Outline

Waves and Wave Packets

Wave Equation

$$\frac{\partial^2 \phi}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 \phi}{\partial t^2}$$

where *c* is a constant. Trial solution on $-\infty < x < \infty$

$$\phi(\mathbf{x},t) = \mathbf{e}^{i(\mathbf{k}\mathbf{x}-\omega t)} = \mathbf{e}^{i\mathbf{k}\mathbf{x}}\mathbf{e}^{-i\omega t}$$

 $k^2 = \omega^2/c^2$ so $\omega(k) = ck$ and phase velocity $v_p = \omega(k)/k = c$.

A plane wave of wavenumber k and angular frequency ω is written as

$$e^{i(kx-\omega t)}$$

The phase of the wave at *x* and *t* is $kx - \omega t$

Wave Equation

$$\frac{\partial^2 \phi}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 \phi}{\partial t^2}$$

where *c* is a constant. Trial solution on $-\infty < x < \infty$

$$\phi(\mathbf{x},t) = \mathbf{e}^{i(k\mathbf{x}-\omega t)} = \mathbf{e}^{ik\mathbf{x}}\mathbf{e}^{-i\omega t}$$

 $k^2 = \omega^2/c^2$ so $\omega(k) = ck$ and phase velocity $v_p = \omega(k)/k = c$. General wave packet (travelling to right)

$$\phi(x,t) = \int_{-\infty}^{\infty} g(k) e^{ik(x-ct)} \, dk$$

Wave Packets

Wave pulse/packet: wave of finite spatial/temporal extent. Typical wavenumber k_0 , spatial width of packet Δx . In time domain this corresponds to a typical angular frequency ω_0 , finite duration Δt .

Fourier transform to look at amplitudes of component angular frequencies

$$g(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\omega t} f(t) dt$$

Bandwidth Theorem

For any function f(x) and its Fourier transform g(k), the widths of the functions Δx and Δk respectively satisfy

$$\Delta x \, \Delta k \geq \frac{1}{2}$$

(In the time domain

$$\Delta t \Delta \omega \geq \frac{1}{2}$$

) Origin of Heisenberg's uncertainty principle in quantum mechanics.

Group Velocity

Wave equations can be dispersive: The phase velocity depends on k. A wave packet spreads out. General wave (moving to right):

$$f(x,t) = \int_{-\infty}^{\infty} g(k) e^{i(kx - \omega(k)t)} dk$$

$$f(x,t) \approx e^{i(k_0x - \omega(k_0)t)} \int_{-\infty}^{\infty} g(k_0 + q) e^{iq(x - \omega't)} dq$$

Group velocity

٠

$$v_g = \left| rac{d\omega}{dk}
ight| = \left| \omega'
ight|$$