Asteroid mass determination & Contribution to GR tests

D. Hestroffer (IMCCE/Paris observatory) + S. Mouret, J Berthier (IMCCE), F. Mignard (OCA)

hestro @ imcce.fr

Outline

- Gaia observation of asteroids (overview)
- Orbit improvement (precision)
- Determination of asteroids mass
- GR tests (local)

- About 300,000 asteroids
 - (8 ≤) V ≤ 20
- Scanning law
 - Observations around quadratures and to low elongations, including NEOs (or IEOs)
 - $45^\circ \le L \le 135^\circ$
 - No pointing, and varying sequences of observations
 - Approx 50 observations per target over 5 years
- One-dimensional, sub-mas to mas precision

- About 300,000 asteroids
 - (8 \leq) V \leq 20, almost complete but not for IEOs...
- Scanning law
 - Observations around quadratures and to low elongations, including NEOs (or IEOs)
 - No pointing, and varying sequences of observations
- One-dimensional, sub-mas to mas precision

Gaia Scanning Law

- Sun aspect ξ=50°
- Observations in a given range of elongations from L1 to L2

Gaia Scanning Law

- About 300,000 asteroids
 - (8 ≤) ≤ 20, almost complete but not for IEOs...
- Scanning law
 - Observations around quadratures and to low elongations, including NEOs (or IEOs)
 - $45^\circ \le L \le 135^\circ$
 - No pointing, and varying sequences of observations
 - Approx 50 observations per target over 5 years
- One-dimensional, sub-mas to mas precision

Orbit Improvement

• Linearized least-squares, variance analysis

• A . dq = O-C = $d\lambda$

- Jacobian matrix of PD A from
 - analytical (2 body approximation, elliptic elements)
 - variational equations (numerical integration, (x, dx/dt))
- Unknown correction vector dq=(dq_i,dq_g)
 - **dq**_i per asteroid
 - dq_g global parameters

Orbit Improvement (cont.)

- **dq**_i per asteroid
 - osculating elements (da/a,de,dl_o+dr, dp,dq,e.dr)
 - photocenter offset C(α) = R.($a.\alpha$ +b)
 - etc.
- dq_g global parameters
 - global frame rotation (ecliptic and γ)
 - solar J_2
 - GR
 - secular variations
 - asteroid mass m_j, etc.

Determination of Mass

- Masses from close approaches (binaries too)
- One massive perturber vs. several small targets

$$\tan\frac{\varphi}{2} = -\frac{G(M+m)}{bV^2}$$

TWO-BODY HYPERBOLIC APPROXIMATION

hestro @ imcce.fr

Determination of Mass

- About 100 potential perturbers
- Partial derivatives from variational equations.
- Exemple
 - dq for Mass only, over 5 years
 - one mass (Ceres) from 19 small targets

– perturbations taken into account even if $\sigma(M)$ large

Tests of GR

- Sensitivity of orbits e.dω/dt
- Icarus, Phaeton

 ≈ Mercury
 (Sitarski)
 not radar though!
- ~1550 asteroids in present simulation
- 150 Trojans, 1200 MBAs, **≥ 200 NEAs**
- β : a (1-e²)
 J₂ : a²(1-e²)²

hestro @ imcce.fr

Tests of GR

- PPN formalism Local test
- Assuming γ is known (Cassini, GAIA, ...)
- Simultaneous determination of PPN $\,\beta$ and solar quadrupole J_2
 - Correlation (β +1/4e4.J₂, J₂)=0.14
- Rotation and rotation rate

Perspectives

- Some parameters depend on $1/\sqrt{N}$
 - dJ2/dt possibly 10⁻⁷yr⁻¹
 - G/G in fact d(G.M)/dt possibly <10⁻¹¹ yr⁻¹
 - Global rotation
- Consider extensive simulation with 300,000 objects (code to //)
- All PD from var. eqs. (no approx. from 2 body)
- Consider Nordtvedt η from Trojans (?, Orellana & Vucetictch), β₂ for dG (?..)

hestro @ imcce.fr

Size-mag (albedo) relation

Sparse matrix

least-squares procedure :						l	
$var(\mathbf{dq}_i) \approx (\mathbf{B}_i'\mathbf{B}_i)^- \sigma_0^2 + \dots$	B ₁	0	0	A_1	dq1		
$var(dg) = U^{-1} \sigma_0^2$ where	0	Bi	0	Ai	dq _i dq _N	= 6	đλ
$\mathbf{U} = \sum_{i} \left[(\mathbf{A}_{i}'\mathbf{A}_{i})^{-1} - \mathbf{A}_{i}'\mathbf{B}_{i} (\mathbf{B}_{i}'\mathbf{B}_{i})^{-1}\mathbf{B}_{i}'\mathbf{A}_{i} \right]$	0	0	B _N	A _N	dg	I	I