Single- or multiple-antenna Array Stations?

Michael I. Large and Bruce MacA. Thomas - CSIRO, Sydney

Michael.Large@atnf.csiro.au and Bruce.Thomas@atnf.csiro.au

Summary

Two Array Station designs are compared:

- 1) A single large concentrator
- 2) A tied, thinned, group of smaller concentrators.

The single concentrator design results in a better dynamic range in SKA images

Definitions

A **concentrator** is an antenna with a single feed point, e.g.:

- A reflector
- A Luneburg lens
- A log-periodic antenna

An Array Station is:

a single concentrator. a group of antennas combined phasecoherently (tied) to form one beam (or more).

The Thinning Factor is:

t = Array Station geom. area total collecting area

Advantages of a single large concentrator

Compared with a thinned group of concentrators:

- · The field of view (FoV) is greater.
- · There is much less energy in near sidelobes.
- · Fewer receivers and phase stable links are required.
- No phasing and beam forming networks are required within Array Stations.

SKA: dynamic range considerations

- Radio sources lying in the Array Station sidelobes generate artefacts in the synthesized image.
- The magnitude and distribution of this sidelobe confusion depends on the Array Station configuration, and is less harmful for a single concentrator than for a thinned group.
- Mitigation by CLEANing depends on accurate knowledge of the sidelobe structure of every Array Station and hence is much more practicable for single concentrator Array Stations.

Example		
	Single concentrator	Thinned array (t=5)
Diameter	72 m	160 m
FoV (1.4 GHz)	0.20°	0.09°
Relative energy in FoV	100%	20%

Conclusions

- For high dynamic range wide-field imaging, each Array Station of the SKA is preferably a continuous (ie not a thinned) collecting area.
- The sidelobe confusion of any SKA design should be investigated by detailed simulation.