Waves on a sphere

Spherical polar coordinates

$$\nabla^2 f = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 f}{\partial \phi^2}$$

Wave equation

$$\nabla^2 f = \frac{1}{c^2} \frac{\partial^2 f}{\partial t^2}$$

Waves on surface of a sphere - earthquake ground waves. Independent of $r: f(\theta, \phi, t) = Y(\theta, \phi)T(t)$.

Boundary conditions:

- periodic in ϕ : $f(\theta, \phi, t) = f(\theta, \phi + 2\pi, t)$
- regular everywhere, in particular at poles: $\theta=0,\pi$ (where $\sin\theta=0$).

Separate variables (r = a)

$$\frac{1}{Ya^{2}\sin\theta}\left(\sin\theta\frac{\partial Y}{\partial\theta}\right) + \frac{1}{Ya^{2}\sin\theta}\frac{\partial^{2}Y}{\partial\phi^{2}} = \frac{1}{c^{2}T}\frac{d^{2}T}{dt^{2}}$$
$$= -\frac{I(I+1)}{a^{2}}$$

T(t) equation

$$\frac{1}{c^2 T} \frac{d^2 T}{dt^2} = -\frac{I(I+1)}{a^2}$$

$$\frac{d^2 T}{dt^2} = -\omega_I^2 T$$

$$\omega_I^2 = \frac{c^2}{a^2} I(I+1)$$

Solution : $T(t) = A \cos \omega_1 t + B \sin \omega_1 t$

$Y(\theta, \phi)$ (angular) equation

$$\frac{1}{\sin\theta} \frac{\partial}{\partial \theta} \left(\sin\theta \frac{\partial Y}{\partial \theta} \right) + \frac{1}{\sin\theta} \frac{\partial^2 Y}{\partial \phi^2} = -I(I+1)Y$$

(Equivalent to

$$\hat{L}Y(\theta,\phi) = I(I+1)\hbar^2Y(\theta,\phi)$$

in QM)

Separate again $Y(\theta, \phi) = \Theta(\theta)\Phi(\phi)$ Sub., divide by $\Theta(\theta)\Phi(\phi)$ and multiply by $\sin^2 \theta$

$$\frac{\sin \theta}{\Theta} \frac{d}{d\theta} \left(\sin \theta \frac{d\Theta}{d\theta} \right) + I(I+1) \sin^2 \theta + \frac{1}{\Phi} \frac{d^2 \Phi}{d\phi^2} = 0$$

$$\frac{\sin \theta}{\Theta} \frac{d}{d\theta} \left(\sin \theta \frac{d\Theta}{d\theta} \right) + I(I+1) \sin^2 \theta = -\frac{1}{\Phi} \frac{d^2 \Phi}{d\phi^2}$$

$$= m^2$$

Variables now separated and the terms must equal a constant.

$$\frac{1}{\Phi} \frac{d^2 \Phi}{d \phi^2} = -m^2$$

Φ equation

$$\frac{d^2\Phi}{d\phi^2} = -m^2\Phi$$

subject to $\Phi(\phi) = \Phi(\phi + 2\pi)$. Solutions:

$$\begin{array}{rcl} \Phi(\phi) & = & \cos m\phi \\ & \text{and } \Phi(\phi) & = & \sin m\phi \\ & \text{alternatively } \Phi(\phi) & = & \exp(\pm im\phi) \end{array}$$

and *m* is integer.

Θ equation

$$\frac{1}{\sin\theta} \frac{d}{d\theta} \left(\sin\theta \frac{d\Theta}{d\theta} \right) + \left(I(I+1) - \frac{m^2}{\sin^2\theta} \right) \Theta = 0$$

Change variables to $x = \cos \theta$ so

$$dx = -\sin\theta \, d\theta \qquad \frac{d}{dx} = -\frac{1}{\sin\theta} \frac{d}{d\theta}$$
$$\sin^2\theta = 1 - x^2$$

Giving

$$\frac{d}{dx}\left(\left(1-x^2\right)\frac{d\Theta}{dx}\right)+\left(I(I+1)-\frac{m^2}{1-x^2}\right)\Theta = 0$$

$$\frac{d}{dx}\left(\left(1-x^2\right)\frac{d\Theta}{dx}\right)+\left(I(I+1)-\frac{m^2}{1-x^2}\right)\Theta = 0$$

is the associated Legendre equation. (Reduces to the Legendre equation for m = 0.)

The solutions are $P_I^m(x)$ - the associated Legendre functions. These are regular at $x = \pm 1$ provided the series terminates $\rightarrow I$ is an integer and $|m| < \le I$.

So

$$\Theta(\theta) = P_l^m(\cos\theta))$$

The full normal modes are then

$$f(\theta, \phi, t) = P_I^m(\cos \theta) (A\cos \omega_I t + B\sin \omega_I t) \exp(\pm im\phi)$$

Symmetric modes; m = 0

$$f(\theta, \phi, t) = P_I(\cos \theta) (A \cos \omega_I t + B \sin \omega_I t)$$

Orthogonality condition

Need to evaluate by integrating over the surface element on the sphere $a^2 \sin \theta \, d\theta \, d\phi$:

$$\int_0^{\pi} P_l(\cos \theta) P_k(\cos \theta) dA = \int_0^{\pi} P_l(\cos \theta) P_k(\cos \theta) \sin \theta d\theta$$

$$\to \int_{-1}^{+1} P_l(x) P_k(x) dx = 0 \text{ if } l \neq k$$

$$= \frac{2}{2l+1} \text{ if } l = k$$

General symmetric wave

$$f(\theta,t) = \sum_{l=0}^{\infty} P_l(x) \left(A_l \cos \omega_l t + B_l \sin \omega_l t \right)$$

where $x = \cos \theta$.

Want solution given initial shape and velocity of wave, e.g.

$$f(\theta,0) = G(x)$$
 $\frac{\partial f}{\partial t}\Big|_{t=0} = 0$

Use Fourier methods to find A_k and B_k . At t = 0,

$$f(\theta,0) = \sum_{l=0}^{\infty} A_l P_l(x) = G(x)$$

Multiply by
$$P_k(x)$$
 and integrate

Multiply by
$$P_k(x)$$
 and integrate

Initial velocity zero so all $B_k = 0$.

Multiply by $P_k(x)$ and integrate

 $\sum_{l} A_{l} \int_{-1}^{1} P_{k}(x) P_{l}(x) dx = A_{k} \frac{2}{2k+1} = \int_{-1}^{1} P_{k}(x) G(x) dx$

Model an earthquake

Represent the impact as a Dirac δ -function, so

$$G(x) = H\delta(x-1)$$

 $(x = \cos \theta = 1 \rightarrow \theta = 0$ - put z-axis through impact site.) Amplitude of modes is

$$A_{I} = \frac{2I+1}{2}H\int_{-1}^{1}P_{I}(x)\delta(x-1) dx$$
$$= \frac{2I+1}{2}HP_{I}(1) = \frac{2I+1}{2}H$$

 $(P_i(1) = 1)$.

Resulting earthquake surface wave

$$f(\theta,t) = \frac{H}{2} \sum_{l=0}^{\infty} (2l+1) P_l(x) \cos \omega_l t$$

where $\omega_I = c\sqrt{I(I+1)}/a \approx cI/a$ for I >> 1.

At opposite side of the world, $\cos \theta = -1, \theta = \pi, P_I(-1) = (-1)^I$

At $t = \pi a/c$, then

$$\pi a$$

$$f(\pi, \frac{\pi a}{c}) = \frac{H}{2} \sum_{l=0}^{\infty} (2l+1) P_l(-1) \cos\left(\frac{\omega_l \pi a}{c}\right)$$

- infinite - massive earthquake as the waves from the impact have travelled half way around the world.

 $= \frac{H}{2}\sum_{i}(2I+1)(-1)^{I}(-1)^{I}$