Asteroid mass determination

\&

Contribution to GR tests

D. Hestroffer (IMCCE/Paris observatory) $+$
S. Mouret, J Berthier (IMCCE), F. Mignard (OCA)

Outline

- Gaia observation of asteroids (overview)
- Orbit improvement (precision)
- Determination of asteroids mass
- GR tests (local)

Gaia Observation of Asteroids

- About 300,000 asteroids
- $(8 \leq) \mathrm{V} \leq 20$
- Scanning law
- Observations around quadratures and to low elongations, including NEOs (or IEOs)
- $45^{\circ} \leq \mathrm{L} \leq 135^{\circ}$
- No pointing, and varying sequences of observations
- Approx 50 observations per target over 5 years
- One-dimensional, sub-mas to mas precision

Gaia Observation of Asteroids

Gaia Observation of Asteroids

- About 300,000 asteroids
- (8 \leq) V ≤ 20, almost complete - but not for IEOs...
- Scanning law
- Observations around quadratures and to low elongations, including NEOs (or IEOs)
- No pointing, and varying sequences of observations
- One-dimensional, sub-mas to mas precision

Gaia Scanning Law

- Sun aspect $\xi=50^{\circ}$
- Observations in a given range of elongations from L1 to L2

Gaia Scanning Law

Gaia Observation of Asteroids

- About 300,000 asteroids
- $(8 \leq) \leq 20$, almost complete - but not for IEOs...
- Scanning law
- Observations around quadratures and to low elongations, including NEOs (or IEOs)
- $45^{\circ} \leq \mathrm{L} \leq 135^{\circ}$
- No pointing, and varying sequences of observations
- Approx 50 observations per target over 5 years
- One-dimensional, sub-mas to mas precision

Orbit Improvement

- Linearized least-squares, variance analysis
- $A \cdot d q=O-C=d \lambda$
- Jacobian matrix of PD A from
- analytical (2 body approximation, elliptic elements)
- variational equations (numerical integration, ($\mathbf{x}, \mathrm{dx} / \mathrm{dt}$))
- Unknown correction vector $\mathbf{d q}=\left(\mathbf{d q}_{\mathrm{i}}, \mathbf{d q}_{\mathbf{g}}\right)$
- dq $_{i}$ per asteroid
- $\mathbf{d q}_{\mathrm{g}}$ global parameters

Orbit Improvement (cont.)

- d_{i} per asteroid
- osculating elements (da/a,de,dlo+dr, dp,dq,e.dr)
- photocenter offset $C(\alpha)=R .(a . \alpha+b)$
- etc.
- $\mathbf{d q}_{\mathrm{g}}$ global parameters
- global frame rotation (ecliptic and γ)
- solar J2
- GR
- secular variations
- asteroid mass m_{j}, etc.

Determination of Mass

- Masses from close approaches (binaries too)
- One massive perturber vs. several small targets

$$
\tan \frac{\varphi}{2}=-\frac{G(M+m)}{b V^{2}}
$$

TWO-BODY HYPERBOLIC APPROXIMATION

Determination of Mass

- About 100 potential perturbers
- Partial derivatives from variational equations.
- Exemple
- dq for Mass only, over 5 years
- one mass (Ceres) from 19 small targets

Formal precision on the mass of Ceres:

$$
\sigma\left(m_{c}\right) \approx 4.8 \times 10^{-14} M \quad \frac{\sigma\left(m_{c}\right)}{m_{c}} \approx 0.01 \%
$$

- perturbations taken into account even if $\sigma(M)$ large

Tests of GR

- Sensitivity of orbits e.d ω / dt
- Icarus, Phaeton
₹ Mercury (Sitarski) not radar though!
- ~1550 asteroids in present simulation

> 150 Trojans, 1200 MBAs, 200 NEAs

- β : $a\left(1-\mathrm{e}^{2}\right)$
$\mathrm{J}_{2}: \mathrm{a}^{2}\left(1-\mathrm{e}^{2}\right)^{2}$
hestro @ imcce.fr

Tests of GR

- PPN formalism - Local test
- Assuming γ is known (Cassini, GAIA, ...)
- Simultaneous determination of PPN β and solar quadrupole J_{2}
- Correlation $\left(\beta+1 / 4 e 4 . J_{2}, J_{2}\right)=0.14$
- Rotation and rotation rate

Mainly from NEAs

Perspectives

- Some parameters depend on $1 / \sqrt{N}$
- dJ2/dt possibly $10^{-7} \mathrm{yr}^{-1}$
- $\dot{\mathrm{G}} / \mathrm{G}$ in fact d(G.M)/dt possibly < $10^{-11} \mathrm{yr}^{-1}$
- Global rotation
- Consider extensive simulation with 300,000 objects (code to //)
- All PD from var. eqs. (no approx. from 2 body)
- Consider Nordtvedt η from Trojans (?, Orellana \& Vucetictch), β_{2} for dG (?..)

Size-mag (albedo) relation

Sparse matrix

least-squares procedure :
$\operatorname{var}\left(\mathbf{d q}_{\mathrm{i}}\right) \approx\left(\mathrm{B}_{\mathrm{i}}{ }^{\prime} \mathrm{B}_{\mathrm{i}}\right)^{-} \sigma_{0}{ }^{2}+\ldots$
$\operatorname{var}(\mathbf{d g})=\mathbf{U}^{-1} \sigma_{0}{ }^{2}$ where

$$
\mathrm{U}=\Sigma_{i}\left[\left(\mathrm{~A}_{\mathrm{i}}^{\prime} \mathrm{A}_{\mathrm{i}}\right)^{-1}-\mathrm{A}_{\mathrm{i}}^{\prime} \mathrm{B}_{\mathrm{i}}\left(\mathrm{~B}_{\mathrm{i}}^{\prime} \mathrm{B}_{\mathrm{i}}\right)^{-1} \mathrm{~B}_{\mathrm{i}}^{\prime} \mathrm{A}_{\mathrm{i}}\right]
$$

B_{1}	0	0	$\mathrm{~A}_{1}$
0	$\mathrm{~B}_{1}$	0	$\mathrm{~A}_{\mathrm{i}}$
0	0	$\mathrm{~B}_{\mathrm{N}}$	A_{N}

\mathrm{dq}_{\mathrm{i}}

\mathrm{dq}_{\mathrm{N}}

\mathrm{dg}\end{array}\right|=|\mathrm{d} \lambda|\)

