Outline

- Series Solutions to ODEs
 - Taylor Series
 - Convergence
 - Linear independence

Series Solutions of ODEs

Taylor Series

Expand f(x) around some point x_0 in terms of $(x - x_0)$

$$f(x) = a_0 + a_1(x - x - 0) + a_2(x - x_0)^2 + \dots$$
$$= \sum_{n=0}^{\infty} a_n(x - x_0)^n$$

Use differentiation

$$\frac{d}{dx}(x-x_0)^n = n(x-x_0)^{n-1}$$

$$\frac{d^n}{dx^n}(x-x_0)^n = n(n-1)(n-2)\dots 1(x-x_0) = n!$$

$$\frac{d^{n+1}}{dx^{n+1}}(x-x_0)^n = 0$$

and note that $(x - x_0)^m|_{x = x_0} = 0$ if $m \le 1$.

$$\frac{d^{n}f}{dx^{n}}\Big|_{x=x_{0}} = 0 + \ldots + 0 + a_{n}n! + 0 + \ldots$$

$$\rightarrow a_{n} = \frac{1}{n!}f^{(n)}(x_{0})$$

$$f(x) = \sum_{n=0}^{\infty} \frac{1}{n!}f^{(n)}(x_{0})(x - x_{0})^{n}$$

Series converges if ratio of successive terms is less than 1. So if

$$\lim_{n\to\infty}\left|\frac{a_{n+1}x^{n+1}}{a_nx^n}\right| < 1.$$

But note that if n + 1 term is zero, need to compare ratio of n + 2 term to *n* term.

Linear Independence

All powers of x^n are linearly independent and

$$\sum_{n=0}^{\infty} a_n x^n = 0 \text{ for all } x$$

if and only if $a_n = 0$ for all *n*. So the Taylor series expansion of any function is unique. In general a set of functions $f_i(x)$ are linearly independent if

$$\sum_{i=0}^{\infty} a_i f_i = 0 \text{ for all } x$$

if and only if $a_i = 0$ for all *i*.

Test: Function f(x) and g(x) are linearly independent if

$$W = \left| egin{array}{cc} f & g \ rac{df}{dx} & rac{dg}{dx} \end{array}
ight| = fg' - gf' \
eq 0.$$

W is the Wronskian.

SHM series solution

See the handout SHM The Hard Way

Legendre's equation

$$(1-x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + l(l+1)y = 0$$

where *y* is defined for $-1 \le x \le +1$. Arises from separation of variables in spherical polar coordinates.

Legendre's polynomials

Solutions to Legendre's equation subject to the boundary condition that y(x) is regular (the function and its derivatives are finite) at $x = \pm 1$ are polynomials of order *I*, $P_I(x)$ - Legendre's polynomials.

Orthogonality

$$\int_{-1}^{1} P_{l}(x) P_{m}(x) dx = \begin{cases} 0 & \text{if } l \neq m \\ \frac{2}{2l+1} & \text{if } l = m \end{cases}$$

Legendre series expansion of a function f(x) on the region $-1 \le x \le +1$ is given by

$$f(x) = \sum_{l=0}^{\infty} c_l P_l(x)$$

Bessel functions

Bessel's equation

$$x^2\frac{d^2y}{dx^2} + x\frac{dy}{dz} + \left(x^2 - m^2\right)y = 0$$

with the boundary condition, solution finite at x = 0. Equation appears for free waves when separating variables in plane or cylindrical polar coordinates.

Solutions $J_m(x)$ - regular Bessel functions. (Series starts at x^m .)