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Wave Problems in 1D
A stretched string

What are these people doing (mathematically) ?



A stretched string

x=0

x=L

φ(x , t)

Transverse displacement φ(x , t) statisfies the wave equation

∂2φ

∂x2 =
1
c2
∂2φ

∂t2

where c is the wave speed.
Boundary conditions ?



The ends of the string are fixed.(At all times.)

φ(0, t) = φ(L, t) = 0

Problem: Given the initial φ(x ,0), find φ(x , t).
Example of a partial differential equation (PDE).



Separation of variables

Try a solution of the form

φ(x , t) = X (x)T (t)

Differentiate

∂φ

∂x
= T (t)

dX
dx

∂

∂x
∂φ

∂x
= T

d2X
dx2

Do the same for t . Substitute in to the PDE.

d2X
dx2 = −k2X

d2T
dt2 = −c2k2T



Eigenvalue problems

General solution of SHM

X (x) = E cos kx + F sin kx

Apply boundary conditions:
At x = 0, X (0) = E = 0
At x = L, X (L) = F sin kL = 0
F = 0 Or sin kL = 0 which only happens if kL is an integer
multiple of π. So for there are a set of values (eigenvalues) kn
such that

knL = nπ, or kn =
nπ
L

where n = 1,2,3, .. and the eigenfunctions are

Xn(x) = Fn sin
nπx

L



Normal modes

A string oscillates at a set of fixed frequencies - fundamental

and harmonics
I wavelength λ : λn = 2L

n where n = 1,2,3..
I wavenumber k = 2π/λ: kn = nπ

L

I angular frequency ω: (ω = 2πν = 2πc
λ = ck ) ωn = nπc

L



Separable solutions

Back to the t variation

d2T
dt2 = −c2k2T

→ T (t) = G cos ckt + H sin ckt

For k = kn,T (t) = Gn cos
nπct

L
+ Hn sin

nπct
L

Oscillations with angular frequency wn = nπc/L where
n = 1,2,3..

φn(x , t) = Xn(x)T (t)

= sin
nπx

L

(
An cos

nπct
L

+ Bn sin
nπct

L

)



Superposition
Wave equation is linear in derivatives of the field

∂2φ

∂x2 =
1
c2
∂2φ

∂t2

Use principle of superposition:
If φ1 and φ2 are each solutions, then so is φ1 + φ2.
The general solution is therefore

φ(x , t) =
∞∑

n=1

Xn(x)Tn(t)

= X1(x)T1(t) + X2(x)T2(t) + ...

For the wave eqn. with φ(0, t) = φ(L, t) = 0

φ(x , t) =
∞∑

n=1

sin
nπx

L

(
An cos

nπct
L

+ Bn sin
nπct

L

)



Initial conditions
Want solution for specific starting point.
Example: Pluck string at centre and release from rest.
At time t = 0, the displacement is

φ(x ,0) = f (x) =
{

x for 0 ≤ x ≤ L
2

L− x for L
2 < x ≤ L

x=0 x=LL/2

x

Initial velocity = 0, so
∂φ

∂t

∣∣∣∣
t=0

= 0



Initial conditions, cont.

At t = 0, cos 0 = 1 so Bn = 0 but sin 0 = 0, so An 6= 0 and

φ(x ,0) = A1 sin
πx
L

+ A2 sin
2πx

L
+ ...

How do we calculate the An so that this is equal to

f (x) =
{

x for 0 ≤ x ≤ L
2

L− x for L
2 < x ≤ L

?



Need a tool to find the constants after applying boundary
conditions.
Need to find An in

φ(x ,0) = A1 sin
πx
L

+ A2 sin
2πx

L
+ ...

so that φ(x ,0) is a given function. But this is just a Fourier sin
series. So

An
L
2

=

∫ L

0
sin

nxπ
L
φ(x ,0)dx

for n = 1,2,3, ..



Answer:

x=0 x=LL/2

x

At time t = 0, the displacement is

f (x) =
{

x for 0 ≤ x ≤ L
2

L− x for L
2 < x ≤ L

f (x) =
4L
π2

[
sin
(πx

L

)
− 1

9
sin
(

3πx
L

)
+

1
25

sin
(

5πx
L

)
+ . . .

]
=

4L
π2

∞∑
n=odd

(−1)(n−1)/2

n2 sin
nπx

L



A quick look at these terms



Plucked string: Putting it all together

General solution

φ(x , t) =
∞∑

n=1

sin
nπx

L

(
An cos

nπct
L

+ Bn sin
nπct

L

)
Need to find An and Bm given initial displacement:

φ(x ,0) =

{
x 0 ≤ x ≤ L/2

L− x L/2 ≤ x ≤ L

and initial velocity

∂φ

∂t

∣∣∣∣
t=0

= 0

Note evaluated at t = 0 at ALL x.



General solution at t = 0

φ(x ,0) =
∞∑

n=1

An sin
πnx

L

→ An =

{
(−1)(n−1)/2 4L

n2π2 > odd n
0 even n

Also

∂φ

∂t

∣∣∣∣
t=0

=
∞∑

n=1

sin
nπx

L
Bn

nπc
L

= 0

→ Bn = 0

for all n. Hence the solution is

φ(x , t) =
∞∑

odd n=1

(−1)(n−1)/2 4L
n2π2 sin

πnx
L

cos
nπct

L



The Method for Solving PDEs

Define problem:
1. PDE
2. Boundary conditions (BC).
3. Initial conditions (IC).

Method:
1. Assume a seperable solution, e.g. φ(x , t) = X (x)T (t).
2. Separate PDE into a set of ODEs. Introduce separation

constants.
3. Solve the ODE + BC eigenvalue problems - normal

modes/eigenvectors.
4. Use principle of superposition to write down general

solution as sum over the eigenvectors.
5. Apply IC. Use orthogonality of eigenvectors to determine

constants in general solution.
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