Second Order ODEs

Second Order ODEs

In general second order ODEs contain terms involving y, $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$ and F(x). But here only consider equations of the form

$$A\frac{d^2y}{dx^2} + B\frac{dy}{dx} + Cy = 0$$

where A, B and C are constants i.e. they are independent of x and y. These are known as *homogeneous* equations.

Solution: The solution has the form $y = Ke^{\lambda x}$ where λ is a constant. Substitute $y = Ke^{\lambda x}$ in to the ODE to determine the values of λ . The equation for λ is quadratic so in general there are two values for λ which satisfy the equation and so *two* functions y which are solutions to the ODE. Demonstration: Divide equation 1 by A (A is not zero) to get

$$\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = 0$$

Now substitute $y = K e^{\lambda x}$

$$K\lambda^2 e^{\lambda x} + bK\lambda e^{\lambda x} + cKe^{\lambda x} = 0$$

Since $e^{\lambda x}$ can never be 0, can divide equation by $Ke^{\lambda x}$ to get

$$\lambda^2 + b\lambda + c = 0$$

This equation is called the *auxiliary equation* of the ODE.

In general there are two values for λ which we will call λ_1 and λ_2 , which can be complex.

The general solution is then

$$y = K_1 e^{\lambda_1 x} + K_2 e^{\lambda_2 x}$$

BUT

If the two values of λ are real and equal, need to consider a general solution of the form

$$y = (Kx + M)e^{\lambda x}$$

where K and M are constants.

Example 1: Find the general solution to the equation

$$\frac{d^2y}{dx^2} + \frac{dy}{dx} - 2y = 0$$

Example 2: Find the general solution to the equation

$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = 0$$

Example 3: Find the equation of motion of a ball of mass m moving along the x-axis where the force on the ball is proportional to the distance along the axis.

Calculus in A Multi-dimensional World

Know about calculus of one variable: If y = f(x), then the slope of the function f(x) at some point x_1 is given by the derivative $\frac{df}{dx}$ evaluated at x_1 . The area A under the curve between x_1 and x_2 is the integral

$$A = \int_{x_1}^{x_2} f(x) \, dx$$

How do we extend these ideas to functions of several variables? e.g. temperature in a room (or star): T(x, y, z), pressure in a gas: P(V, T), displacement of the Earth's surface in an earthquake: Z(x, y, t)

Partial Differentiation

Consider a function f(x, y). The partial derivative $\frac{\partial f}{\partial x}$ is defined by

$$\frac{\partial f}{\partial x} = \frac{\lim_{\delta x \to 0} f(x + \delta x, y) - f(x, y)}{\delta x}$$

Often written as $\left(\frac{\partial f}{\partial x}\right)$ or f_x . Measures how f changes when x changes. Evaluated by differentiating f(x, y) w.r.t x, **treating y as a constant.** Similarly there is a partial derivative with respect to y

$$\frac{\partial f}{\partial y} = \frac{\lim_{\delta y \to 0} f(x, y + \delta y) - f(x, y)}{\delta y}$$

 $\frac{\partial f}{\partial x}$ is the rate of f(x, y) in the x direction at the point (x, y). $\frac{\partial f}{\partial y}$ is the rate of f(x, y) in the y direction at the point (x, y). Higher derivatives are also defined and can be computed:

$$\frac{\partial^2 f}{\partial x^2} = f_{xx}, \quad \frac{\partial^2 f}{\partial y^2}, \qquad \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y}\right) = f_{xy}, \quad \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x}\right) = f_{yx}$$

Example 4: Calculate the first and second partial derivatives of $f(x,y) = x^2 - xy + 4y^2$ *Example 5:* Calculate the first partial derivatives of $f(x,y) = \sin(x^2y)$

Total Differentials

What is the total change in a function f(x, y) if both x and y change by small amounts δx and δy ?

$$\begin{split} \delta f &= f(x + \delta x, y + \delta y) - f(x, y) \\ \delta f &= f(x + \delta x, y + \delta y) - f(x, y) - f(x, y + \delta y) + f(x, y + \delta y) \\ &= \frac{f(x + \delta x, y + \delta y) - f(x, y + \delta y)}{\delta x} + \frac{f(x, y + \delta y) - f(x, y)}{\delta y} \delta y \\ &= \frac{\partial f}{\partial x} \delta x + \frac{\partial f}{\partial y} \delta y \text{ plus higher order powers of } \delta x \text{ and } \delta y \end{split}$$

So in the limit $\delta x \to 0$ and $\delta y \to 0$, $df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy$ df is called the total differential of f.

Application:

1) Suppose h(x, y) is our height above sea level at a position (x, y) and we walk along a path x(t), y(t) where t is the time. How fast do we gain height ? We want $\frac{dh}{dt}$. Use $dh = \frac{\partial h}{\partial x}dx + \frac{\partial h}{\partial y}dy$ So $\frac{dh}{dt} = \frac{\partial h}{\partial x}\frac{dx}{dt} + \frac{\partial h}{\partial y}\frac{dy}{dt}$ which is the generalization of the chain rule. 2) Now suppose we want the rate of change of height with respect to x along the path.

We want $\frac{dh}{dx}$.

Since we know the path, we know y(x) and $dy = \frac{dy}{dx}dx$ so

$$dh = \frac{\partial h}{\partial x}dx + \frac{\partial h}{\partial y}dy$$
$$= \frac{\partial h}{\partial x}dx + \frac{\partial h}{\partial y}\frac{dy}{dx}dx$$

which gives

$$\frac{dh}{dx} = \frac{\partial h}{\partial x} + \frac{\partial h}{\partial y}\frac{dy}{dx}$$

 \rightarrow The total derivative of h w.r.t to x along the path y(x).

Fields

A field is a quantity which varies with position.

This quantity can be a single number, a scalar, in which case the field is a scalar field e.g. T(x, y, z)

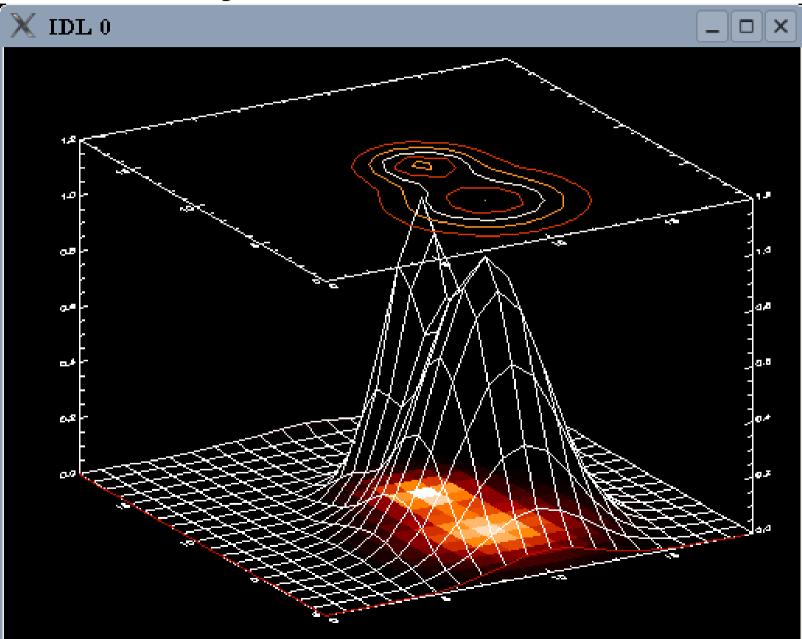
Examples: temperature, altitude of land, density

Alternatively the quantity can be a vector, in which case the field is a vector field

Example vector fields: velocity of a fluid, electric field

At each point in space the quantity has both a magnitude and a direction.

The value of a field at a given point does not depend on the coordinate system.



Three different representations of a scalar field:

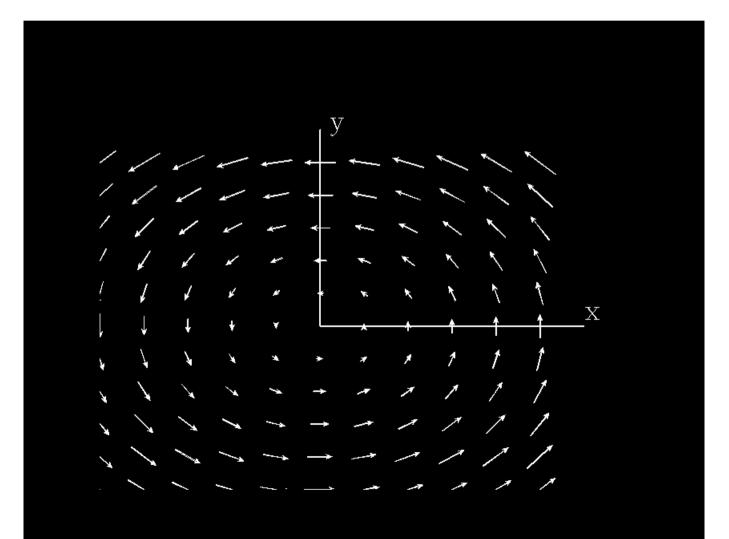
Example vector field:

$$\underline{\mathbf{v}}(x,y) = \hat{\mathbf{r}} = \frac{x\mathbf{i} + y\mathbf{j}}{(x^2 + y^2)^{1/2}}$$
$$\underline{\mathbf{r}} = x\mathbf{i} + y\mathbf{j} \qquad r = |\mathbf{r}| = \sqrt{x^2 + y^2}, \ \hat{\mathbf{r}} = \frac{\mathbf{r}}{r}$$

Diverging vector field

$$\underline{\mathbf{v}}(x,y) = \frac{-y\underline{\mathbf{i}} + x\underline{\mathbf{j}}}{(x^2 + y^2)^{3/2}}$$

Curling vector field



Field Lines

Field lines show the direction of a vector field, but they don't show any information about the magnitude.

How to Calculate the field lines

Write a 2-d field as $\underline{\mathbf{v}}(x, y) = v_x(x, y)\underline{\mathbf{i}} + v_y(x, y)\underline{\mathbf{j}}$. The tanget to the field line makes an angle θ to the x-axis where $\tan \theta = \frac{v_y(x, y)}{v_x(x, y)}$. Let the field line be y = f(x), but on this field line the slope of the tanget to the field line is $\frac{dy}{dx} = \frac{v_y(x, y)}{v_x(x, y)}$, which we can integrate to find the equation to the field line.

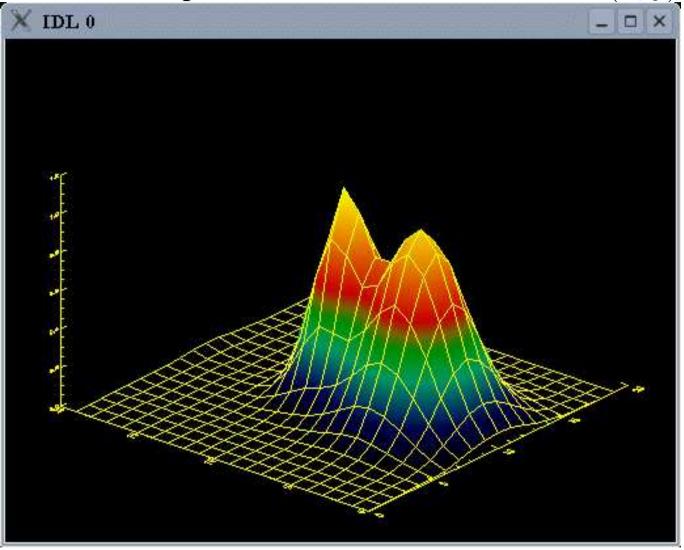
Example: Calculate the field lines of the vector field

$$\underline{\mathbf{v}}(x,y) = \frac{-y\underline{\mathbf{i}} + x\underline{\mathbf{j}}}{(x^2 + y^2)^{3/2}}$$

Field lines: $x^2 + y^2 = c$ slide 15

The Gradient (Grad)

What's the slope (derivative) of a scalar field H(x, y)?



Consider the temperature field T(x, y, z) at the two points (x, y, z) and (x + dx, y + dy, z + dz).

The difference in temperature between these two points is dT where

$$dT = \frac{\partial T}{\partial x}dx + \frac{\partial T}{\partial y}dy + \frac{\partial T}{\partial z}dz$$

But the vector between these two points is $\underline{dr} = dx \, \underline{i} + dy \, \underline{j} + dz \, \underline{k}$. So we can write

$$dT = \left(\underline{\mathbf{i}}\frac{\partial T}{\partial x} + \underline{\mathbf{j}}\frac{\partial T}{\partial y} + \underline{\mathbf{k}}\frac{\partial T}{\partial z}\right) \cdot \left(dx\,\underline{\mathbf{i}} + dy\,\underline{\mathbf{j}} + dz\,\underline{\mathbf{k}}\right)$$
$$dT = \nabla T \cdot \underline{\mathbf{dr}}$$

where

$$\nabla T = \underline{\mathbf{i}} \frac{\partial T}{\partial x} + \underline{\mathbf{j}} \frac{\partial T}{\partial y} + \underline{\mathbf{k}} \frac{\partial T}{\partial z}$$

which is a **vector field** called the gradient, or grad of the scalar field T. Also often written as grad T

Expect to see the gradient of scalar fields in various physical laws, e.g. heat flow in 1-D $h = -k \frac{\Delta T}{\Delta x}$ while in 3-D $\underline{\mathbf{h}} = -k \nabla T$ Heat flows in the direction of -grad T, the direction of decreasing T and nrmal to the isotherms.

Properties of The Gradient

- 0) T(x, y, z) is a scalar field 1) $\nabla T(x, y, z)$ is a vector field 2) $dT = T(\mathbf{r} + \mathbf{dr}) - T(r) = \nabla T \cdot \mathbf{dr}$ is the change in T between points \mathbf{r} and $\mathbf{r} + \mathbf{dr}$ If $\hat{\mathbf{r}}$ is a unit vector perclude to $\mathbf{dr} \approx \mathbf{dr} = \hat{\mathbf{r}} d\alpha (d\alpha - |\mathbf{dr}|)$ then
- If $\underline{\hat{\mathbf{u}}}$ is a unit vector parallel to $\underline{\mathbf{dr}}$ so $\underline{\mathbf{dr}} = \underline{\hat{u}} \, ds \, (ds = |\underline{\mathbf{dr}}|)$ then $dT = \nabla T \cdot \underline{\hat{u}} \, ds$ so
- 3) $\left. \frac{dT}{ds} \right|_{\underline{\hat{u}}} = \nabla T \cdot \underline{\hat{u}}$ is the *directional derivative* the rate of change of T in the

direction of the unit vector $\underline{\hat{u}}$

- 4) $\nabla T \cdot \underline{\hat{u}}$ is a maximum when ∇T is parallel to $\underline{\hat{u}}$
- 5) $|\nabla T|$ is the maximum rate of change and it is in the direction ∇T

Consider the surface T = constant. Any point P on this surface $\frac{dT}{ds}\Big|_{\hat{}} = 0$ for

any vector u tangent to the surface at P. i.e. $\nabla T \cdot \left. \frac{dT}{ds} \right|_{\hat{s}} = 0$ so

6) ∇T is normal to the surface of constant T.