Waves on a sphere

Spherical polar coordinates
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Wave equation
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Waves on surface of a sphere - earthquake ground waves.
Independent of r : (0, ¢, t) = Y(6, ) T(1).

Boundary conditions:

- periodic in ¢: (0, ¢,t) = (6, ¢ + 2, t)

- regular everywhere, in particular at poles: § = 0, 7 (where
sinf = 0).



Separate variables (r = a)
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Solution : T(f) = Acoswt+ Bsinwt



Y (6, ¢) (angular) equation
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(Equivalent to
Ly(6,9) = I(1+1)R2Y(8,¢)
in QM)



Separate again Y(6, ¢) = O(6)d(¢)
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Sub., divide by ©(8)®(¢) and multiply by sin? ¢
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Variables now separated and the terms must equal a constant.
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® equation

a?o 5
W = —mo

subject to ¢(¢) = d(¢ + 27).
Solutions:

d(¢p) = cosme
and ®(¢) = sinm¢
alternatively ®(¢) = exp(£im¢)

and m is integer.



© equation
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Change variables to x = cos 6 so
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is the associated Legendre equation. (Reduces to the
Legendre equation for m = 0.)

The solutions are P/"(x) - the associated Legendre functions.
These are regular at x = +1 provided the series terminates
— lis aninteger and |m| << I.

So

©(9) = P/"(cosb))



The full normal modes are then

f(0,6,t) = PM(cos®)(Acoswt+ Bsinwt)exp(£ime)



Symmetric modes; m =10

f(6,9,t) = Py(cosh)(Acoswt+ Bsinwt)

Orthogonality condition
Need to evaluate by integrating over the surface element on the
sphere & sin 6 df do:
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General symmetric wave

f0,t) = Y Px)(Acoswit+ Bsinwt)
1=0

where x = cos 6.
Want solution given initial shape and velocity of wave, e.g.
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£(0,0) = G(x) -

Use Fourier methods to find A, and B.
Att=0,

f(6,0) = > AP(x)=G(x)
1=0



Multiply by Px(x) and integrate
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Initial velocity zero so all B, = 0.



Model an earthquake
Represent the impact as a Dirac é-function, so

G(x) = Hé(x — 1)

(x =cosf =1— 6 =0 - put z-axis through impact site.)
Amplitude of modes is

A = 2’+1H/ Pi(x)8(x — 1) dx
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(Pi(1) =1).
Resulting earthquake surface wave

f(o,t) = Zi(2/+1)P,(x)003w,t

where w; = c\/I(I+1)/a~ cl/afor | >> 1.
At opposite side of the world, cos§ = —1,0 = w, Pj(—1) = (1)’



Att=ma/c, then
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- infinite - massive earthquake as the waves from the impact
have travelled half way around the world.



