Second Order ODEs
Second Order ODEs

In general second order ODEs contain terms invol\y'n% , 3272 and F'(x).
But here only consider equations of the form

d’y L dy

A—+B—=+4+Cy = 0

dx? i dx Ty
whereA, B and(C' are constants i.e. they are independent ahdy. These are
known ashomogeneousguations.
Solution: The solution has the form = Ke’* where) is a constant.
Substitutey = Ke** in to the ODE to determine the valuesf
The equation fol is quadratic so in general there are two values\farnich
satisfy the equation and $&o functionsy which are solutions to the ODE.
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DemonstrationDivide equation 1 byA (A is not zero) to get

d*y  dy
“ Y = 0
dx? + dx ey

Now substitutey = Ke*
KXNeM + bK XM + cKeM = 0

Sincee?® can never be 0, can divide equation Fy* to get
MA+b\+c = 0

This equation is called thauxiliary equationof the ODE.
In general there are two values fomwhich we will call A; and A5, which can

be complex.
The general solution is then

Yy = Kle)\la:_i_KQe)\zx

slide 2



BUT
If the two values of\ are real and equal, need to consider a general solution o

the form
y = (K:IH—M)@M

whereK andM are constants.
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Example 1: Find the general solution to the equation

d’y  dy
—2y = 0
dx? i dx Y
Example 2: Find the general solution to the equation
d’y  dy
—= —4—=+4+4y = 0
dx? dx T

Example 3: Find the equation of motion of a ball of massmoving along the
x-axis where the force on the ball is proportional to the diséaalong the axis.
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Calculus in A Multi-dimensional World

Know about calculus of one variable:ijf= f(z), then the slope of the
function f(x) at some point; is given by the derivativ% evaluated at;;.
The aread under the curve between andz, is the integral

A = /x@f(:z:) da

How do we extend these ideas to functions of several vasable
e.g. temperature in a room (or staf)(z, y, z), pressure ina gas?(V, T),
displacement of the Earth’s surface in an earthquake: v, t)
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Partial Differentiation
Consider a functiorf (x, y). The partial derivativ% IS defined by

of lim f(z +0x,y) - f(z,9)
Ox ox
. of
Often written a P or f,.. Measures how changes whem changes.
X

Evaluated by differentiating(x, y) w.r.t z, treating y as a constant.Similarly
there is a partial derivative with respectito

of o, f(@,y +0y) — f(z,y)

Yy 0y
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of

5 IS the rate off (x, y) in the x direction at the pointz, y).
X

af

5 IS the rate off (x, y) in they direction at the pointz, y).
Y
Higher derivatives are also defined and can be computed:

ﬁ—f 82_]" o’'f 0 (Of _ g o’f 0 [Of _
ox2 "7 oy2’ 9xdy  Ox \dy) ' Oyox Oy \ox /) U
Example 4: Calculate the first and second partial derivatives of
flz,y) = 2% — 2y + 4y°

Example 5: Calculate the first partial derivatives ¢fz, y) = sin(z?y)
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Total Differentials

What is the total change in a functigifz, y) if both x andy change by small
amounts)x andoy ?

of = flxz+dx,y+dy)— f(z,y)
flx 4 0x,y +dy) — f(z,y +dy)  f(z,y+dy) — f(z,y)

- 0x i oY oY
= ﬂém + ﬂ(Sy plus higher order powers ofc anddy
ox oy
Sointhe limitoz — 0 anddy — 0,df = ﬁal:lﬁ + a—fdy
Ox oy

df is called the total differential of.
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Application:

1) Supposé(z,y) is our height above sea level at a positiany) and we
walk along a path:(t), y(¢) wheret is the time. How fast do we gain height ?

We wantd—
h h
Usedh = a—d:z: + a—dy
Ox oy
So% = Oh dx 8h dy which is the generalization of the chain rule.

it oxdt | Ay dt
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2) Now suppose we want the rate of change of height with redpecalong

the path.
We want@.
dx p
Since we know the path, we knayyz) anddy = d—yd:c SO
X
oh oh
dh = —dr+ —d
Ox v oy Y
Oh Oh dy
= —dr+ —->d
or i Oy dx !
which gives
dh O Ohdy
de  Or Oydx

— The total derivative of, w.r.t to = along the pathy(x).
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Fields

A field is a quantity which varies with position.

This quantity can be a single number, a scalar, in which dsesééld is a
scalar field e.g7'(x, y, 2)

Examples: temperature, altitude of land, density

Alternatively the quantity can be a vector, in which casefiile is a vector
field

Example vector fields: velocity of a fluid, electric field

At each point in space the quantity has both a magnitude amectidn.

The value of a field at a given point does not depend on the otdadsystem.
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Three different representations of a scalar field:
X IDL o
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Example vector field:

S R
r=zity r=lf =22 E=
.

Diverging vector
field
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Field Lines

Field lines show the direction of a vector field, but they d@mow any
Information about the magnitude.

How to Calculate the field lines

Write a 2-d field as/(z, y) = v.(x,y)i + v, (2, y)j.

The tanget to the field line makes an angl® thex-axis where
Uy(xay)

U$(x7y).
Let the field line be; = f(z), but on this field line the slope of the tanget to the
field line is@ = vy (@, ) , which we can integrate to find the equation to the
dr  vy(x,y)
field line.

Example: Calculate the field lines of the vector field

tan f =

—yi+ xj
v(z,y) = (22 + y2)3/2

Field lines:z* + y* = ¢ Slide 15



The Gradient (Grad)

What's the slope (derivative) of a scalar figlt =, y)?
"X IDL 0 -jolx]
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Consider the temperature fi€ld z, y, =) at the two pointgzx, y, z) and
(x +dz,y + dy, z + dz).
The difference in temperature between these two point# iwhere
oT oT oT
dI' = —dx+ —dy+ —d
Ox v oy v 0z Ny
But the vector between these two pointglis= dx i+ dy j + dz k. So we can
write

oT .0T OT
T = 1 +k— 1 - 1 1 k
d (l(‘?:c —6y 8z) (dzi+dyj+ dzk)
dl' = VT -dr
where
VI = iaT 0T ka—T

~O0x —3y _8,2

which is avector field called the gradient, or grad of the scalar fiégldAlso

often written aarad 7’ slide 17



Expect to see the gradient of scalar fields in various phiges, e.g. heat

flowin 1-D h = —k% whilein 3-Dh = —kVT

X i .
Heat flows in the direction ofgradT’, the direction of decreasing and nrmal
to the isotherms.
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Properties of The Gradient

0)T'(zx,y, z) is a scalar field

1) VT (z,y, z) is a vector field

2)dT =T (r+dr)—T(r) = VT - dr is the change ifl" between pointg and
r+dr

If 1 is a unit vector parallel tdr sodr = 4 ds (ds = |dr|) then

dl'= VT -1uds S0

3) C;—T = VT - 4 Is thedirectional derivative the rate of change df in the
S la

direction of the unit vectot,
4)VT -4 is a maximum when/T' is parallel toi

5) [VT] is the maximum rate of change and it is in the directiof

. . . dT
Consider the surfacé =constant. Any poinf’ on this surface—

= () for
ds

(]

= 0S0

U

. dTl’
any vectoru tangent to the surface &t i.e. VT - -
S

6) VT is normal to the surface of constahit

slide 19



	Second Order ODEs
	
	
	
	
	
	
	
	
	
	
	
	
	
	Field Lines
	The Gradient (Grad)
	
	
	Properties of The Gradient

