Phased Array Feeds for the Large Adaptive Reflector

Bruce Veidt Dominion Radio Astrophysical Observatory National Research Council Penticton, BC, Canada *bruce.veidt@nrc.ca*

August 3–5, 2000

Abstract

This poster establishes the design parameters of a phased array feed system for the Large Adaptive Reflector. Our investigation has found: that for an octave-bandwidth phased array the beamformer must be channelized; for a 0.8° -wide field-of-view 2000 elements are needed; for low spillover (< 10K) up to 1000 elements per beam are required and \geq 5 bits quantization prior to summation.

Introduction

The Large Adaptive Reflector (LAR) [4], [5], [1]

- Operate from \sim 150 MHz to 10–20 GHz.
- Reflector diameter \sim 200 m and focal length \sim 500 m.
- Instantaneous field of view at 1.4 GHz will be 0.5 square degree.

LAR Phased Array

- Phased array feed will be used so that the field of view is fully sampled with multiple beams.
- No electrical beam steering, only mechanical.
 - ▷ Minimizes foreshortening effects.
 - ▷ Simplifies array since phase shifters not needed.
 - \triangleright Coarser element spacing allowed, up to λ , before grating lobes appear in the forward hemisphere.
- Beams have a variable profile because the reflector presents an elliptical outline at the focal point.
- Focal spot size equal to $(f/D)\lambda = 2.5\lambda$.

Wide-Band Phased Arrays

- Maximum array bandwidth
 - \triangleright The maximum grating-free spacing for phased arrays that are not electrically steered is $\sim \lambda$.
 - \triangleright The minimum spacing is set by the distance at which mutual coupling between two adjacent elements becomes significant, typically $\sim\lambda/2$
 - > Therefore the maximum bandwidth is one octave.
- Beamforming network
 - Conventional beamforming networks produce illumination functions that are invariant with frequency.
 - ▷ The radiation pattern of such an antenna will vary with frequency, as shown in Fig. 1.
 - Thus the beamforming network needs to be made frequency dependent, as shown in Fig. 2.
 - ♦ FIR filter divides signals into bands.
 - ◇ Separate set of beamforming weights for each band.
 - Spectral aliasing can be suppressed by using the WIDAR method [2].

Figure 1: How a frequency independent aperture illumination produces a frequency dependent radiation pattern.

Figure 2: Wide-band beamforming network for a single receiver channel.

Simulation Software

- A software package has been written for transformations: *aperture illumination* ⇔ *radiation pattern*.
- The package also contains many functions, such as the calculation of spillover noise, quantization of antenna weights, and the plotting of radiation patterns.
- The software was written in Octave [3], an interpretive language for numerical math and matrix algebra.
- Assumptions:
 - ▷ reflector in the far-field zone of the array,
 - ▷ coupling between the array elements is negligible,
 - ▷ element pattern is uniform over the hemisphere.
- Can use either square or hexagonal grids of any size.
- Two types of beams can be specified for synthesizing an aperture illumination:
 - ▷ Gaussian
 - ▷ 'Flat-top', which is uniform with Gaussian skirts.

- Spillover temperature calculation
 - \triangleright Ground temperature is assumed to be 300K.
 - The calculation take into account both the foreshortening of the reflector and the horizon.

Simulations and Results

- Purpose is to estimate the scale of a number of critical LAR phased array parameters:
 - b the number of elements per focal spot or beam on the sky,
 - b the numerical precision in the signal processing chain, and
 - \triangleright the total number of elements.
- Beams used:
 - \triangleright with a Gaussian beam with an edge taper of 15 dB,
 - ▷ with a flat-top function that had the flat radius set to 0.5 and tapers of 15 & 20 dB.
- Figure of merit used is the spillover noise temperature.
- Hexagonal and square grids were both examined.

Number of Elements and Combining Network Numerical Precision

- Grid spacings used:
 - \triangleright hexagonal grids \Rightarrow 0.9 λ at the high-end of band and 0.45 λ spacing at low-end,

- $\triangleright\,$ square grids $\Rightarrow\,0.8\lambda$ at the high-end of band and $0.4\lambda\,$ spacing at low-end.
- Adjust taper on reflector so that spillover noise is 10K.
- Reduce number of elements without significantly increasing spillover.
- Vary the number of bits to find the minimum number where the performance degradation is minimal.
- Typical results shown in Tables 1–2.
- These are the minimum number of elements; more inputs are needed to:
 - ▷ track residual motions of airborne platform
 - allow smooth hand-off from one network to the next to accommodate field rotation.

Zenith Angle	Frequency Element		Bits
0°	low-band	331	5
	high-band	91	6
60°	low-band	817	5
	high-band	271	6

Table 1: Results for Gaussian beam with a 15 dB taper on a hexagonal grid.

Zenith Angle	Frequency Elements		Bits
0°	low-band	289	5
	high-band	81	5
60°	low-band	1089	4
	high-band	289	6

Table 2: Results for Gaussian beam with a 15 dB taper on a square grid.

Total Number of Elements

- Calculated for 1.4 GHz, which will be the top of the octavewide band.
- The telescope field of view will be one-half-square-degree with a field diameter of 0.8°, shown by the inner large circle in Figure 3.

Figure 3: Boundaries of beams and overall field projected onto focal plane.

Perimeter	Diameter		Number of Elements	
			Hexagonal	Square
3 dB	33.2 λ	7 m	1237	1353
skirt	39.6 λ	8.3 m	1765	1925
$ZA = 60^\circ,$	39.6 λ $ imes$	8.3 m $ imes$	1999	2185
elliptical	45 λ	9.5 m		
$ZA = 60^\circ,$	45 λ	9.5 m	2263	2477
circular				

Table 3: Size and number of elements for various phased array perimeters.

Conclusions

- Wide-band phased arrays require a frequency-dependent beamforming network.
- For hexagonal grids the spacing varies between 0.45λ and 0.9λ .
- The useful range of spacings for a square grid is from 0.4λ to 0.9λ .
- There is a modest savings in the total number of elements if a hexagonal grid is used.
- A square grid may be chosen for other reasons, such as antenna type or fabrication method.
- For low spillover ${\sim}1000$ elements/beam at the low-frequency end of the band and ${\sim}200$ at the high-end.
- Quantization to 5-bits prior to the summing operation in the beamforming network usually provides adequate performance, although a conservative design should use 6-bits.

- At 1.4 GHz, the phased array will have the dimensions 8.3 m \times 9.5 m for a 0.5 square-degree field-of-view.
- The phased array will contain 2000 elements for a single polarization.

References

- B. Carlson and et al. The Large Adaptive Reflector: A 200-m diameter, wideband, cm-m wave radio telescope. In SPIE International Symposium on Astronomical Telescopes and Instrumentation 2000, pages Paper 4015–04, 2000.
- B. R. Carlson and P. E. Dewdney. Efficient wideband digital correlation. *Electronics Letters*, 36(11):987–988, 2000.
- [3] J. W. Eaton. GNU Octave: A high-level interactive language for numerical computations. University of Wisconsin-Madison, Department of Chemical Engineering, 3 edition, 1997.
- [4] T. H. Legg. A proposed large radio telescope of new design. Astronomy and Astrophysics Supplement, 130:369–379, 1998.
- [5] B. Veidt and P. Dewdney. Steady-state stability analysis of a triple tethered balloon platform. Future Radio Facilities Report 1, DRAO, 1996.