
Integral Definition of Curl
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(∇× v) · n̂ = lim
dA→0

1

dA

∮

v · dl

The component of the curl of a vector field in some directionn̂ is equal to the
circulation per unit area of the field around a loop to whichn̂ is the unit normal.



Stokes’ Theorem
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Divide closed loopC into 2 parts,C1 andC2.

C C1

C12

C2

C21

Consider the circulation of some vector fieldv aroundC
∮

C

v · dl =

∫

C1

v · dl +

∫

C2

v · dl

=

∫

C1

v · dl +

∫

C12

v · dl +

∫

C2

v · dl −
∫

C12

v · dl

=

∮

C1+C12

v · dl +

∮

C2+C21

v · dl

In other words the contributions from the common curve in each pair of loops
cancel.
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Now consider an open surfaceS bounded by a curveC. Divide the surface in
to an infinite number of infinitesimal rectangles. Add up the circulation ofv
around all these rectangles.The contribution from all the sides common
between two rectangles i.e. all the sidesexcept those that lay on the curveC,
cancel. This leaves only the contribution from the sides on curveC.So

∮

C

v · dl =
∑

i

∮

loop i

v · dl

But for an infinitesimal rectangular loop
∮

loop i

v · dl = (∇× v)i · n̂i dAi

n̂i normal to surfaceS for loop i (righthand rule) anddAi is the area of the
loop.
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So
∮

C

v · dl =
∑

i

(∇× v)i · n̂i
dAi

In the limit where the loops are infinitesimal, the sum becomes an integral so
∮

C

v · dl =

∫

S

(∇× v) · n̂ dA

Replacingn̂ dA with dA, we get
∮

C

v · dl =

∫

S

(∇× v) · dA

- Stokes’ theorem
Example



Maxwell’s Equations
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Connect one scalar field and three vector fields:

1. ρ = density of electric charge (C/m3) - scalar field

2. E = electric field strength - vector field

3. B = magnetic field strength - vector field

4. J = current density (A/m2) - vector field

1 ∇ · E =
ρ

ǫ0

2 ∇ · B = 0

3 ∇× E = −∂B

∂t

4 ∇× B = µ0J +
1

c2

∂E

∂t



Faraday’s Law
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Electric field induced by a changing magnetic field of fluxΦ of magnetic field
B:

Φ =

∫

S

B · dA - definition

−∂Φ

∂t
=

∮

E · dl - Faraday’s law

− ∂

∂t

(
∫

S

B · dA

)

=

∮

E · dl

∮

E · dl =

∫

S

(∇× E) · dA

∫

S

(∇× E) · dA = − ∂

∂t

(
∫

S

B · dA

)

= −
∫

S

∂B

∂t
· dA

But this is true for any surface, so

∇× E = −∂B

∂t
- Maxwell 3



Ampère’s Law
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Magnetic fieldB due to a currentI
∮

C

B · dl = µ0I

where the pathC encloses the currentI =
∫

s
J · dA.

Apply Stokes’ theorem

∮

C

B · dl =

∫

S

(∇× B) · dA
∫

S

(∇× B) · dA = µ0

∫

S

J · dA

- must be true for any surface, so

∇× B = µ0J

This isn’t Maxwell 4 - here the current is time independent.



But ...
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Can’t be true in general. To see why take the divergence of this equation -

∇ · (∇× B) = 0 - for anyB

so∇ · J = 0

Not in general true. True only for time independent current.
Try

∇× B = µ0J + ǫ0µ0

∂E

∂t
- take the divergence

∇ · (∇× B) = ∇ · (µ0J + ǫ0µ0

∂E

∂t
)

0 = ∇ · J + ǫ0

∂

∂t
∇ · E

but since∇ · E =
ρ

ǫ0

∇ · J +
∂ρ

∂t
= 0 - charge continuity equation



Maxwell’s Equations
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1 ∇ · E =
ρ

ǫ0

⇐⇒ Gauss’ law

2 ∇ · B = 0 ⇐⇒ No magnetic charges

3 ∇× E = −∂B

∂t
⇐⇒ Faraday’s Law

4 ∇× B = µ0J +
1

c2

∂E

∂t
⇐⇒ Ampère’s Law



EM Waves
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Can use Maxwell equations to derive wave equation for em waves.Assume free
space and no current.

∇× E = −∂B

∂t

∇× B = ǫ0µ0

∂E

∂t
Take curl

∇× (∇× B) = ǫ0µ0

∂∇× E

∂t
= −ǫ0µ0

∂2
B

∂t2

∇(∇ · B) −∇2
B = −ǫ0µ0

∂2
B

∂t2

∇2
B =

1

c2

∂2
B

∂t2

wherec = 1/
√

ǫ0µ0 - The wave equation for EM waves.
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