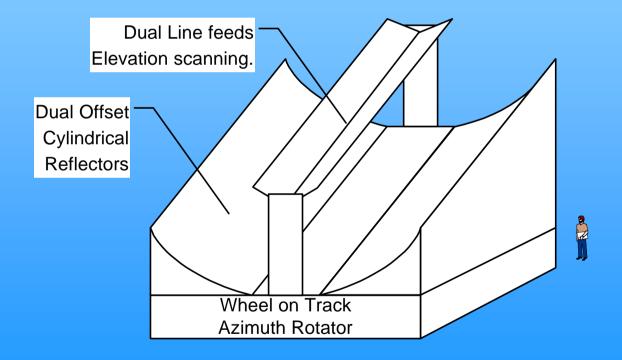
The Cylindrical Reflector Doublet Antenna


John Bunton

CSIRO

Telecommunications and Industrial Physics
Australia

Example of a Cylindrical Reflector Doublet Antenna

Operational Advantages

MULTIBEAMING

- Elevation multi beam forming with array line feeds
- Limited multiple beams in azimuth using several offset line feeds

ADAPTIVE NULL STEERING

- Quality of cancellation proportion to degree of freedom
- First line of defence against interference
- Does not degrade T_{sys}

POSSIBLE SINGLE UNIT ARRAY STATION

Collecting area of 2000m² practical

Mechanical Advantages

- LOW COST
 - No towers or counterweights
 - Minimal backing structure with Multipoint support
 - Ease of mechanical maintenance, main mechanical components at ground level
- HIGH FREQUENCY SURFACE
 - Easily achievable high surface accuracy
 - curvature in one direction
 - Easy to align surface
 - Reasonable feed costs at 10 GHz
 - No gravity deflections
- HIGH WIND RESISTANCE

Astronomy Advantages

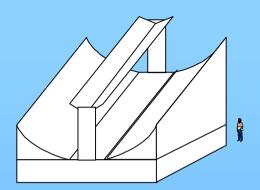
- WIDE BANDWIDTH
 CONSTANT COLLECTING AREA
 - High frequency to 10GHz and above
 - Low frequency 100MHz with 15m reflector
- FULL SKY COVERAGE
 - Mechanical azimuth steering
 - Electronic scanning zenith to horizon
- DUAL POLARISATION with good purity

Astronomy Advantages

- HIGH SURFACE BRIGHTNESS SENSITIVITY
 - Due to reduced shadowing,
 - antenna has low and constant profile, does not tilt
 - antennas can be closer together more than doubles surface brightness sensitivity
 - Inter line feed correlation
 - high isolation between line feeds
 - Allows cross correlations baselines 5 to 70m

Limitations? - not really

- LIMITED INSTANTANEOUS SKY VISIBILITY
 - But necessary for high frequency operation to limit feed numbers
 - Still have large Field-of-View but not whole sky
 - Instantaneous multiple beams possible over part sky. Up to 1000 deg²


Limitations? - not really

- LARGE, MOVING PHYSICAL STRUCTURE
 - Must have movement for full sky visibility
 - If high frequency operation desired
 - This design reduces movement to single Azimuth drive
 - No other option simpler except phased arrays
 - Azimuth drive is the lowest cost option

Doublet Antenna

- Offers large FOV hence high astronomy throughput
- High frequency operation
- High surface brightness sensitivity
- Mechanical structure low cost and robust
- Viable technology now because cost of beamformer has become affordable
- Only technical challenge line feeds

