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•   Measure of Integrated Pressure 
   (Total Thermal Energy) 

•   Clean Measure of Baryon Gas  
   Mass 

•   Redshift independent 

The Sunyaev-Zel’dovich Effect from Clusters 

L. Van Speybroeck 

decrement increment 

shift 



SZA Science Goals 

•  Several Square Degree Survey  
   (Stephen Muchovej thesis) 

•  Cluster Abundance dN/dz 
•  Measure σ8

 (rms linear fluctuations  
  in the mass distribution on scales  
 of 8 Mpc)  
•  Tests of Non-Gaussianity 
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•  CMB Anisotropy Measurements 
   (Matthew Sharp thesis)  

•  Pointed Observations 
•  Scaling Relations  
•  Better Estimates of Cluster  
  Observables/Scaling Relations  
   (Tony Mroczkowski thesis) 

•  Detailed Imaging of Clusters at 90GHz 



•  Stand alone array 

•  Allow close pack configurations 
   for high brightness sensitivity 

• 1.2 diameter minimum spacing 

•  Two bands 26–36, 85–115 GHz 
   for survey & follow-up 

•  High accuracy telescopes permit 
   observations to 300 GHz 

• 30 um RMS surface 
• 1 arcsec rms pointing spec 

•  8 GHz correlation bandwidth for  
   sensitivity  

• 10 times BIMA bandwidth 

•  SZA + CARMA: 23-element 
   heterogeneous array 

• Sensitive, high resolution, 5 – 10”  
SZE imaging 

The SZA: Eight 3.5m telescopes  



SZA Receiver  
85 – 115 GHz 
SZA MMIC 
Amplifier.  Design 
from UMASS 
Amherst, blocks built 
in Chicago, 
Receivers built and 
tested Columbia 
University 

26-36GHz HEMT Amplifier 
recycled from DASI 

Heterodyne Systems with HEMT amplifiers 



SZA uv coverage and synthesized beams 
SZA configuration 

u-v coverage  
short baselines (top) 
Long baselines (bottom) 

u-v coverage for 
entire array 

“Dirty beams” 
Short baselines (top) 
Long baselines (bottom) 



High-z clusters observed during Commissioning of 
SZA 

ClJ1415.1+3612 
•  z ~ 1.03 
•  1.9x10^14 M_solar  
•  34.1 hours 
•  rms 0.16mJy/beam 

ClJ1429.0+4241 
•  z ~ 0.92 
•  3.4x10^14 M_solar 
•  32.1 hours 
•  rms 0.17mJy/beam 

ClJ1226+3332 
•  z ~ 0.89 
•  7.2x10^14 M_solar 
•  7.6 hours 
•  rms 0.38mJy/beam 

Muchovej et. al 2007. ApJ 663, 708 

•  Extended redshift range of reported SZ measurements 
•  Until recently, Cl1415 was the highest redshift cluster yet seen in SZE  

•  Extend the low-mass range  
•  Cl1415 is one of lowest mass clusters observed in the SZE 

•  SZA observations sensitive to angular scales out to ~ 7' (beyond “virial radius” of clusters) 
•  Good Agreement with X-ray cluster mass and temperature  
•  Good News for this and future SZ surveys 



Many clusters have been observed 

•  



Test of Survey on Cl0016+0016 

•  10 pointing Mosaic in 3-4-3  
   Hex Pattern 

•  4.8 arcminute Separation  

•  Median rms 0.31mJy/beam 

•  Bright Point Source at > 60  
   sigma 

Two Clusters  
Detected 

Cl0016+0016 
M ~ 1.3 x 10^15 M_solar 
(Hughes et al., 1995, ApJ448:L93) 

RXJ0018.3+1618 
M ~ 5 x 10^14 M_solar 
(Hughes & Birkinshaw, 1998, ApJ 497:645) 



SZA survey 

 Fields need to be selected to: 

•  Be properly spaced in RA to allow survey observations 24 hours/day (four fields each 
roughly 1.5 square degrees equally spaced in RA) 

•  Be properly positioned in declination (near zenith at transit) so as to minimize 
atmospheric contamination and to optimize imaging  

•  Minimize foregrounds (WMAP Ka band map)  

•  To take advantage of as much publicly available optical data as possible for for redshift 
information - two fields overlap with existing optical - science requires photometric redshifts 
(need imaging in several bands including near IR) 



Survey Strategy 

•  16 Rows of 16 Pointings 
•  6.6' separation in Right Ascention 
•  2.9' separation in Declination 
•  Uniform coverage 
•  ~1.5 sq degrees at rms 0.5mJy/beam 

•  4 pointings observed each track 
•  Simultaneous CMB Anisotropy Analysis 

Theoretical 

Found many sources 
of emission (~40 per 
field)… 

Data Collection 
Completed in 2008 



Source Extraction Algorithm 

• Multi-pointing fitting done directly in uv-space to  
 SZA data 

• Sources fall into 3 categories 
•  Unresolved Sources (<22”) 
•  Extended Emission 
•  Bright Unresolved Sources   

•  Use of VLA Data as Priors (5GHz 
  observations/NVSS/FIRST). 

•  Two Stages:  Iterative and using a Template 



Iterative Removal of Sources 

Long Baselines Short Baselines     

Significance Maps for SZA3 field - Dynamic scale as bright sources are removed 



Iterative Removal of Sources 

Long Baselines Short Baselines     

Significance Maps for SZA3 field - Dynamic scale as bright sources are removed 



30 GHz Source Characteristics 

•  Analysis includes all data (including those 
reserved for anisotropy measurements) 

•  209 Sources found at >5σ at 30GHz over 
7.7 square degrees 

•  Min flux ~0.7mJy to brightest of ~204mJy.  

•  ~95% with counterparts at 5GHz (~14% 
inverted), 75% in NVSS (~5% inverted) 

•  Spectral Index defined as I ∝ ν-α. 

Consistent with synchrotron emission 

•  First un-biased sample of sources at 
30GHz at the mJy level 

•  Spectral index distributions are messy - 
be cautious when comparing to other 
experiments.  

Muchovej et. al 2010. ApJ 716, 521 



Source Characteristics 
•  Source counts calculated as a power 
law: 

•  Calculation done in significance bins, 
not flux bins.  

•  Results agree well with previous 
experiments at higher flux values, as 
well as field source observations by 
Coble et al. (2007) 

•  Confirms overdensity of sources 
towards the center of massive clusters  

•  Results disagree with predictions from 
Mason et al. (2009) - best explained by 
a slight shift in spectral index 
distribution at lower fluxes. 

Muchovej et. al 2010. ApJ 716, 521  



CMB Anisotropy Measurement 

•  Calculated using 1340 hours of 
observations on 44 fields, 
comprising about 2 square 
degrees 

•   RED      – CBI 
   GREEN – BIMA 
       -- SZA 

•   Once unresolved radio 
sources are accounted for, 
consistent with σ8

 ~ 0.8. 

Sharp et. al 2010. ApJ 713, 82 



Cosmology from Galaxy Cluster Surveys 

•   Massive clusters are rare 
(exponential in the mass function) 

•   Number density of rich clusters 
depends strongly on the amplitude of 
mass density fluctuations on a scale 
of 8h-1 Mpc, σ8 

Carlstrom et al. (2002) 



Towards a Limit on σ8 

                              Number of Clusters we expect to see is given by 

•  Total survey area of 4.3 square 
degrees with noise less than 
0.75mJy/beam  (excludes SZA3 
field) 

•  Most of our coverage comes has 
noise of roughly  
0.27 mJy/beam 

• dN/dMdΩ  from Tinker et al (2008) 



• To calculate Completeness, use Shaw 
et al. (2009) simulations to relate SZ 
flux to cluster mass. 

•  N-body simulation of dark matter; gas 
included in semi-analytic method, 
including significant feedback. 

•  Mass ranges range from from 1.5e14 
to 12e14 Msolar,, redshifts from 0.1 to 2. 

•  200 Realizations of noise/point 
source combinations using SZA dNdS 
for field, and Coble for clusters for 
each mass/redshift range. 

•  Combine this with the are covered 
and we can get an estimate of the 
mass limit of our survey. 

•  Good agreement between 
simulations with differing gas physics 
(Shaw et al., 2009 and White, 2003) 

Muchovej et. al 2011, ApJ 732, 28 



•  From the expected number of clusters, 
use Bayesian statistics to calculate a 
probability of a given value of σ8.   

•  We expect a non-detection 5% of the 
time for values of 0.97. 

Limit on σ8 

•  σ8
  < 0.84 + 0.07 at 98% confidence, 

where uncertainties include an estimate 
due to differing gas physics of simulations; 
source-cluster correlation; flux calibration; 
source modelling; and  clustering of 
clusters. 

•  Agrees with recent WMAP, SPT, and ACT  
results. Muchovej et. al 2011, ApJ 732, 28 



Evidence for Anomalous emission?  

•  Once all sources are removed,  
 resulting map noise distribution in image 
 plane matches theoretical for the long 
 baselines on all fields. 

•  Not the case for the short baseline 
images, as the image plane noise in has 
discrepancies of roughly 18% in the 
SZA3 field  

•  Discrepancy of roughly 3-5% on the 
other fields 



Anomalous Signal in SZA3 Field 

•  Jacknife tests indicate 
  the signal is real. 

• Ground Jacknife Test 
indicate the signal is 
inconsistent with ground  

•  Data Halves 
Jacknife test 
indicate signal is 
coming from the sky 



Excess Signal in SZA3 Field 

•  Strongest regions of emission 
spatially associated with ridges 
of dust in the IRAS 100 µm 

•  IRAS resolution (5’) presents 
challenges when making a 
quantitative foreground 
analysis.   

•  SZA data which are sensitive 
to scales larger than 5’ make 
up only 35% of the short 
baseline data (roughly 18% of 
the full data set).   



Quantitative Analysis? 

•  Excess signal is present even 
in the smaller dataset.   

•  Excess noise still detected at 
20% level.  

•  How significant is the correlation?   



Significance of Correlation 

•  Equipped with a foreground 
template, can use the 
deprojection technique to 
determine the amount of power 
left once those modes are 
excised from the data.  

•  In the unaltered data, the 
reduction in χ2  from projecting 
out the IRAS map is 1.1e4.   

•   To determine how significant 
this is, we calculate a 
distribution of this  χ2  by 
deprojecting IRAS templates 
randomly selected.   

•  Compared to this distribution, our association 
with IRAS is better than 90.5%.   (low limit due to 
intrinsic assumptions in this calculation)  

•   This is diffuse, not compact excess!   There’s 
nothing special about this region in the galaxy. 



Consistent with Thermal dust?    
•  To determine if it’s consistent with 
thermal dust, we calculate the 
expected emission using the SFD 
model.   

•  We then sample this onto our uv-
coverage, and determine the scale 
factor that minimizes the χ2  
between data and model.  

•  Our best fit scaling indicates that 
the amplitude of the IRAS 
correlated emission in our field is 
412 ± 6.7 times what is predicted 
by thermal dust.   

•  Are there environments in which spinning dust 
emission is two orders of magnitude greater than 
thermal dust  (in flux)?    

Finkbeiner et. al (2004) 



Further Analysis   

•  Robustly quantify the correlation with 
dust by using the best fit IRAS maps to 
our data. 

•  Quantify the correlation with other 
templates.  NEED HIGH RESOLUTION 
IR DATA -- anyone know of some for this 
field?    RA~21:30, DEC +25. WISE? 

•  Check the correlation with other templates.   

•  Determine if the grain size and 
temperatures in that region would produce 
spinning dust emission in agreement with 
the level we see.   



•  SZA is a powerful instrument for SZ science, AME observations. 

•  Analysis of 7.7 square degrees of the sky at 30GHz determined, for the first 
time, the number density of sources of emission at a high frequency. 

•  Indicates excess power in some CMB observations is a result of under-
predicting the contribution due to dim sources. 

•  CMB anisotropy measurements at high-ell consistent with σ8 < 0.8. 

• Our small survey (4.3 square degrees) for clusters of galaxies predicts  σ8
  = 

, consistent with WMAP, SPT , and ACT results. 

• We have detected a component of large-scale diffuse emission in the SZA3.    
•  Data jack-knife tests indicate it is real 
•  It is 91% spatially correlated with IRAS dust emission 
•  Its level is greater than what is predicted by                              

 SFD for thermal dust 

• SZA is now a part of CARMA – apply for your own observations!   

Conclusions 



Thank you. 

Stephen Muchovej 
Caltech  

sjcm@astro.caltech.edu  
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