Continuity Equation

Consider the flow of material with density ρ with velocity $\underline{\mathbf{v}}$ into some volume $d\tau$.

The mass of gas in the volume is $\rho d\tau$ and the net rate of increase of mass in the volume per unit time is $\frac{\partial \rho}{\partial t} d\tau$.

What mass of material flows in to the volume through its surface?

The mass current $\mathbf{j} = \rho \mathbf{v}$ (mass per unit time per unit area)

but integrated over the whole surface this must just equal the change in mass within the volume, so

$$\int \underline{\mathbf{j}} \cdot \underline{dA} = \int \rho \underline{\mathbf{v}} \cdot \underline{dA}$$

surface
$$= \underline{\nabla} \cdot (\rho \underline{\mathbf{v}}) \ d\tau = -\frac{\partial \rho}{\partial t} \ d\tau$$

Continuity Eqn., cont.

$$\frac{\nabla \cdot (\rho \mathbf{v})}{\nabla \cdot (\mathbf{j})} = -\frac{\partial \rho}{\partial t} - \text{continuity equation - conserved quantity - mass or}$$

electric charge (ρ charge density (C m⁻³), \mathbf{j} current density (C m⁻²s⁻¹)

The Divergence Theorem

Consider a closed surface S enclose a volume V. Divide it into 2 parts S_1 and S_2 . Note that $S = S_1 + S_2$ where S_1 and S_2 are open surfaces by $S_1 + S_2$ is a closed surface. Let the connecting surface that divides the volume in to V_1 and V_2 be S_c .

Consider the total flux, F, of the field $\underline{\mathbf{v}}$ out of S,

$$F = \int_{S} \underline{\mathbf{v}} \cdot \underline{\mathbf{d}A} = \int_{S_1 + S_2} \underline{\mathbf{v}} \cdot \underline{\mathbf{d}A}$$

Consider V_1 . The normal to S_c to be out of V_1 (and into V_2).But considering volume V_2 , the normal to S_c is out of V_2 (and into V_1). Flux out of volume V_1 , F_1 is

$$F_1 = \int_{S_1} \underline{\mathbf{v}} \cdot \underline{\mathbf{d}} A + \int_{S_c 1} \underline{\mathbf{v}} \cdot \underline{\mathbf{d}} A_1$$

and similarly the flux out of volume V_2 , F_2 is

$$F_2 = \int_{S_2} \underline{\mathbf{v}} \cdot \underline{\mathbf{d}} A + \int_{S_c 2} \underline{\mathbf{v}} \cdot \underline{\mathbf{d}} A_2$$
slide 3

But clearly $\underline{\mathbf{d}}A_1 = -\underline{\mathbf{d}}A_2$ and

$$\int_{S_c1} \underline{\mathbf{v}} \cdot \underline{\mathbf{d}} \underline{A}_1 = -\int_{S_c2} \underline{\mathbf{v}} \cdot \underline{\mathbf{d}} \underline{A}_1$$

Hence

$$F_1 + F_2 = F = \int_{S_1} \mathbf{\underline{v}} \cdot \mathbf{\underline{d}A} + \int_{S_2} \mathbf{\underline{v}} \cdot \mathbf{\underline{d}A}$$

So the flux across internal surfaces cancel. What flows out of one flows into the next.

Now imagine dividing the volume V in to infinitesimal volumes, labelled by index i. So the flux out of the volume is F where

$$F = \int_{S} \underline{\mathbf{v}} \cdot \underline{\mathbf{d}A}$$
$$= \sum_{i} \int_{S_{i}} \underline{\mathbf{v}} \cdot \underline{\mathbf{d}A} = \sum_{i} \underline{\nabla} \cdot \underline{\mathbf{v}} \, dV_{i}$$

using our integral definition of the divergence. In the limit $dV_i \rightarrow 0$, the sum becomes an integral and

$$\left| \int_{S} \underline{\mathbf{v}} \cdot \underline{\mathbf{d}} \underline{A} \right| = \left| \int_{V} \overline{\nabla} \cdot \underline{\mathbf{v}} \, dV \right|$$

which is the divergence theorem.

Examples:

1) $\underline{\mathbf{v}} = x^2 \underline{\mathbf{i}} + y^2 \underline{\mathbf{j}} + z^2 \underline{\mathbf{k}}$ from a cube.

2) $\underline{\mathbf{v}} = z^3 \underline{\mathbf{k}}$ out of a sphere

3) Verify the divergence theorem for $\underline{\mathbf{F}} = r^2 \hat{\mathbf{r}}$ for a sphere of radius R centred on the origin.

4) Divergence in cylindrical polar coordinates.