

SKA – The Australian Perspective Peter J Hall CSIRO SKA Program Leader

http://www.atnf.csiro.au/SKA

Presentation Outline

Background

Australia and the SKA

- New "seed" research program
 - » Philosophy, Working Principles, Goals

Activity Summaries

- Antennas, Interference Mitigation, Site Studies, Configurations
- Prototyping
- **SKA Design Evolution and Working Needs**

Strategic + Commercial

CSIRO Australia Telescope National Facility

- 135 staff, annual funding \$16M
- Many links with US, European and Asian collaborators
- Manages new \$3M "seed" SKA program
- Strong background in system engineering and science
- SKA targetted as prime "long-term" organizational project

Parkes 13-beam HI Receiver (with CTIP)

SEST 2 GHz Correlator

100 GHz Mounted MMIC LNA

Australia and the SKA

Pre-1999 'ad hoc' work

Late 1999: CSIRO \$3M 'seed' program over 4 yrs

- Earlier activities integrated into new structure
- Framework set for enhanced contribution over coming years
- About 26 m-yr effort
 - » Includes 13 m-yr from ATNF/CTIP matching contributions
 - » Includes 2 postdocs, 2 postgrads, 1 new SKA support engineer
- Primarily engineering and system science, but framed to stimulate astronomy discussions and design interactions

Widely separated multi-beaming Wide field-of-view Active interference mitigation

Australian SKA: Some Goals

- **Contribute effectively to international SKA effort**
 - Explore areas not well-addressed by others
 - Establish some boundaries in design space
- Use existing instruments intelligently in SKA design
 - e.g. software radio telescope
- Produce engineering prototypes of key systems (Dec 2002)
 - Prepare path for 2005 astronomical demonstrator
- Help establish SKA site selection criteria
- Build SKA briefing, training and outreach programs
 - High-level national and international
 - University and mainstream professional
 - Public

- Antennas and RF
- RFI mitigation techniques and components
- Site selection
- SKA configurations and imaging

Antennas & RF Systems

- Strong ATNF & CTIP background in "conventional" systems to >100 GHz
 - Efficient feeds and reflectors; low-noise, cooled, electronics
 - Some continuing SKA efforts (e.g. doublet cylindrical reflector)
- Investigate refracting concentrator quickly establish viability
 - Focus SKA community on determining REAL value of multi-beaming
- Recognize that this DOES imply a different design path
 - e.g. other considerations than minimizing T_{sys}
- Use MMIC capabilities to produce integrated feeds and receivers
 - First 1-10 GHz indium phosphide LNAs under test
 - Prime area for collaboration

Luneburg Lenses

- Offer:
 - Widely separated, full-sensitivity, multibeaming
 - Ability to mix and match feed arrangements e.g.
 - » High sensitivity single feeds
 - 1 feed per beam
 - » "Patch" focal plane arrays
 - Natural upgrade path in N_{beam} direction
- **Challenges:**
 - Materials and manufacturing to give
 - » Low cost
 - » Low RF loss
 - » Durable, easily-assembled, structures
 - Feed arrangements
- Synergies:
 - Feed elements and arrays (Dutch planar arrays, 1 hT log periodics)
 - RF, signal distribution etc (1 hT, DSN)

Luneburg Lens SKA

KONKUR Commercial Luneburg Lens

Specifications – Multisat 1M

Diameter: 900 mm Gain: 39 dB (implies ~50% efficiency) First sidelobe: -17 dB No. beams: up to 10 Mass: 150 kg Band: to Ku (12 GHz) Loss: < 0.5 dB at 12 GHz Estimated cost: \$US 3500

Also advertise 1.5 - 4 m "Post" lenses for satellite up/down link (8 beams)

http://www.com2com.ru/konkur/

- Why?
 - SKA needs to observe outside (small) designated astronomy bands to meet its scientific objectives
 - SKA sensitivity is unprecedented
 - Terrestrial transmissions will be a challenge for all but a few sites on Earth
 - Satellite transmissions are now globally pervasive (intentional constellation coverage for many LEOs)

How?

- No single IM solution; need a hierarchy of techniques
- Toxicity and robustness are major concerns

- **SKA location (esp. central cluster)**
- Stations, array configurations
 - Maximise natural RFI rejection; optimise IM effectiveness
- High-intercept MMIC receivers
- Fixed or tunable RF/IF filters for high-level RFI
 - Photonic fibre (CSIRO/U. Sydney)
 - HTS microwave (CSIRO/U. Qld)

Active IM techniques

- Software radio telescope
- Pre and post-correlation techniques
- New data processing algorithms (excision, robust statistics....)

Australian SKA Site Studies

- Aim to use Australian case studies to illuminate general site selection issues
 - Invaluable for emerging international working group
- Great interest by state of Western Australia; initial CSIRO investigations in WA
 - Negotiation with land use and native title authorities
 - Strong links with environmental remediation proposals
 - First-round RFI testing about to commence
 - Second-round site testing planned for mid-2001
- Parallel work on establishment of radio-quiet reserve
 - Legislated or regulated ?
 - More at IAU RFI standards session

SKA Site Selection

Terrestrial Interference

FORTÉ satellite

Aim to use ATNF AIPS++ expertise to construct simulated observations

- Mark Wieringa work on array configurations already on Web
- Will extend to full simulated observing suite

Will incorporate

- Earlier work on sky modelling (Hopkins et al.)
- Recent work on adaptive sub-arrays and dynamic range (Cram)

A Possible SKA Layout

SKA Prototyping & Astronomical Demonstrator

Engineering prototypes of key systems by Dec 2002.

- 1-3 m diameter Luneburg Lens antenna, broadband feed structure with integral wideband MMIC low-noise receiver
- Operational IM systems
 - » Integrated post-correlation software for ATCA and Parkes observers
 - » Wideband (>32 MHz) hardware coherent processor?

Astronomical demonstrator by 2005

- Vehicle to test system design ideas
- Requires ~\$10M additional funding
- Could be done in collaboration with other international groups
- Luneburg (?) array; integrated receivers with photonic connectivity
- ATCA augmentation?

SKA Design Evolution

- First science specifications in place...ball is with the engineers
- Establish ways of fostering science/engineering iteration
- Decouple science politics (however worthy) from design process

An evolving technical summary, incorporating:

- Design goals
- Strawman arrays (case studies)
 - » Rough cost expressions for each
 - » Scores for critical parameters (\rightarrow FOM?)
- Issues emerging from case studies (e.g. extensibility...)

To help decide:

- What value do we place on new capability (e.g. multi-beaming)?
 - » Critical in establishing SKA design directions
- Is there <u>one</u> SKA?
 - » Cost of being all things to many people may be too high

Some Working Needs

- A "Technical Overview Committee" to distill and promulgate important technical and system developments
- A web-based repository for an "SKA Memo" series, or other publications
 - Web links to national sites
- A web-based discussion forum
 - Issues, comments and preliminary results
 - » Spontaneous, as well as TOC-prompted
- Mechanisms to grow multi-national collaborations
 - Working groups, bench-level interactions and exchanges

Australian SKA People

http://www.atnf.csiro.au/SKA

Activity	Leader	Team
Science, Overall Direction	Ron Ekers	ATNF Astrophysics, Ray Norris, Others
Technology, Program Leadership	Peter Hall	ATNF Engineering
Interference Mitigation	Bob Sault	Michael Kesteven, Jon Bell, John Bunton, Steve Ellingson (OSU), Peter Hall, Ron Ekers, Warwick Wilson, Daniel Mitchell (U Syd), Lisa Kewley (ANU), Robert Minasian (U Syd), Don McClean
Antennas	Graeme James (CTIP)	Andrew Parfitt (CTIP), John Kot (CTIP), Peter Hall, John Bunton (CTIP), Bruce Thomas, Michael Large, Mark Walker
Configurations & Imaging	Mark Wieringa	Ravi Subrahmanyan, Ron Ekers, Bob Sault, Bruce Thomas, Lawrence Cram (U Syd), Wim Brouw
Site Studies	Bruce Thomas	Michelle Storey