Cookery...

How to boil an egg: Assume a spherical egg..

An egg is a sphere of radius a = 2 cm, almost entirely made of water.

heat capacity	c =	4184	J/kg/K
heat conductivity	$\kappa =$	0.609	W/m/K
density	$\rho =$	1000	kg/m ³
ightarrow diffusivity	$D{=}\kappa/(c ho)=$	$1.46 imes10^{-7}$	m²/s

Back of the envelope estimate: only two dimensional quantities, *D* and *a*: $t \sim a^2/D = 2700s = 45min$

Calculate time using heat flow equation

Spherical symmetry:

$$\nabla^2 f = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) = \frac{1}{D} \frac{\partial f}{\partial t}$$

Boundary and initial conditions:

- 1. f regular at r = 0.
- 2. f(a, t) = 0 at r = a. Place egg in boiling water, so define $T = 100^{\circ}C \equiv 0B$ (Blumenthals).
- **3**. Initial condition: $f(r, 0) = T_0$

To soft boil need centre to reach $T_f = 45^{\circ}C = -55B$. Initially at room temperature, so $T_0 = 15^{\circ}C = -85B$.

Separate variables...

f(r, t) = R(r)T(t). Substitute and divide by RT

$$\frac{1}{Rr^2}\frac{d}{dr}\left(r^2\frac{dR}{dr}\right) = \frac{1}{DT}\frac{dT}{dt} = -k^2$$

where *k* is a constant. **T equation**

$$\frac{dT}{dt} = -Dk^2T$$
$$\rightarrow T = Ae^{-\gamma t}$$
$$\gamma = Dk^2$$

Radial equation

$$\frac{1}{r^2} \frac{d}{dr} \left(r^2 \frac{dR}{dr} \right) = -k^2 R$$

Define $R(r) = \frac{u(r)}{r}$
 $\frac{dR}{dr} = \frac{1}{r} \frac{du}{dr} - \frac{1}{r^2} u$
 $\frac{d}{dr} \left(r^2 \frac{dR}{dr} \right) = \frac{d}{dr} \left(r \frac{du}{dr} - u \right) = r \frac{d^2 u}{dr^2}$
So ODE becomes $\frac{d^2 u}{dr^2} = -k^2 u$

Radial solution

$$u = A\cos kr + B\sin kr$$

$$\rightarrow R = A\frac{\cos kr}{r} + B\frac{\sin kr}{r}$$

Boundary conditions:

1. regular at $r = 0 \rightarrow A = 0$

2.
$$R(a) = 0 \rightarrow \sin ka = 0, \rightarrow k = n\pi/a, n = 1, 2, 3, ...$$

So separable solutions are

$$f_n(r,t) = \frac{B_n}{r} \sin\left(\frac{n\pi r}{a}\right) e^{-\gamma_n t}$$

and the general solution

$$f(r,t) = \sum_{n=1}^{\infty} \frac{B_n}{r} \sin\left(\frac{n\pi r}{a}\right) e^{-\gamma_n t}$$

where $\gamma_n = D\left(\frac{n\pi}{a}\right)^2$.

Initial Condition

$$f(r,0) = \sum_{n=1}^{\infty} \frac{B_n}{r} \sin\left(\frac{n\pi r}{a}\right) = T_0$$
$$\sum_{n=1}^{\infty} B_n \sin\left(\frac{n\pi r}{a}\right) = T_0 r$$

Fourier sine series with

$$B_n = \frac{2}{a} \int_0^a T_0 r \sin\left(\frac{n\pi r}{a}\right) dr$$

Integrate by parts:

$$B_n = -\frac{2T_0 a}{n\pi} \cos n\pi = \frac{2T_0 a}{n\pi} (-1)^{n+1}$$

So finally, the temperature inside the egg is given by

$$f(r,t) = 2T_0 \sum_{n=1}^{\infty} (-1)^{n+1} \frac{\sin \frac{n\pi r}{a}}{\left(\frac{n\pi r}{a}\right)} e^{-\gamma_n t}$$

Look at time term

$$\gamma_1 = \frac{D\pi^2}{a^2} = 0.0036, \ t_1 = 1/\gamma_1 = 277s$$

 $\gamma_2 = \frac{4D\pi^2}{a^2} = 0.0144, \ t_2 = 1/\gamma_2 = 6.9s$

So for long times, i.e. $t >> t_2$, so t of a few minutes, only the first term is significant.

Time, t_{soft} for centre (r = 0) to reach T_f is given by

$$T_{f} = 2T_{0}e^{-(D\pi^{2}/a^{2})t_{sof}}$$

$$\rightarrow t_{soft} \simeq \frac{a^{2}}{D\pi^{2}}\ln\frac{2T_{0}}{T_{f}}$$

$$\simeq 277\ln\frac{2 \times 85}{55}$$

$$\simeq 5.2 \text{ minutes}$$

Delia Smith: 6.5 minutes (initially boiling water, but then leave).