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Second Order ODEs

In general second order ODEs contain terms involvingy, dy
dx

, d2y
dx2 andF (x).

But here only consider equations of the form

A
d2y

dx2
+ B

dy

dx
+ Cy = 0

whereA, B andC are constants i.e. they are independent ofx andy. These are
known ashomogeneousequations.
Solution:The solution has the formy = Keλx whereλ is a constant.
Substitutey = Keλx in to the ODE to determine the values ofλ.
The equation forλ is quadratic so in general there are two values forλ which
satisfy the equation and sotwo functionsy which are solutions to the ODE.
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Demonstration:Divide equation 1 byA (A is not zero) to get

d2y

dx2
+ b

dy

dx
+ cy = 0

Now substitutey = Keλx

Kλ2eλx + bKλeλx + cKeλx = 0

Sinceeλx can never be 0, can divide equation byKeλx to get

λ2 + bλ + c = 0

This equation is called theauxiliary equationof the ODE.
In general there are two values forλ which we will callλ1 andλ2, which can
be complex.
The general solution is then

y = K1e
λ1x + K2e

λ2x
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BUT
If the two values ofλ are real and equal, need to consider a general solution of
the form

y = (Kx + M)eλx

whereK andM are constants.
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Example 1: Find the general solution to the equation

d2y

dx2
+

dy

dx
− 2y = 0

Example 2: Find the general solution to the equation

d2y

dx2
− 4

dy

dx
+ 4y = 0

Example 3: Find the equation of motion of a ball of massm moving along the
x-axis where the force on the ball is proportional to the distance along the axis.
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Calculus in A Multi-dimensional World

Know about calculus of one variable: Ify = f(x), then the slope of the
functionf(x) at some pointx1 is given by the derivativedf

dx
evaluated atx1.

The areaA under the curve betweenx1 andx2 is the integral

A =

∫ x2

x1

f(x) dx

How do we extend these ideas to functions of several variables?
e.g. temperature in a room (or star):T (x, y, z), pressure in a gas:P (V, T ),
displacement of the Earth’s surface in an earthquake:Z(x, y, t)
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Partial Differentiation

Consider a functionf(x, y). The partial derivative∂f
∂x

is defined by

∂f

∂x
=

lim
δx→0

f(x + δx, y) − f(x, y)

δx

Often written as

(

∂f

∂x

)

or fx. Measures howf changes whenx changes.

Evaluated by differentiatingf(x, y) w.r.t x, treating y as a constant.Similarly
there is a partial derivative with respect toy

∂f

∂y
=

lim
δy→0

f(x, y + δy) − f(x, y)

δy
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∂f

∂x
is the rate off(x, y) in thex direction at the point(x, y).

∂f

∂y
is the rate off(x, y) in they direction at the point(x, y).

Higher derivatives are also defined and can be computed:

∂2f

∂x2
= fxx,

∂2f

∂y2
,

∂2f

∂x∂y
=

∂

∂x

(

∂f

∂y

)

= fxy,
∂2f

∂y∂x
=

∂

∂y

(

∂f

∂x

)

= fyx

Example 4: Calculate the first and second partial derivatives of
f(x, y) = x2 − xy + 4y2

Example 5: Calculate the first partial derivatives off(x, y) = sin(x2y)
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Total Differentials

What is the total change in a functionf(x, y) if both x andy change by small
amountsδx andδy ?

δf = f(x + δx, y + δy) − f(x, y)

δf = f(x + δx, y + δy) − f(x, y) − f(x, y + δy) + f(x, y + δy)

=
f(x + δx, y + δy) − f(x, y + δy)

δx
+

f(x, y + δy) − f(x, y)

δy
δy

=
∂f

∂x
δx +

∂f

∂y
δy plus higher order powers ofδx andδy

So in the limitδx → 0 andδy → 0, df =
∂f

∂x
dx +

∂f

∂y
dy

df is called the total differential off .
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Application:

1) Supposeh(x, y) is our height above sea level at a position(x, y) and we
walk along a pathx(t), y(t) wheret is the time. How fast do we gain height ?

We want
dh

dt
.

Usedh =
∂h

∂x
dx +

∂h

∂y
dy

So
dh

dt
=

∂h

∂x

dx

dt
+

∂h

∂y

dy

dt
which is the generalization of the chain rule.
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2) Now suppose we want the rate of change of height with respect to x along
the path.

We want
dh

dx
.

Since we know the path, we knowy(x) anddy =
dy

dx
dx so

dh =
∂h

∂x
dx +

∂h

∂y
dy

=
∂h

∂x
dx +

∂h

∂y

dy

dx
dx

which gives
dh

dx
=

∂h

∂x
+

∂h

∂y

dy

dx

→ The total derivative ofh w.r.t tox along the pathy(x).
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Fields

A field is a quantity which varies with position.
This quantity can be a single number, a scalar, in which case the field is a
scalar field e.g.T (x, y, z)
Examples: temperature, altitude of land, density
Alternatively the quantity can be a vector, in which case thefield is a vector
field
Example vector fields: velocity of a fluid, electric field
At each point in space the quantity has both a magnitude and a direction.
The value of a field at a given point does not depend on the coordinate system.
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Three different representations of a scalar field:
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Example vector field:

v(x, y) = r̂ =
xi + yj

(x2 + y2)1/2

r = xi + yj r = |r| =
√

x2 + y2, r̂ =
r

r

Diverging vector
field
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v(x, y) =
−yi + xj

(x2 + y2)3/2

Curling vector
field



Field Lines
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Field lines show the direction of a vector field, but they don’t show any
information about the magnitude.

How to Calculate the field lines

Write a 2-d field asv(x, y) = vx(x, y)i + vy(x, y)j.
The tanget to the field line makes an angleθ to thex-axis where

tan θ =
vy(x, y)

vx(x, y)
.

Let the field line bey = f(x), but on this field line the slope of the tanget to the

field line is
dy

dx
=

vy(x, y)

vx(x, y)
, which we can integrate to find the equation to the

field line.
Example: Calculate the field lines of the vector field

v(x, y) =
−yi + xj

(x2 + y2)3/2

Field lines:x2 + y2 = c



The Gradient (Grad)
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What’s the slope (derivative) of a scalar fieldH(x, y)?
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Consider the temperature fieldT (x, y, z) at the two points(x, y, z) and
(x + dx, y + dy, z + dz).
The difference in temperature between these two points isdT where

dT =
∂T

∂x
dx +

∂T

∂y
dy +

∂T

∂z
dz

But the vector between these two points isdr = dx i + dy j + dz k. So we can
write

dT =

(

i
∂T

∂x
+ j

∂T

∂y
+ k

∂T

∂z

)

·
(

dx i + dy j + dz k
)

dT = ∇T · dr

where

∇T = i
∂T

∂x
+ j

∂T

∂y
+ k

∂T

∂z

which is avector field called the gradient, or grad of the scalar fieldT . Also
often written asgradT .
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Expect to see the gradient of scalar fields in various physical laws, e.g. heat

flow in 1-D h = −k
∆T

∆x
while in 3-Dh = −k∇T

Heat flows in the direction of−gradT , the direction of decreasingT and nrmal
to the isotherms.



Properties of The Gradient
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0) T (x, y, z) is a scalar field
1)∇T (x, y, z) is a vector field
2) dT = T (r + dr)− T (r) = ∇T · dr is the change inT between pointsr and
r + dr

If û is a unit vector parallel todr sodr = û ds (ds = |dr|) then
dT = ∇T · û ds so

3)
dT

ds

∣

∣

∣

∣

û

= ∇T · û is thedirectional derivative- the rate of change ofT in the

direction of the unit vector̂u
4)∇T · û is a maximum when∇T is parallel toû
5) |∇T | is the maximum rate of change and it is in the direction∇T

Consider the surfaceT =constant. Any pointP on this surface
dT

ds

∣

∣

∣

∣

û

= 0 for

any vectoru tangent to the surface atP . i.e.∇T ·
dT

ds

∣

∣

∣

∣

û

= 0 so

6)∇T is normal to the surface of constantT .
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