. A ⌘ A⇣/5⇥10�8). The heavy
solid black lines are for nrun = 0, while the thin solid brown lines indicate
nS = const. The other light lines are for nrun = {�0.2,�0.1, 0.1, 0.2}. The
open symbols mark nS in steps �nS = 0.1. The blue symbols with error
bars (tiny in the upper panel) are for nS = {0.5, 1, 1.5, 1.8} and nrun = 0 and
illustrate how the error scales in di↵erent regions of the parameter space.
Measurements in the µ � ⇢1 plane can be used to fix the overall amplitude
of the small-scale power spectrum for a given pair nS and nrun, but no in-
dependent constraint on nS and nrun can be deduced. The constraints on ⇢1
and ⇢2 allow to partially break the remaining degeneracy.

limit the parameters space (e.g., Chluba et al. 2012b,a). If µ and µ1

can be accessed, we can limit the overall amplitude of the power
spectrum for given pairs of nS and nrun. This can be seen from the
upper panel of Fig. 11, where we illustrate the possible parameter
space of µ, ⇢1 / µ1/µ and ⇢2 / µ2/µ in some range of nS and
nrun. For the considered sensitivity, the errors on µ and ⇢1 are very
small, but since the overall amplitude, A⇣ , can be adjusted without
a↵ecting ⇢1, the measurement is not independent of nS and nrun.

If in addition µ2 can be constrained the degeneracy can be bro-
ken. As Fig. 11 (lower panel) indicates, the relative dependence
on nrun seems rather similar in all parts of parameter space: al-
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A⇣ = 5⇥ 10�8

Distinguishing dissipation and decaying particle scenarios

JC & Jeong, 2013

• measurement of µ, 
µ1 & µ2 

• trajectories of 
decaying particle 
and dissipation  
scenarios differ!

• scenarios can in 
principle be 
distinguished
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The cosmological recombination radiation
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Another way to do CMB-based cosmology!
Direct probe of recombination physics!
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What would we actually learn by doing such hard job?

Cosmological Recombination Spectrum opens a way to measure:
  the specific entropy of our universe (related to Ωbh2)

  the CMB monopole temperature T0

  the pre-stellar abundance of helium Yp

  If recombination occurs as we think it does, then the lines can be predicted   
with very high accuracy! 

  In principle allows us to directly check our understanding of the standard 
recombination physics

If something unexpected or non-standard happened:
  non-standard thermal histories should leave some measurable traces
  direct way to measure/reconstruct the recombination history!
  possibility to distinguish pre- and post-recombination y-type distortions
  sensitive to energy release during recombination
  variation of fundamental constants



Dark matter annihilations / decays

JC, 2009, arXiv:0910.3663
•  Additional photons at all frequencies
•  Broadening of spectral features

•  Shifts in the positions
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Conclusions

• CMB spectral distortions open a new window to the 
early Universe and inflationary epoch

• complementary and independent source of 
information about our Universe not just confirmation

• simplicity of thermalization physics allows making 
very precise predictions for the distortions caused 
by different heating mechanisms

• in standard cosmology several processes lead to 
early energy release at a level that will be 
detectable in the future

• extremely interesting future for CMB                  
based science!


