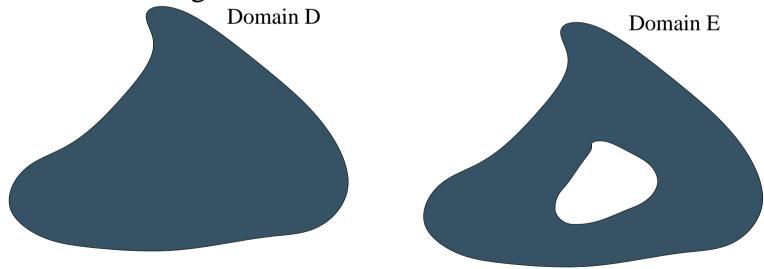
Conservative Fields

In deriving Stoke's theorem implicitly assumed that the vector field was 'smooth' (i.e. continuous, differentiable, and with continous first derivatives) everywhere on the curve C and the surface S.

If D is the domain where the field is smooth, we say that D is a simply connected domain if any close curved C in the domain can be shrunk to a point without leaving D.



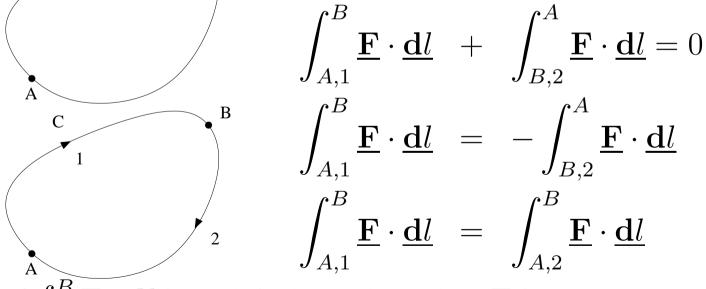
Domain D is simply connected but domain E is not.

Assume a domain *D* is simply connected and in this domain there is some vector field $\underline{\mathbf{F}}$ which has $\underline{\nabla} \times \underline{\mathbf{F}} = 0$. Then by Stoke's theorem $\oint \underline{\mathbf{F}} \cdot \underline{\mathbf{d}l} = 0$ for **any** closed path in *D*.

and $\int_{A}^{B} \underline{\mathbf{F}} \cdot \underline{\mathbf{d}} \underline{l}$ is independent of the path from A to B for any path in the domain D.

Proof: Consider a closed path C which passes through points A and B.

 $\oint_C \underline{\mathbf{F}} \cdot \underline{\mathbf{d}} l = 0$. Split the loop into two parts,



C

If $\int_{A}^{B} \underline{\mathbf{F}} \cdot \underline{\mathbf{d}} \underline{l}$ is path independent, then $\underline{\mathbf{F}}$ is a *conservative field*

... and $\underline{F} \cdot \underline{dl}$ is an *exact differential*. (It's integral depends only on the end points.) So,

$$\underline{\mathbf{F}} \cdot \underline{\mathbf{d}} \underline{l} = -dV(x, y, z) = -\frac{\partial V}{\partial x} dx - \frac{\partial V}{\partial y} dy - \frac{\partial V}{\partial z} dz$$
$$= -\underline{\nabla} V \cdot \underline{\mathbf{d}} \underline{l}$$
therefore $\underline{\mathbf{F}} = -\underline{\nabla} V$

where V(x, y, z) is a scalar field, called the potential, associated with vector field $\underline{\mathbf{F}}$ and V is single valued. So if $\nabla \times \mathbf{F} = 0$,

 $\int_{A}^{B} \mathbf{\underline{F}} \cdot \mathbf{\underline{d}} l$ is path independent

 $\underline{\mathbf{F}}$ is conservative (or irrotational)

and there is a scalar potential V such that $\underline{\mathbf{F}} = -\underline{\nabla}V$

Note that if $\underline{\nabla} \cdot \underline{\mathbf{A}} = 0$, $\underline{\mathbf{A}}$ is called solenoidal and $\underline{\mathbf{A}} = \operatorname{curl} \underline{\mathbf{B}}$ where $\underline{\mathbf{B}}$ is called the vector potential corresponding to field $\underline{\mathbf{A}}$.

You should now be able to..

- 1. Solve separable, linear and homogeneous 1st order ODES
- 2. Solve 2nd order ODEs with constant coefficients
- 3. Calculate the gradient, $\nabla \phi$ and Laplacian, $\nabla^2 \phi$ of any scalar field ϕ
- 4. Calculate the divergence, $\underline{\nabla} \cdot \underline{\mathbf{v}}$, and curl, $\underline{\nabla} \times \underline{\mathbf{v}}$, of any vector field $\underline{\mathbf{v}} = \underline{\mathbf{i}} v_x(x, y, z) + \underline{\mathbf{j}} v_y(x, y, z) + \underline{\mathbf{k}} v_z(x, y, z)$
- 5. Evaluate double and triple integrals, changing the order of integration if required.
- 6. Evaluate the flux of a vector field through a surface. For a closed surface doing this either directly or applying the divergence theorem
- 7. Evaluate the line integral of a vector field along a path. For a closed path doing this either directly or by applying Stokes' Theorem.

The Exam...

You do *not* need to remember div, grad, curl or $\underline{\nabla}^2$ in cylindrical or spherical polar coordinates.

- There will be three questions.
- You are required to answer ALL THREE questions

Good luck !