Appendix D - Data Sheets Of Key Components

• <u>MTRX192L</u>	Optical receiver Module	Multiplex Inc
Application No	ote on feedback loop	
• <u>PT422x</u>	DC-DC Converter	Power Trends (TI)
Application No	ote on remote control and voltage a	adjustment
• <u>MC78L08</u>	Linear 8volt regulator	ON semiconductor
• <u>MAX525</u>	Digital to Analog Converter	Maxim
• <u>ADS7841</u>	Analog to Digital Converter	Burr Brown Products (TI)
• <u>LM4051</u>	Voltage reference diode	National Semiconductor
• <u>LM61</u>	Temperature sensor	National Semiconductor
• <u>MAX 487</u>	RS422 Transceiver	Maxim
• <u>OPA241</u>	Operational Amplifier	Burr Brown (TI)
• <u>MAX407</u>	Operational Amplifier	Maxim

MTRX192L

High performance optical receiver module including an output limiting amplifier for 10Gb/s system applications. Applicable to 12.5Gb/s.

Features:

- MTRX192L: Optical receiver module including PIN diode, low noise TIA and limiting amplifier.
- Low power consumption.
- Data output interface either with coaxial connector or by soldering the RF feed through pin to the circuit board directly.
- Choice of output coaxial connector among: GPO[©] connector, K[©]-connector, or SMA connector.
- Non-inverted, single-end AC-couple output. (Package version with differential outputs available.)
- Choice of input optical connector of such as ST, FC-PC, etc.
- Operational Temperature: -20° C to $+ 80^{\circ}$ C.

Note: GPO is the trademark of Gilbert Engineer Co., Inc. K-connector is the trademark of Anritsu/Wiltron.

Performance Specifications:

Parameters	Unit	Min	Тур	Max	Comments/Test Conditions
Receiver sensitivity	dBm	-	-20	-19	10Gb/s. BER at 1×10^{-10} . $\lambda = 1.5$ mm
Maximum operational optical input power	dBm	0	-	-	λ =1.5 μ m; error free operation
PIN responsivity	A/W	0.75	> 0.8	-	λ=1.5μm
TIA transimpedance gain	Ω	1K	1.2K	-	Small signal gain
TIA 3dB Bandwidth	GHz	8	9	-	Small signal frequency response
Receiver low frequency cutoff (3dB)	kHz	-	< 50	100	-20°C to +85°C
TIA transfer function phase linearity deviation	degree	-	< 10	20	(100 kHz to 8 GHz)
TIA transfer function amplitude peaking	dB	-	< 1	1.5	(100 kHz to 9GHz)
Input optical reflectance	dB	-	<- 40	-30	For $\lambda = 1.3 \mu m$ and $1.5 \mu m$; excluding reflection from optical connector.
Output Rise and Fall Time	ps	-	< 40	-	10% - 90%
Total Power consumption	mW	-	-	750	

Preliminary Datasheet

Preliminary Datasheet

DC Characteristics (MTRX192L):

Parameters	Unit	Min	Тур	Max	Current (mA; Max)
PIN diode bias (Note-1)	V	+4.75	+5	+15	-
Positive receiver module bias	V	+3.0	+3.3	+3.6	110
Negative receiver module bias	V	-2.2	-2.0	-1.8	160

Note-1. All tests were performed with 5V reverse bias for the PIN photo diode. Increasing the PIN reverse bias to 10V will, in general, enhance the receiver sensitivity slightly.

Pin Descriptions

Pin Number	MTRX192L
1	GND
2	V_PIN
3	-2.2V
4	GND
5	-2.2V
6	NC
7	V_mon
8	V_ref
9	GND
10	+3.3V
11	NC
12	GND

	Dimensions					
Unit	Inch	mm				
А	0.192 ± 0.004	4.88 ± 0.10				
В	0.120 ± 0.004	3.05 ± 0.10				
С	0.230 ± 0.004	5.84 ± 0.10				
D	0.140 ± 0.004	3.05 ± 0.10				
Е	0.795 ± 0.010	3.56 ± 0.25				
F	0.184 ± 0.005	4.67 ± 0.13				
g	0.229 ± 0.010	5.82 ± 0.25				
Н	0.300 ± 0.005	7.62 ± 0.13				
L	0.700 ± 0.004	17.78 ± 0.10				
m	0.050 ± 0.005	1.27 ± 0.13				
Р	0.100 ± 0.005	2.54 ± 0.13				
W	0.660 ± 0.004	16.76 ± 0.10				

MTRX-APP-L01 March 15, 2000

Liang D. Tzeng Multiplex, Inc. 115 Corporate Blvd. South Plainfield, NJ 07080 tzeng@multiplexinc.com (908) 757-8817

Application notes for MTRX192L optical receiver and the MTRX192L test board

I. The limiting amplifier

The MTRX192L is a high performance optical receiver module that includes a PIN photo diode, a low noise transimpedance amplifier (TIA), and an output limiting amplifier. As shown schematically in Figure 1, while the TIA requires +3.3V and $-2V^*$ supplies, the limiting amplifier is biased with a single -2V supply. The signal output from the TIA is AC coupled to the limiting amplifier. Although the limiting amplifier generates differential outputs, for MTRX192L, one of the outputs (Q-bar) is terminated inside the receiver module. Multiplex is currently developing a version of module package that will bring out both of the differential outputs from the limiting amplifier.

The limiting amplifier is essentially a high speed, high sensitivity digital device that will "quantize" the analog signal coming from the TIA. In general, the TIA is a linear, analog circuit with its output carries both the signal and noise characteristics of the detection subsystem. As illustrated in Figure 2, when using an AGC (automatic gain control circuit) as the post-amplifier following the TIA, the output from the AGC should maintain a similar signal and noise characteristics to that of the output from the TIA. As a consequence, a decision circuit is therefore needed to "regenerate" a well defined "1" or "0" binary data stream.

When a limiting amplifier, such as the one incorporated inside the MTRX192L, is used as the post-amplifier, there is, however, a subtle difference in the data regenerating process of the receiver subsystem. Statistically, there are always noise distributions associated with the output from the TIA, for both data level of "1" and "0". Since the limiting amplifier is a "quantizer" (or

^{*} The TIA is designed with the nominal supply voltage of +3.3V and -2V. However, for the current samples, there is a slight mis-calculation in the diode voltage drop inside the TIA IC. As a consequence, the TIA performance will degrade when the negative supply voltage is higher than -1.9V. Therefore, we are asking customers to use $-2.2V (\pm 10\%)$ for evaluation purpose. We will correct this problem before the 2^{nd} quarter of 2000.

a "comparator"), the output from the limiting amplifier is always at a well-defined level of "1" or "0". It is obvious that the data regenerating "decision" process would have to have occurred inside the limiting amplifier. Therefore, such a limiting amplifier is equivalent to a un-clock decision circuit.

Having accept this "quantization" effect of the limiting amplifier, one would have to pay close attention to the stability issue of the "input reference voltage" (V_ref), upon which the limiting amplifier will eventually "decide" whether the input data is "1" or "0". Needless to say, this input reference voltage stability is especially important at small signal conditions, such as during the BER measurement process. Changes in the system's operating conditions, such as the power supply voltage variations, operating temperature variations, etc. will affect the optimum V_ref value. To minimize the effect associated with the variation of this input voltage reference, we have incorporated a feedback control circuit in the MTRX192L test board.

II. Feed-back control through V_mon and V_ref

The limiting amplifier is designed with DCFL (direct couple FET logic) circuit topology. Changing the V_ref value will, in general, affect the output eye crossing level (or, equivalently affect the output duty-cycle). This phenomenon can be utilized to generate a monitoring signal (V_mon) at the output of the limiting amplifier. The task then is to keep this V_mon to a predetermined value (V_set) by adjusting the V_ref value through an analog feedback loop (as illustrated in Figure 1.)

For MTRX192L, the V_mon monitoring signal is generated by integrating the unused output port of the limiting amplifier. In this way, small changes in the output pulse shape can be detected easily. There are, however, drawbacks in generating the monitoring signal using the output from the limiting amplifiers. For example, the variation in the supply voltage of the limiting amplifier (-2V) and the operating temperature will both have some effects on the output signal pulse height (peak-to-peak level). Therefore, a certain degree of compensation on this monitoring signal is needed.

Figure 3 schematically shows a simple feedback control circuit, which is included in the MTRX192L test board and consists of mainly a quad operational amplifier and a temperature sensor. The operation of this circuit can be briefly described as following:

Q2 generates the power supply correction factor for the monitoring signal. This correction factor is then added to a pre-determined voltage value (V_{set}) at Q3. The V_{set} can be generated

either digitally through a D/A converter on the system circuit board, or, as indicated in the inset (a) of Figure 3, through a linear variable resistor. On the MTRX192L test board, this variable resistor is mounted on the top surface of the test board. The V_set value can be measured by probing on the test board as indicated in Figure 4.

The main purpose of Q3 is to generate the "appropriate" comparison voltage for V_mon by taking into account both the power supply correction factor and the temperature correction factor. In the MTRX192L test board, the temperature correction factor is generated through a temperature sensor (National semiconductor LM61 with an output scale factor of 10mV/°C), as shown in the inset (b) of Figure 3. The V_mon value from the receiver module is re-calculated in Q1 by referencing to the supply voltage of the limiting amplifier. Finally, Q4 compares this recalculated V_mon value to the corrected V_set value and generates an output for the input reference voltage, V_ref , to the limiting amplifier.

III. MTRX192L test board

The MTRX192L test board is fabricated for the purpose of evaluation and testing of the MTRX192L receivers. The needed power supplies (+5V, +3.3V and -2V) are fed through the EMI filters as illustrated in Figure 4. The receiver pins are mounted on a pair of clamp fixtures (the first pair of clamp pins toward the fiber pig-tail direction is not used.) A linear variable resistor (10k Ω , multi-turns) is mounted on the top of the test board for the adjustment of the *V_set* value. Upon shipment, this variable resistor has been adjusted to a nominal position. Users may adjust this *V set* value to optimize the BER performance.

This adjustable V_set configuration is similar to the traditional adjustable decision threshold and can be very useful in systems (such as DWDM systems) where different communication channels come with different noise and pulse shape characteristics. When the V_set value is generated with the system firmware, the receiver sensitivity for each channel can be individually optimized through the system software interface.

Figure 2

10 Watt Low-Profile 48V Input

Isolated DC-DC Converter

Power Trends Products from Texas Instruments

SLTS127

(Preliminary 1/17/2001)

Features

- 10W Output Power
- Input Voltage: 36V to 75V
- 1500 VDC Isolation
- Temp Range: -40°C to +85°C
- Remote On/Off Control
- Adjustable Output Voltage
- Undervoltage Lockout
- Current Limit
- Short-Circuit Protection
- Low-Profile Package (8mm)
- Solderable Copper Case

Description

Power Trends' PT4220 is a new series of isolated DC-DC Converters housed in an ultra-low profile (8mm) solderable copper case. They employ a state-of-the-art high frequency switch mode topology, and are available in either a through-hole or surface-mount package. They are designed for Telecom, Datacom, Industrial, Computer, Medical, and other distributed power applications requiring input-to-output isolation over an industrial temperature range.

Standard Application

PT Series Suffix (PT12	2345X)
Case/Pin Configuration	
Vertical Through-Hole	Ν
Horizontal Through-Hole	Α
Horizontal Surface Mount	С
(For dimensions and PC boa see Package Styles 1520 and	ard layout, 1530.)

Ordering Information PT4221 =1.8 Volts PT4222□ =3.3 Volts **PT4223**□ =5.0 Volts **PT4224**□ =12.0 Volts **PT4225**□ =2.5 Volts **PT4226**□ =1.5 Volts

Pin-Out Information Pin Function Remote ON/OFF

Do not connect

Do not connect

 $-V_{in}$

+Vin

-V_{ou}

-V_{out}

 $+V_{out}$

+V_{out}

V_{out} adjust

1 2

3

4

5

6

7

8

9

10

Specifications

Characteristics					4220 SERI	ES	
(T _a =25°C unless noted)	Symbols	Conditions		Min	Тур	Max	Units
Output Current	Io	Over V _{in} range	$V_{o} \leq 3.3V$ $V_{o} = 5.0V$ $V_{o} = 12V$	$\begin{array}{c} 0.1 \ (1) \\ 0.1 \ (1) \\ 0.1 \ (1) \end{array}$		3.0 2.0 0.85	А
Short Circuit Current	I _{sc}	V_{in} = 48V	$\begin{array}{l} V_{o} \leq 3.3 V \\ V_{o} = 5.0 V \\ V_{o} = 12.0 V \end{array}$		5.0 4.0 2.0		А
Input Voltage Range	Vin	$I_o = 0.1$ to I_omax		36.0	48.0	75.0	V
Set-Point Tolerance	V _o tol	Vin =48V, Io =Iomax		_	±1.0	±2.0	$%V_{0}$
Line Regulation	Reg _{line}	Over V _{in} range @ max I _o)	_	±1	±15	mV
Load Regulation	Regload	10% to 100% of $I_{\rm o}max$		_	±5	±20	mV
Vo Temperature Variation	Reg _{temp}	V_{in} =48V, I_{o} =I_omax -40°C \leq Ta \leq +85°C			±0.3	_	$%V_{o}$
V _o Ripple/Noise	V _n	V_{in} =48V, I_o = I_o max	$\begin{array}{l} V_{o} \leq 5V \\ V_{o} = 12V \end{array}$	_	50 100	_	$\mathrm{mV}_{\mathrm{pp}}$
Transient Response (no output capacitor)	t _{tr}	50% load change V_o over/undershoot	$V_0 \le 5V$ $V_0=12V$		75 150 250		μSec mV mV
Efficiency	η	V_{in} =48V, I_o = I_omax	$V_{o} = 1.5V \\ V_{o} = 1.8V \\ V_{o} = 2.5V \\ V_{o} = 3.3V \\ V_{o} = 5.0V \\ V_{o} = 12.0V$		71 73 78 81 85 87	 	%
Switching Frequency	$f_{ m o}$	Over Vin and Io		250	300	350	kHz
Maximum Operating Temperature Range	T _a	$Over V_{in} \ range$		-40	—	+85 (2)	°C
Storage Temperature	T _s	—		-40	—	110	°C
Reliability	MTBF	Per Bellcore TR-332 50% Stress, 40°C, groun	nd benign	4.7	—	—	10 ⁶ Hrs
Mechanical Shock	_	Per Mil-STD-202F, Met 6mS, Half-sine, mounter	thod 213B, d to a PCB	_	TBD	_	G's
Mechanical Vibration	_	Per Mil-STD-202F, Met 10-500Hz, Soldered in a	thod 204D, PCB	_	TBD	_	G's
Weight	_			_	20	_	grams
Isolation Capacitance Resistance		Input-output/Input-cas	se	$\frac{1500}{10}$	1100		V pF MΩ
Flammability	_	Materials meet UL 94V-	0				
Remote On/Off	On (3) Off	Referenced to $-V_{in}$		4.5		0.8	V

Notes: (1) The converter will operate down to no load with reduced specifications.

(2) See SOA curves or contact the factory for appropriate derating.

(3) Pin 1 has an internal pull-up and may be driven from an open-collector device. If left open, the converter will operate when input power is applied. The maximum voltage that may be applied to Pin 1 is 20V.

For technical support and more information, see inside back cover or visit www.ti.com/powertrends

Typical Characteristics

10 Watt Low-Profile 48V Input Isolated DC-DC Converter

Note A: All Characteristic data in the above graphs has been developed from actual products tested at 25°C. This data is considered typical data for the converter. Note B: SOA curves represent operating conditions at which internal components are at or below manufacturer's maximum rated operating temperatures.

PT4220/4240 Series

Adjusting the Output Voltage of the 10W Excalibur™ Series of Isolated DC-DC Converters

The factory pre-set output voltage of Power Trends' 10W Excalibur series of isolated DC-DC converters may be adjusted over a narrow range. This is accomplished with the addition of a single external resistor. For the input voltage range specified in the data sheet, Table 1 gives the allowable adjustment range for each model as V_o (min) and Vo (max).

Adjust Up: An increase in the output voltage is obtained by adding a resistor, R₂ between pin 10 (V_o adjust), and pins 6 & 7 (-V_{out}).

Adjust Down: Add a resistor (R₁), between pin 10 (V_o adjust) and pins 8 & 9 (+Vout).

Refer to Figure 1 and Table 2 for both the placement and value of the required resistor, (R_1) or R_2 .

243.0

Notes:

Table 1						
DC-DC CONVER	RTER ADJUSTIN	IENT RANGE AND	FORMULA PARAM	ETERS		
Series Pt #						
24V Bus	PT4246	PT4241	PT4245	PT4242	PT4243	PT4244
48V Bus	PT4226	PT4221	PT4225	PT4222	PT4223	PT4224
Vo(nom)	1.5V	1.8V	2.5V	3.3V	5.0V	12.0V
Vo(min)	1.45V	1.7V	2.25V	2.95V	4.5V	10.8V
Vo(max)	1.65V	1.98V	2.75V	3.65V	5.5V	13.2V

187.0

Figure 1

 $R_{S}(k\Omega)$

243.0

187.0

110.0

2. Never connect capacitors to Vo adjust. Any capacitance added to the Vo adjust control pin will affect the stability of the ISR. The values of (R1) [adjust down], and R2 [adjust up], can also be calculated using the following formulas.

$$(R_1) = \frac{56.2 (V_a - 1.225)}{V_o - V_a} - R_s k\Omega$$

$$R_2 \qquad = \qquad \frac{-68.845}{V_a - V_o} \quad - R_s \qquad k\Omega$$

Where,
$$V_0$$
 = Original output voltage

49.9

= Adjusted output voltage Va

Rs = Series resistance (Table 1)

PT4220/4240 Series

Table 2

			WALOES	
Series Pt #	DT 40 44	DT 40 41	DT424E	DT 40 40
24V Bus	P14240	P14241 PT4221	P14245 PT4225	P14242 PT4222
401 Du3	1.537	1.017	2.57	2 217
V _o (nom) V _a (reg′d)	1.5 V	1.8V	2.5V	5.5V
1.45	(0.0)10			
1.5	(7.7)K22			
1.55	1130.0kQ			
1.6	445.0kΩ			
1.65	216.0kΩ			
1.7		(23.9)kΩ		
1.75		(347.0)kΩ		
1.8				
1.85		1130.0kΩ		
1.9		445.0kΩ		
1.95		216.0kΩ		
2.25			(43.4)kΩ	
2.3			(115.0)kΩ	
2.35			(235.0)kΩ	
2.4			(473.0)kΩ	
2.45			(1190.0)kΩ	
2.5				
2.55			1190.0kΩ	
2.6			501.0kΩ	
2.65			272.0kΩ	
2.7			157.0kΩ	
2.75			88.4kΩ	
2.95				(90.0)kΩ
3.0				(146.0)kΩ
3.05				(223.0)kΩ
3.1				(340.0)kΩ
3.15				(534.0)kΩ
3.2				(923.0)kΩ
3.25				(2090.0)kΩ
3.3				
3.35				1190.0kΩ
3.4				501.0kΩ
3.45				272.0kΩ
3.5				157.0kΩ
3.55				88.4kΩ
3.6				42.5kΩ
3.65				$9.7 \mathrm{k}\Omega$

	PT4243	PT4244
	PT4223	PT4224
	5.0V	12.0V
/ _a (req′d)		
4.5	(258.0)kΩ	
4.6	(364.0)kΩ	
4.7	(541.0)kΩ	
4.8	(895.0)kΩ	
4.9	(1960.0)kΩ	
5.0		
5.1	578.0kΩ	
5.2	234.0kΩ	
5.3	119.0kΩ	
5.4	62.1kΩ	
5.5	27.7kΩ	
10.8		(399.0)kΩ
11.0		(499.0)kΩ
11.5		(1110.0)kΩ
12.0		
12.5		87.8kΩ
13.0		18.9kΩ
13.2		7.5kΩ

R1 = (Blue) R2 = Black

Using the Inhibit Function on the PT4220/4240 Isolated 10W Excalibur™ DC/DC Converters

Applications requiring output voltage On/Off control, the PT4220/4240 DC/DC converter series incorporates a *"Remote On/Off"* control (pin 1). This feature can be used when there is a requirement for the module to be switched off without removing the applied input source voltage.

The converter functions normally with Pin 1 open-circuit, providing a regulated output voltage when a valid source voltage is applied to $+V_{in}$ (pin 5), with respect to $-V_{in}$ (pin 3). When a low-level ¹ ground signal is applied to pin 1, the converter output will be turned off.

Figure 1 shows an application schematic, which details the typical use of the *Remote On/Off* function. Note the discrete transistor (Q1). The control pin has its own internal pull-up, allowing the pin to be controlled with an open-collector or open-drain device (See notes 2 & 3). Table 1 gives the threshold requirements.

When placed in the "Off" state, the standby current drawn from the input source is typically reduced to less than 1mA.

Table 1; Pin 1 Remote On/Off Control Parameters 1

Parameter	Min	Тур	Max
Enable (VIH)	4.5V	_	_
Disable (VIL)	_	_	0.8V
Von [Open-Circuit]		5.0V	
Ioff [pin 1 at -Vin]		_	-0.5mA

Notes:

- 1. The *Remote On/Off* control uses $-V_{in}$ (pin 3) as its ground reference. All voltages specified are with respect to $-V_{in}$.
- 2. Use an open-collector device (preferably a discrete transistor) for the *Remote On/Off* input. A pull-up resistor is not necessary. To disable the output voltage, the control pin should be pulled low to less than +0.8VDC.
- 3. The *Remote On/Off* pin may be controlled with devices that have a totem-pole output. This is provided the drive voltage meets the threshold requirements in Table 1. <u>Do not</u> apply more than +20V. If a TTL gate is used, a pull-up resistor may be required to the logic supply voltage.
- 4. The PT4220/4240 converters incorporate an "Under-Voltage Lockout" (UVLO). The UVLO will override pin 1, and keep the module off when the input voltage to the converter is low. Table 2 gives the UVLO input voltage thresholds.

Table 2; UVLO Thresholds 4

Series	V _{in} Range	UVLO Threshold	
PT4220	36 - 75V	32V±2V	
PT4240	18 - 36 V	TBD	

Turn-On Time: In the circuit of Figure 1, turning Q_1 on applies a low-voltage to pin 1 and disables the converter output. Correspondingly, turning Q_1 off allows pin 1 to be pulled high by an internal pull-up resistor. The converter produces a regulated output voltage within 60 milli-secs. Although the rise-time of the output is short (<5ms), the delay time will vary between 0 and 55ms depending upon the input voltage and the module's internal timing. Figure 2 shows shows an example of the output response for a PT4223 (5.0V), following the turn-off of Q_1 at time t =0. The waveform was measured with a 48Vdc input voltage, and 3.3 Ω resistive load.

Isolated Products

(Revised 6/30/2000)

SLTA020A

Power Trends Products

from Texas Instruments

Using the PT4200/4205/4300 DC to DC Converter

Remote Control (RC) Turn-on or turn-off can be realized by using the RC pin. Normal operation is achieved if pin 11 is open. If pin 11 is connected to pin 17 (PT4200/4300) or pin 18 (PT4205), the power module turns off. To insure safe turn-off, the voltage difference between pin 11 and 17 or 18 should be less than 1.0V. RC is compatible with TTL open collector outputs with a sink capacity > 300µA (see figure 28).

Figure 28 PT4200/4205/4300 REMOTE CONTROL

Over Voltage Protection (OVP) The remote control can also be utilized for OVP by using the external circuitry shown in figure 29. Resistor values are for 5V output applications, but can easily be adjusted for other output voltages and the desired OVP level.

Figure 29

PT4200/4205/4300 OVER VOLTAGE PROTECTION

Turn-on/off Input Voltage The power module monitors the input voltage and will turn on and turn off at predetermined levels set by means of external resistors.

To increase V_{Ion} connect a resistor between pin 11 and 17 (PT4200/4300) or 18 (PT4205) (see figure 30). The resistance is determined by the following equations; (a) PT4200/4300, (b) PT4205:

(a) $R_{I_{OD}} = 100 \text{ x} (100.2 - V_{I_{OD}})/(V_{I_{OD}} - 36.5) \text{ k}\Omega$ (for $V_{I_{OD}} > 37\text{V}$) (b) $R_{Ion} = 1000 \text{ x} (1110 - V_{Ion})/(V_{Ion} - 18.7) \text{ k}\Omega \text{ (for } V_{Ion} > 18.7\text{ V)}$ where 18.7 or 36.5 is the typical unadjusted turn-on input voltage. V_{loff} is the adjusted turn-off input voltage and is determined by V_{Ion} - V_{Ioff} = 2V (typical value).

To decrease V_{lon} connect a resistor between pin 10 and 11 (and former 20). (see figure 30). The resistance is determined by the following equations; (a) PT4200/4300, (b) PT4205: (a) $R_{Ion} = 364 \text{ x} (V_{Ion} - 29.9)/(36.5 - V_{Ion}) \text{ k}\Omega$ (for 30<V_{Ion}< 36V) (b) $R_{\text{Ion}} = 25 \text{ x} (V_{\text{Ion}} - 16.9)/(18.7 - V_{\text{Ion}}) k\Omega$ (for 16.9<V_{Ion}< 18.7V)

Figure 30

PT4200/4205/4300 TURN-ON/OFF INPUT VOLTAGE ADJUSTMENT

Ouput Voltage Adjust (Vadj) Ouput voltage can be adjusted by using an external resistor. Typical adjust range is ±15%. If pin 8 and 9 are not connected together, the output will decrease to a low value. To increase $\rm V_{o}$, a resistor should be connected between pin 8/9 and 18. To decrease $\rm V_{o}$, a resistor should be connected between pin 8 and 9 (see figure 31).

The typical resistor value to **increase** V_o is determined by:

$$R_{adj} = k_1 x (k_2 - V_0) / (V_0 - V_{0i}) k\Omega$$

 V_{O} is the desired output voltage where:

	v_{0i} is the typ	icai output voitage init	ial setting
and	k ₁ =0.684	k,=2.46V	PT4201
	k_=0.495	k,=3.93V	PT4202
	k ₁ =0.495	$k_{2} = 5.87V$	PT4203
	k_=0.566	$k_2 = 15.00V$	PT4204*
	k_=3.180	$k_{2} = 3.78V$	PT4205
	k_=3.180	k ₂ =5.85V	PT4206
	k_=0.495	$k_{2} = 5.82V$	PT4301
	$k_1 = 0.495$	$k_2 = 3.93V$	PT4302
	k,=0.566	k,=15.00V	PT4303*

The typical resistor value to decrease Vo is determined by:

	$R_{adi} = k_1 x (V_{Oi} - V_{Oi})$	$V_0 / (V_0 - k_2) k\Omega$	
where	k,=2.751	k,=1.75V	PT4201
	k ₁ =1.986	k,=2.59V	PT4202
	k_=1.986	k,=4.12V	PT4203
	k_=2.284	k,=9.52V	PT4204
	$k_1 = 17.2$	k,=1.70V	PT4205
	$k_1 = 12.5$	k,=4.28V	PT4206
	k_=1.986	k,=4.12V	PT4301
	k_=1.986	k,=2.59V	PT4302
	k_=2.284	k_=9.52V	PT4303

* Over 13.8V output voltage, the input voltage range is limited to 38-65V.

Figure 31

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated

Three-Terminal Low Current Positive Voltage Regulators

The MC78L00A Series of positive voltage regulators are inexpensive, easy-to-use devices suitable for a multitude of applications that require a regulated supply of up to 100 mA. Like their higher powered MC7800 and MC78M00 Series cousins, these regulators feature internal current limiting and thermal shutdown making them remarkably rugged. No external components are required with the MC78L00 devices in many applications.

These devices offer a substantial performance advantage over the traditional zener diode–resistor combination, as output impedance and quiescent current are substantially reduced.

- Wide Range of Available, Fixed Output Voltages
- Low Cost
- Internal Short Circuit Current Limiting
- Internal Thermal Overload Protection
- No External Components Required
- Complementary Negative Regulators Offered (MC79L00A Series)

Representative Schematic Diagram

Standard Application

A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0 V above the output voltage even during the low point on the input ripple voltage.

* C_{in} is required if regulator is located an appreciable distance from power supply filter.

** C_O is not needed for stability; however, it does improve transient response.

*SOP-8 is an internally modified SO-8 package. Pins 2, 3, 6, and 7 are electrically common to the die attach flag. This internal lead frame modification decreases package thermal resistance and increases power dissipation capability when appropriately mounted on a printed circuit board. SOP-8 conforms to all external dimensions of the standard SO-8 package.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

DEVICE MARKING INFORMATION

See general marking information in the device marking section on page 10 of this data sheet.

MAXIMUM RATINGS ($T_A = +125^{\circ}C$, unless otherwise noted.)

Rating	Symbol	Value	Unit
Input Voltage (2.6 V–8.0 V) (12 V–18 V) (24 V)	VI	30 35	Vdc
Storage Temperature Range	T _{stg}	40 -65 to +150	°C
Operating Junction Temperature Range	TJ	0 to +150	°C

ELECTRICAL CHARACTERISTICS (V_I = 10 V, I_O = 40 mA, C_I = 0.33 μ F, C_O = 0.1 μ F, -40°C < T_J < +125°C (for MC78LXXAB), 0°C < T_J < +125°C (for MC78LXXAC), unless otherwise noted.)

		MC78L05AC, AB			
Characteristics	Symbol	Min	Тур	Мах	Unit
Output Voltage ($T_J = +25^{\circ}C$)	Vo	4.8	5.0	5.2	Vdc
Line Regulation $(T_1 = \pm 25^{\circ}C, I_0 = 40 \text{ mA})$	Reg _{line}				mV
7.0 Vdc \leq V ₁ \leq 20 Vdc 8.0 Vdc \leq V ₁ \leq 20 Vdc			55 45	150 100	
Load Regulation $(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 100 \text{ mA})$ $(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 40 \text{ mA})$	Reg _{load}		11 5.0	60 30	mV
$\begin{array}{l} \mbox{Output Voltage} \\ (7.0 \mbox{ Vdc} \leq V_I \leq 20 \mbox{ Vdc}, \ 1.0 \mbox{ mA} \leq I_O \leq 40 \mbox{ mA}) \\ (V_I = 10 \mbox{ V}, \ 1.0 \mbox{ mA} \leq I_O \leq 70 \mbox{ mA}) \end{array}$	Vo	4.75 4.75		5.25 5.25	Vdc
Input Bias Current $(T_J = +25^{\circ}C)$ $(T_J = +125^{\circ}C)$	I _{IB}		3.8 -	6.0 5.5	mA
Input Bias Current Change (8.0 Vdc \leq V _I \leq 20 Vdc) (1.0 mA \leq I _O \leq 40 mA)	Δl _{IB}			1.5 0.1	mA
Output Noise Voltage $(T_A = +25^{\circ}C, 10 \text{ Hz} \le f \le 100 \text{ kHz})$	V _n	_	40	-	μV
Ripple Rejection (I _O = 40 mA, f = 120 Hz, 8.0 Vdc \leq V _I \leq 18 V, T _J = +25°C)	RR	41	49	-	dB
Dropout Voltage ($T_J = +25^{\circ}C$)	V _I – V _O	-	1.7	-	Vdc

ELECTRICAL CHARACTERISTICS (V ₁ = 14 V, I _O = 40 mA, C ₁ = 0.33μ F, C _O = 0.1μ F, -40° C < T _J < +125°C (for MC78LXXAB),
$0^{\circ}C < T_{J} < +125^{\circ}C$ (for MC78LXXAC), unless otherwise noted.)	

		MC78L08AC, AB			
Characteristics	Symbol	Min	Тур	Max	Unit
Output Voltage ($T_J = +25^{\circ}C$)	Vo	7.7	8.0	8.3	Vdc
Line Regulation $(T_J = +25^{\circ}C, I_O = 40 \text{ mA})$	Reg _{line}				mV
$\begin{array}{l} 10.5 \ \text{Vdc} \leq \text{V}_{\text{I}} \leq 23 \ \text{Vdc} \\ 11 \ \text{Vdc} \leq \text{V}_{\text{I}} \leq 23 \ \text{Vdc} \end{array}$			20 12	175 125	
Load Regulation $(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 100 \text{ mA})$ $(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 40 \text{ mA})$	Reg _{load}	_	15 8.0	80 40	mV
$\begin{array}{l} \mbox{Output Voltage} \\ (10.5 \mbox{ Vdc} \leq V_I \leq 23 \mbox{ Vdc}, \ 1.0 \mbox{ mA} \leq I_O \leq 40 \mbox{ mA}) \\ (V_I = 14 \ V, \ 1.0 \mbox{ mA} \leq I_O \leq 70 \mbox{ mA}) \end{array}$	Vo	7.6 7.6		8.4 8.4	Vdc
Input Bias Current $(T_J = +25^{\circ}C)$ $(T_J = +125^{\circ}C)$	I _{IB}		3.0 _	6.0 5.5	mA
Input Bias Current Change (11 Vdc \leq V _I \leq 23 Vdc) (1.0 mA \leq I _O \leq 40 mA)	Δl _{IB}			1.5 0.1	mA
Output Noise Voltage ($T_A = +25^{\circ}C$, 10 Hz $\leq f \leq$ 100 kHz)	Vn	-	60	-	μV
Ripple Rejection (I _O = 40 mA, f = 120 Hz, 12 V \leq V _I \leq 23 V, T _J = +25°C)	RR	37	57	-	dB
Dropout Voltage ($T_J = +25^{\circ}C$)	V _I – V _O	-	1.7	-	Vdc

ELECTRICAL CHARACTERISTICS (V_I = 15 V, I_O = 40 mA, C_I = 0.33 μ F, C_O = 0.1 μ F, -40°C < T_J < +125°C (for MC78LXXAB), 0°C < T_J < +125°C (for MC78LXXAC), unless otherwise noted.)

		MC78L09AC, AB			
Characteristics	Symbol	Min	Тур	Max	Unit
Output Voltage ($T_J = +25^{\circ}C$)	Vo	8.6	9.0	9.4	Vdc
Line Regulation $(T_J = +25^{\circ}C, I_O = 40 \text{ mA})$	Reg _{line}		20	475	mV
$11.5 \forall dc \leq V_l \leq 24 \forall dc$ $12 \forall dc \leq V_l \leq 24 \forall dc$		_	20 12	175 125	
Load Regulation $(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 100 \text{ mA})$ $(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 40 \text{ mA})$	Reg _{load}		15 8.0	90 40	mV
	Vo	8.5 8.5	-	9.5 9.5	Vdc
Input Bias Current $(T_J = +25^{\circ}C)$ $(T_J = +125^{\circ}C)$	I _{IB}		3.0 -	6.0 5.5	mA
Input Bias Current Change (11 Vdc \leq V _I \leq 23 Vdc) (1.0 mA \leq I _O \leq 40 mA)	ΔI_{IB}		-	1.5 0.1	mA
Output Noise Voltage ($T_A = +25^{\circ}C$, 10 Hz $\leq f \leq$ 100 kHz)	Vn	-	60	-	μV
Ripple Rejection (I _O = 40 mA, f = 120 Hz, 13 V \leq V _I \leq 24 V, T _J = +25°C)	RR	37	57	-	dB
Dropout Voltage $(T_J = +25^{\circ}C)$	V _I – V _O	-	1.7	-	Vdc

ELECTRICAL CHARACTERISTICS (V_I = 19 V, I_O = 40 mA, C_I = 0.33 μ F, C_O = 0.1 μ F, -40°C < T_J < +125°C (for MC78LXXAB), 0°C < T_J < +125°C (for MC78LXXAC), unless otherwise noted.)

		MC78L12AC, AB			
Characteristics	Symbol	Min	Тур	Max	Unit
Output Voltage ($T_J = +25^{\circ}C$)	Vo	11.5	12	12.5	Vdc
Line Regulation ($T_J = +25^{\circ}C$, $I_O = 40 \text{ mA}$)	Reg _{line}				mV
$\begin{array}{l} 14.5 \ \mbox{Vdc} \leq \mbox{V}_{I} \leq 27 \ \ \mbox{Vdc} \\ 16 \ \ \mbox{Vdc} \leq \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $			120 100	250 200	
Load Regulation $(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 100 \text{ mA})$ $(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 40 \text{ mA})$	Reg _{load}		20 10	100 50	mV
	Vo	11.4 11.4		12.6 12.6	Vdc
Input Bias Current $(T_J = +25^{\circ}C)$ $(T_J = +125^{\circ}C)$	I _{IB}		4.2 -	6.5 6.0	mA
Input Bias Current Change (16 Vdc \leq V _I \leq 27 Vdc) (1.0 mA \leq I _O \leq 40 mA)	Δl _{IB}			1.5 0.1	mA
Output Noise Voltage $(T_A = +25^{\circ}C, 10 \text{ Hz} \le f \le 100 \text{ kHz})$	V _n	-	80	-	μV
Ripple Rejection (I _O = 40 mA, f = 120 Hz, 15 V \leq V _I \leq 25 V, T _J = +25°C)	RR	37	42	-	dB
Dropout Voltage $(T_J = +25^{\circ}C)$	V ₁ – V _O	-	1.7	-	Vdc

$\textbf{ELECTRICAL CHARACTERISTICS} (V_{I} = 23 \text{ V}, \text{ I}_{O} = 40 \text{ mA}, \text{ C}_{I} = 0.33 \text{ }\mu\text{F}, \text{ C}_{O} = 0.1 \text{ }\mu\text{F}, -40^{\circ}\text{C} < \text{T}_{J} < +125^{\circ}\text{C} \text{ (for MC78LXXAB)}, \text{ and } \text{ }\mu\text{C}_{O} = 0.1 \text{ }\mu\text{F}, -40^{\circ}\text{C} < \text{T}_{J} < +125^{\circ}\text{C} \text{ (for MC78LXXAB)}, \text{ }\mu\text{C}_{O} = 0.1 \text{ }\mu\text{F}, -40^{\circ}\text{C} < \text{T}_{J} < +125^{\circ}\text{C} \text{ (for MC78LXXAB)}, \text{ }\mu\text{C}_{O} = 0.1 \text{ }\mu\text{F}, -40^{\circ}\text{C} < \text{T}_{J} < +125^{\circ}\text{C} \text{ (for MC78LXXAB)}, \text{ }\mu\text{C}_{O} = 0.1 \text{ }\mu\text{F}, -40^{\circ}\text{C} < \text{T}_{J} < +125^{\circ}\text{C} \text{ (for MC78LXXAB)}, \text{ }\mu\text{C}_{O} = 0.1 \text{ }\mu\text{F}, -40^{\circ}\text{C} < \text{T}_{J} < +125^{\circ}\text{C} \text{ (for MC78LXXAB)}, \text{ }\mu\text{C}_{O} = 0.1 \text{ }\mu\text{F}, -40^{\circ}\text{C} < \text{T}_{J} < +125^{\circ}\text{C} \text{ (for MC78LXXAB)}, \text{ }\mu\text{C}_{O} = 0.1 \text{ }\mu\text{F}, -40^{\circ}\text{C} < \text{T}_{J} < +125^{\circ}\text{C} \text{ (for MC78LXXAB)}, \text{ }\mu\text{C}_{O} = 0.1 \text{ }\mu\text{F}, -40^{\circ}\text{C} < \text{T}_{J} < +125^{\circ}\text{C} \text{ (for MC78LXXAB)}, \text{ }\mu\text{C}_{O} = 0.1 \text{ }\mu\text{F}, -40^{\circ}\text{C} < \text{T}_{J} < +125^{\circ}\text{C} \text{ (for MC78LXXAB)}, \text{ }\mu\text{C}_{O} = 0.1 \text{ }\mu\text{C}_{O} = 0.1$

 $0^{\circ}C < T_{J} < +125^{\circ}C$ (for MC78LXXAC), unless otherwise noted.)

		M	MC78L15AC, AB		
Characteristics	Symbol	Min	Тур	Max	Unit
Output Voltage ($T_J = +25^{\circ}C$)	Vo	14.4	15	15.6	Vdc
Line Regulation (T _J = +25°C, I _O = 40 mA)	Reg _{line}				mV
$\begin{array}{l} 17.5 \ \mbox{Vdc} \leq \mbox{V}_{I} \leq 30 \ \ \mbox{Vdc} \\ 20 \ \ \mbox{Vdc} \leq \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $			130 110	300 250	
Load Regulation $(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 100 \text{ mA})$ $(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 40 \text{ mA})$	Reg _{load}		25 12	150 75	mV
$\begin{array}{l} \mbox{Output Voltage} \\ (17.5 \mbox{ Vdc} \leq V_I \leq 30 \mbox{ Vdc}, \ 1.0 \mbox{ mA} \leq I_O \leq 40 \mbox{ mA}) \\ (V_I = 23 \ V, \ 1.0 \mbox{ mA} \leq I_O \leq 70 \mbox{ mA}) \end{array}$	V _O	14.25 14.25	-	15.75 15.75	Vdc
Input Bias Current $(T_J = +25^{\circ}C)$ $(T_J = +125^{\circ}C)$	I _{IB}		4.4	6.5 6.0	mA
Input Bias Current Change (20 Vdc \leq V _I \leq 30 Vdc) (1.0 mA \leq I _O \leq 40 mA)	Δl _{IB}		-	1.5 0.1	mA
Output Noise Voltage ($T_A = +25^{\circ}C$, 10 Hz $\leq f \leq$ 100 kHz)	Vn	-	90	-	μV
Ripple Rejection (I _O = 40 mA, f = 120 Hz, 18.5 V \leq V _I \leq 28.5 V, T _J = +25°C)	RR	34	39	_	dB
Dropout Voltage $(T_J = +25^{\circ}C)$	V _I – V _O	-	1.7	-	Vdc

ELECTRICAL CHARACTERISTICS $(V_1 = 2)$	7 V, I_{O} = 40 mA, C_{I} = 0.33 μ F, C_{O} =	= 0.1 μF, 0°C < Τ _J < +125°C,	unless otherwise noted.)
--	---	--	--------------------------

			MC78L18AC		
Characteristics	Symbol	Min	Тур	Max	Unit
Output Voltage ($T_J = +25^{\circ}C$)	V _O	17.3	18	18.7	Vdc
Line Regulation $(T_J = +25^{\circ}C, I_O = 40 \text{ mA})$ 21.4 Vdc $\leq V_I \leq 33 \text{ Vdc}$ 20.7 Vdc $\leq V_I \leq 33 \text{ Vdc}$ 22 Vdc $\leq V_I \leq 33 \text{ Vdc}$ 24 Vdc $\leq V_I \leq 33 \text{ Vdc}$	Reg _{line}	_	45	325	mV
$21 \text{ Vdc} \le \text{V}_1 \le 33 \text{ Vdc}$		-	35	275	
Load Regulation $(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 100 \text{ mA})$ $(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 40 \text{ mA})$	Reg _{load}		30 15	170 85	mv
$\begin{array}{l} \mbox{Output Voltage} \\ (21.4 \mbox{ Vdc} \leq V_I \leq 33 \mbox{ Vdc}, \ 1.0 \mbox{ mA} \leq I_O \leq 40 \mbox{ mA}) \\ (20.7 \mbox{ Vdc} \leq V_I \leq 33 \mbox{ Vdc}, \ 1.0 \mbox{ mA} \leq I_O \leq 40 \mbox{ mA}) \\ (V_I = 27 \mbox{ V}, \ 1.0 \mbox{ mA} \leq I_O \leq 70 \mbox{ mA}) \\ (V_I = 27 \mbox{ V}, \ 1.0 \mbox{ mA} \leq I_O \leq 70 \mbox{ mA}) \end{array}$	Vo	17.1 17.1		18.9 18.9	Vdc
Input Bias Current $(T_J = +25^{\circ}C)$ $(T_J = +125^{\circ}C)$	Ι _{ΙΒ}		3.1 -	6.5 6.0	mA
Input Bias Current Change (22 Vdc \leq V _I \leq 33 Vdc) (21 Vdc \leq V _I \leq 33 Vdc) (1.0 mA \leq I _O \leq 40 mA)	ΔI _{IB}			1.5 0.1	mA
Output Noise Voltage (T _A = +25°C, 10 Hz \leq f \leq 100 kHz)	Vn	-	150	-	μV
Ripple Rejection (I _O = 40 mA, f = 120 Hz, 23 V \leq V _I \leq 33 V, T _J = +25°C)	RR	33	48	-	dB
Dropout Voltage $(T_J = +25^{\circ}C)$	$V_I - V_O$	-	1.7	_	Vdc

 $\textbf{ELECTRICAL CHARACTERISTICS} (V_{I} = 33 \text{ V}, I_{O} = 40 \text{ mA}, C_{I} = 0.33 \text{ }\mu\text{F}, C_{O} = 0.1 \text{ }\mu\text{F}, 0^{\circ}\text{C} < T_{J} < +125^{\circ}\text{C}, \text{ unless otherwise noted.})$

			MC78L24AC		
Characteristics	Symbol	Min	Тур	Max	Unit
Output Voltage ($T_J = +25^{\circ}C$)	Vo	23	24	25	Vdc
Line Regulation	Reg _{line}				mV
$(T_J = +25^{\circ}C, I_O = 40 \text{ mA})$					
$27.5 \text{ Vdc} \le \text{V}_{\text{I}} \le 38 \text{ Vdc}$		-	-	-	
$28 \text{ Vdc} \le \text{V}_{\text{I}} \le 80 \text{ Vdc}$		-	50	300	
$27 \text{ Vdc} \le \text{V}_{\text{I}} \le 38 \text{ Vdc}$		-	60	350	
Load Regulation	Reg _{load}				mV
$(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 100 \text{ mA})$		-	40	200	
$(T_J = +25^{\circ}C, 1.0 \text{ mA} \le I_O \le 40 \text{ mA})$		-	20	100	
Output Voltage	Vo				Vdc
$(28 \text{ Vdc} \le \text{V}_{\text{I}} \le 38 \text{ Vdc}, 1.0 \text{ mA} \le \text{I}_{\text{O}} \le 40 \text{ mA})$					
$(27 \text{ Vdc} \le \text{V}_{\text{I}} \le 38 \text{ Vdc}, 1.0 \text{ mA} \le \text{I}_{\text{O}} \le 40 \text{ mA})$		22.8	-	25.2	
$(28 \text{ Vdc} \le \text{V}_{\text{I}} = 33 \text{ Vdc}, 1.0 \text{ mA} \le \text{I}_{\text{O}} \le 70 \text{ mA})$					
(27 Vdc \leq V _I \leq 33 Vdc, 1.0 mA \leq I _O \leq 70 mA)		22.8	-	25.2	
Input Bias Current	I _{IB}				mA
$(T_J = +25^{\circ}C)$		-	3.1	6.5	
$(T_{J} = +125^{\circ}C)$		-	-	6.0	
Input Bias Current Change	ΔI_{IB}				mA
$(28 \text{ Vdc} \le \text{V}_{\text{I}} \le 38 \text{ Vdc})$		-	-	1.5	
$(1.0 \text{ mA} \le I_0 \le 40 \text{ mA})$		-	-	0.1	
Output Noise Voltage	Vn	_	200	_	μV
$(T_A = +25^{\circ}C, 10 \text{ Hz} \le f \le 100 \text{ kHz})$					
Ripple Rejection ($I_0 = 40 \text{ mA}$,	RR	31	45	-	dB
f = 120 Hz, 29 V \leq V _I \leq 35 V, T _J = +25°C)					
Dropout Voltage	$V_I - V_O$	-	1.7	-	Vdc
$(T_J = +25^{\circ}C)$					

APPLICATIONS INFORMATION

Design Considerations

The MC78L00A Series of fixed voltage regulators are designed with Thermal Overload Protection that shuts down the circuit when subjected to an excessive power overload condition. Internal Short Circuit Protection limits the maximum current the circuit will pass.

In many low current applications, compensation capacitors are not required. However, it is recommended that the regulator input be bypassed with a capacitor if the regulator is connected to the power supply filter with long wire lengths, or if the output load capacitance is large. The

The MC78L00 regulators can also be used as a current source when connected as above. In order to minimize dissipation the MC78L05C is chosen in this application. Resistor R determines the current as follows:

$$I_0 = \frac{5.0 \text{ V}}{\text{B}} + I_{\text{B}}$$

 $I_{IB} = 3.8$ mA over line and load changes

For example, a 100 mA current source would require R to be a 50 Ω , 1/2 W resistor and the output voltage compliance would be the input voltage less 7 V.

Figure 7. Current Regulator

input bypass capacitor should be selected to provide good high–frequency characteristics to insure stable operation under all load conditions. A 0.33 μ F or larger tantalum, mylar, or other capacitor having low internal impedance at high frequencies should be chosen. The bypass capacitor should be mounted with the shortest possible leads directly across the regulators input terminals. Good construction techniques should be used to minimize ground loops and lead resistance drops since the regulator has no external sense lead. Bypassing the output is also recommended.

Figure 8. ± 15 V Tracking Voltage Regulator

Figure 9. Positive and Negative Regulator

ORDERING INFORMATION

Device	Output Voltage	Operating Temperature Range	Package	Shipping			
MC78L05ABD			SOP-8	98 Units/Rail			
MC78L05ABDR2			SOP-8	2500 Tape & Reel			
MC78L05ABP			TO-92	2000 Units/Bag			
MC78L05ABPRA		T _J = −40° to +125°C	TO-92	2000 Tape & Reel			
MC78L05ABPRE			TO-92	2000 Units/Bag			
MC78L05ABPRM			TO-92	2000 Ammo Pack			
MC78L05ACD	5.0 V		SOP-8	98 Units/Rail			
MC78L05ACDR2			SOP-8	2500 Tape & Reel			
MC78L05ACP			TO-92	2000 Units/Bag			
MC78L05ACPRA		$T_J = 0^\circ$ to +125°C	TO-92	2000 Tape & Reel			
MC78L05ACPRE			TO-92	2000 Tape & Reel			
MC78L05ACPRM			TO-92	2000 Ammo Pack			
MC78L05ACPRP			TO-92	2000 Ammo Pack			
MC78L08ABD			SOP-8	98 Units/Rail			
MC78L08ABDR2			SOP-8	2500 Tape & Reel			
MC78L08ABP		$T_J = -40^\circ$ to +125°C	TO-92	2000 Units/Bag			
MC78L08ABPRA			TO-92	2000 Tape & Reel			
MC78L08ABPRP			TO-92	2000 Units/Bag			
MC78L08ACD	8.0 V		SOP-8	98 Units/Rail			
MC78L08ACDR2			SOP-8	2500 Tape & Reel			
MC78L08ACP		$T_{1} = 0^{\circ} t_{0} + 125^{\circ}C$	TO-92	2000 Units/Bag			
MC78L08ACPRA		1 = 0 + 123 = 0	TO-92	2000 Tape & Reel			
MC78L08ACPRE			TO-92	2000 Tape & Reel			
MC78L08ACPRP			TO-92	2000 Ammo Pack			
MC78L09ABD			SOP-8	98 Units/Rail			
MC78L09ABDR2		T = 40° to 1125°C	SOP-8	2500 Tape & Reel			
MC78L09ABPRA		$1 = -40 \ 10 + 125 \ C$	TO-92	2000 Units/Bag			
MC78L09ABPRP	9.0 V		TO-92	2000 Units/Bag			
MC78L09ACD			SOP-8	98 Units/Rail			
MC78L09ACDR2		$T_J = 0^\circ$ to +125°C	SOP-8	2500 Tape & Reel			
MC78L09ACP			TO-92	2000 Units/Bag			

ORDERING INFORMATION (continued)

Device	Output Voltage	Operating Temperature Range	Package	Shipping		
MC78L12ABD			SOP-8	98 Units/Rail		
MC78L12ABDR2	-		SOP-8	2500 Tape & Reel		
MC78L12ABP		T _J = −40° to +125°C	TO-92	2000 Units/Bag		
MC78L12ABPRP			TO-92	2000 Units/Bag		
MC78L12ACD			SOP-8	98 Units/Rail		
MC78L12ACDR2	12 V		SOP-8	2500 Tape & Reel		
MC78L12ACP			TO-92	2000 Units/Bag		
MC78L12ACPRA		$T_J = 0^\circ$ to +125°C	TO-92	2000 Tape & Reel		
MC78L12ACPRE			TO-92	2000 Tape & Reel		
MC78L12ACPRM			TO-92	2000 Ammo Pack		
MC78L12ACPRP			TO-92	2000 Ammo Pack		
MC78L15ABD			SOP-8	98 Units/Rail		
MC78L15ABDR2			SOP-8	2500 Tape & Reel		
MC78L15ABP		$T_{J} = -40^{\circ} \text{ to } +125^{\circ}\text{C}$	TO-92	2000 Units/Bag		
MC78L15ABPRA			TO-92	2000 Tape & Reel		
MC78L15ABPRP	45.1		TO-92	2000 Units/Bag		
MC78L15ACD	15 V		SOP-8	98 Units/Rail		
MC78L15ACDR2			SOP-8	2500 Tape & Reel		
MC78L15ACP		$T_J = 0^\circ$ to +125°C	TO-92	2000 Units/Bag		
MC78L15ACPRA			TO-92	2000 Tape & Reel		
MC78L15ACPRP			TO-92	2000 Ammo Pack		
MC78L18ABP		$T_J = -40^\circ$ to $+125^\circ$ C	TO-92	2000 Units/Bag		
MC78L18ACP			TO-92	2000 Units/Bag		
MC78L18ACPRA	18 V	T 0° to 1125°C	TO-92	2000 Tape & Reel		
MC78L18ACPRM		$1_{\rm J} = 0^{-1} 10 + 125^{-1} C$	TO-92	2000 Units/Bag		
MC78L18ACPRP			TO-92	2000 Ammo Pack		
MC78L24ABP		$T_J = -40^\circ$ to $+125^\circ$ C	TO-92	2000 Units/Bag		
MC78L24ACP	24.1/		TO-92	2000 Units/Bag		
MC78L24ACPRA	24 V	$T_J = 0^\circ$ to +125°C	TO-92	2000 Tape & Reel		
MC78L24ACPRP			TO-92	2000 Ammo Pack		

MARKING DIAGRAMS

SOP-8 D SUFFIX **CASE 751**

- A = Assembly Location
- L = Wafer Lot
- Y
- Y = Year W = Work Week
- B, C = Temperature Range

PACKAGE DIMENSIONS

TO-92 **P SUFFIX** CASE 29-11 **ISSUE AL**

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS UNCONTROLLED. 4. LEAD DIMENSION IS UNCONTROLLED IN P AND BEYOND DIMENSION K MINIMUM.

	INC	HES	MILLIN	IETERS
DIM	MIN MAX MIN		MAX	
Α	0.175	0.205	4.45	5.20
В	0.170	0.210	4.32	5.33
С	0.125	0.165	3.18	4.19
D	0.016	0.021	0.407	0.533
G	0.045	0.055	1.15	1.39
Н	0.095	0.105	2.42	2.66
J	0.015	0.020	0.39	0.50
K	0.500		12.70	
L	0.250		6.35	
N	0.080	0.105	2.04	2.66
P		0.100		2.54
R	0.115		2.93	
۷	0.135		3.43	

SOP-8 **D SUFFIX** CASE 751-07 **ISSUE V**

NOTES:

- I. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
- SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

ON Semiconductor and **O** are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and is officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death wits such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

- EUROPE: LDC for ON Semiconductor European Support
- German
 Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET)

 Email:
 ONlit–german@hibbertco.com

 French
 Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)
- Email: ONlit=french@hibbertco.com
- English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT) Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781 *Available from Germany, France, Italy, UK, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST) Email: ONlit–spanish@hibbertco.com

Toll-Free from Mexico: Dial 01-800-288-2872 for Access - then Dial 866-297-9322

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong & Singapore: 001–800–4422–3781 Email: ONlit–asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.

Low-Power, Quad, 12-Bit Voltage-Output DAC with Serial Interface

General Description

The MAX525 combines four low-power, voltage-output, 12-bit digital-to-analog converters (DACs) and four precision output amplifiers in a space-saving, 20-pin package. In addition to the four voltage outputs, each amplifier's negative input is also available to the user. This facilitates specific gain configurations, remote sensing, and high output drive capacity, making the MAX525 ideal for industrial-process-control applications. Other features include software shutdown, hardware shutdown lockout, an active-low reset which clears all registers and DACs to zero, a user-programmable logic output, and a serial-data output.

Each DAC has a double-buffered input organized as an input register followed by a DAC register. A 16-bit serial word loads data into each input/DAC register. The serial interface is compatible with SPI™/QSPI™ and Microwire™. It allows the input and DAC registers to be updated independently or simultaneously with a single software command. The DAC registers can be simultaneously updated via the 3-wire serial interface. All logic inputs are TTL/CMOS-logic compatible.

Applications

Industrial Process Controls Automatic Test Equipment Digital Offset and Gain Adjustment Motion Control Remote Industrial Controls Microprocessor-Controlled Systems

_Features

- Four 12-Bit DACs with Configurable Output Amplifiers
- + +5V Single-Supply Operation
- Low Supply Current: 0.85mA Normal Operation 10μA Shutdown Mode
- Available in 20-Pin SSOP
- Power-On Reset Clears all Registers and DACs to Zero
- + Capable of Recalling Last State Prior to Shutdown
- ♦ SPI/QSPI and Microwire Compatible
- Simultaneous or Independent Control of DACs via 3-Wire Serial Interface
- User-Programmable Digital Output

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE	INL (LSB)
MAX525ACPP	0°C to +70°C	20 Plastic DIP	±1/2
MAX525BCPP	0°C to +70°C	20 Plastic DIP	±1
MAX525ACAP	0°C to +70°C	20 SSOP	±1/2
MAX525BCAP	0°C to +70°C	20 SSOP	±1

Ordering Information continued on last page.

Pin Configuration appears at end of data sheet.

Functional Diagram

SPI and QSPI are trademarks of Motorola, Inc. Microwire is a trademark of National Semiconductor Corp.

M/IXI/M

Maxim Integrated Products 1

For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800. For small orders, phone 408-737-7600 ext. 3468.

ABSOLUTE MAXIMUM RATINGS

V _{DD} to AGND	0.3V to +6V
VDD to DGND	0.3V to +6V
AGND to DGND	±0.3V
REFAB, REFCD to AGND	0.3V to (V _{DD} + 0.3V)
OUT_, FB_ to AGND	0.3V to (V _{DD} + 0.3V)
Digital Inputs to DGND	-0.3V to +6V
DOUT, UPO to DGND	0.3V to (V _{DD} + 0.3V)
Continuous Current into Any Pin	±20mA
Continuous Power Dissipation ($T_A =$	+70°C)
Plastic DIP (derate 8.00mW/°C abov	ve +70°C)640mW
SSOP (derate 8.00mW/°C above +	70°C)640mW
CERDIP (derate 11.11mW/°C abov	e +70°C)889mW

Operating Temperature Ranges

MAX525_C_P	0°C to +70°C
MAX525_E_P	40°C to +85°C
MAX525_MJP	55°C to +125°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10sec).	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{DD} = +5V \pm 10\%, AGND = DGND = 0V, REFAB = REFCD = 2.5V, R_L = 5k\Omega, C_L = 100pF, T_A = T_{MIN}$ to T_MAX, unless otherwise noted. Typical values are at T_A = +25°C. Output buffer connected in unity-gain configuration (Figure 9).)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
STATIC PERFORMANCE—ANALOG SECTION							
Resolution	N		12			Bits	
Integral Nonlinearity (Note 1)	INI	MAX525A		±0.25	±0.5	ISB	
	MAX525B			±1.0	LJD		
Differential Nonlinearity	DNL	Guaranteed monotonic			±1.0	LSB	
Offset Error	Vos				±6.0	mV	
Offset-Error Tempco				6		ppm/°C	
Gain Error (Note 1)	GE			-0.8	±2.0	LSB	
Gain-Error Tempco				1		ppm/°C	
Power-Supply Rejection Ratio	PSRR	$4.5V \le V_{DD} \le 5.5V$		100	600	μ٧/٧	
MATCHING PERFORMANCE (T,	$A = +25^{\circ}C)$						
Gain Error	GE			-0.8	±2.0	LSB	
Offset Error				±1.0	±6.0	mV	
Integral Nonlinearity	INL			±0.35	±1.0	LSB	
REFERENCE INPUT							
Reference Input Range	VREF		0	V	dd - 1.4	V	
Reference Input Resistance	R _{REF}	Code-dependent, minimum at code 555 hex	10			kΩ	
Reference Current in Shutdown				0.01	±1	μA	

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = +5V \pm 10\%, AGND = DGND = 0V, REFAB = REFCD = 2.5V, R_L = 5k\Omega, C_L = 100pF, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$. Output buffer connected in unity-gain configuration (Figure 9).)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
MULTIPLYING-MODE PERFORMANCE							
Reference -3dB Bandwidth		V _{REF} = 0.67Vp-p		650		kHz	
Reference Feedthrough		Input code = all 0s, V _{REF} = 3.6Vp-p at 1kHz		-84		dB	
Signal-to-Noise Plus Distortion Ratio	SINAD	V _{REF} = 1Vp-p at 25kHz		72		dB	
DIGITAL INPUTS							
Input High Voltage	Vih		2.4			V	
Input Low Voltage	VIL				0.8	V	
Input Leakage Current	l _{IN}	$V_{IN} = 0V \text{ or } V_{DD}$		0.01	±1.0	μΑ	
Input Capacitance	Cin			8		рF	
DIGITAL OUTPUTS							
Output High Voltage	Voh	Isource = 2mA	V _{DD} - 0.5			V	
Output Low Voltage	Vol	Isink = 2mA		0.13	0.4	V	
DYNAMIC PERFORMANCE							
Voltage Output Slew Rate	SR			0.6		V/µs	
Output Settling Time		To $\pm 1/2LSB$, V _{STEP} = 2.5V		12		μs	
Output Voltage Swing		Rail to rail (Note 2)	() to V _{DD}		V	
Current into FB_				0	0.1	μΑ	
OUT_ Leakage Current in Shutdown		$R_L = \infty$		0.01	±1	μA	
Start-Up Time Exiting Shutdown Mode				15		μs	
Digital Feedthrough		$\overline{\text{CS}}$ = V _{DD} , DIN = 100kHz		5		nV-s	
Digital Crosstalk				5		nV-s	
POWER SUPPLIES							
Supply Voltage	Vdd		4.5		5.5	V	
Supply Current	IDD	(Note 3)		0.85	0.98	mA	
Supply Current in Shutdown		(Note 3)		10	20	μΑ	
Reference Current in Shutdown				0.01	±1	μA	

Note 1: Guaranteed from code 11 to code 4095 in unity-gain configuration.

Note 2: Accuracy is better than 1.0LSB for V_{OUT} = 6mV to V_{DD} - 60mV, guaranteed by PSR test on end points.

Note 3: $R_L = \infty$, digital inputs at DGND or V_{DD} .

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{DD} = +5V \pm 10\%, AGND = DGND = 0V, REFAB = REFCD = 2.5V, R_L = 5k\Omega, C_L = 100pF, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25^{\circ}$ C. Output buffer connected in unity-gain configuration (Figure 9).)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
TIMING CHARACTERISTICS (Figure 6)							
SCLK Clock Period	tCP		100			ns	
SCLK Pulse Width High	tсн		40			ns	
SCLK Pulse Width Low	tcl		40			ns	
$\overline{\text{CS}}$ Fall to SCLK Rise Setup Time	tcss		40			ns	
SCLK Rise to $\overline{\text{CS}}$ Rise Hold Time	tсsн		0			ns	
DIN Setup Time	t _{DS}		40			ns	
DIN Hold Time	tDH		0			ns	
SCLK Rise to DOUT Valid Propagation Delay	t _{D01}	C _{LOAD} = 200pF			80	ns	
SCLK Fall to DOUT Valid Propagation Delay	t _{D02}	C _{LOAD} = 200pF			80	ns	
SCLK Rise to CS Fall Delay	tcs0		40			ns	
$\overline{\text{CS}}$ Rise to SCLK Rise Hold Time	tcs1		40			ns	
CS Pulse Width High	tcsw		100			ns	

($V_{DD} = +5V$, $T_A = +25^{\circ}C$, unless otherwise noted.)

4

MAX525

Typical Operating Characteristics (continued)

 $(V_{DD} = +5V, T_A = +25^{\circ}C, unless otherwise noted.)$

Typical Operating Characteristics (continued)

 $(V_{DD} = +5V, T_A = +25^{\circ}C, unless otherwise noted.)$

MAX525

MAJOR-CARRY TRANSITION

10µs/div

 V_{REF} = 2.5V, R_L = 5k Ω , C_L = 100pF

10µs/div

 V_{REF} = 2.5V, R_L = 5k $\Omega,$ C_L = 100pF DAC A CODE SWITCHING FROM 00B hex TO FFF hex DAC B CODE SET TO 800 hex

DIGITAL FEEDTHROUGH (SCLK = 100kHz)

2µs/div

DYNAMIC RESPONSE

$$\label{eq:VREF} \begin{split} &V_{REF} = 2.5V, \ R_L = 5k\Omega, \ C_L = 100pF\\ \hline &\overline{CS} = \overline{PDL} = \overline{CL} = 5V, \ DIN = 0V\\ &DAC \ A \ CODE \ SET \ TO \ 800 \ hex \end{split}$$

OUTA, 1V/div

10µs/div

$$\label{eq:V_REF} \begin{split} V_{REF} = 2.5V, \ R_L = 5k \Omega, \ C_L = 100 pF \\ SWITCHING FROM CODE 000 \ hex \ TO \ FB4 \ hex \\ OUTPUT \ AMPLIFIER \ GAIN = +2 \end{split}$$

_Pin Description

PIN	NAME	FUNCTION
1	AGND	Analog Ground
2	FBA	DAC A Output Amplifier Feedback
3	OUTA	DAC A Output Voltage
4	OUTB	DAC B Output Voltage
5	FBB	DAC B Output Amplifier Feedback
6	REFAB	Reference Voltage Input for DAC A and DAC B
7	CL	Clear All DACs and Registers. Resets all outputs (OUT_, UPO, DOUT) to 0, active low.
8	CS	Chip-Select Input. Active low.
9	DIN	Serial-Data Input
10	SCLK	Serial Clock Input
11	DGND	Digital Ground
12	DOUT	Serial-Data Output
13	UPO	User-Programmable Logic Output
14	PDL	Power-Down Lockout. Active low. Locks out software shutdown if low.
15	REFCD	Reference Voltage Input for DAC C and DAC D
16	FBC	DAC C Output Amplifier Feedback
17	OUTC	DAC C Output Voltage
18	OUTD	DAC D Output Voltage
19	FBD	DAC D Output Amplifier Feedback
20	Vdd	Positive Power Supply

Figure 1. Simplified DAC Circuit Diagram

Detailed Description

The MAX525 contains four 12-bit, voltage-output digital-to-analog converters (DACs) that are easily addressed using a simple 3-wire serial interface. It includes a 16-bit data-in/data-out shift register, and each DAC has a doubled-buffered input composed of an input register and a DAC register (see *Functional Diagram*). In addition to the four voltage outputs, each amplifier's negative input is available to the user.

The DACs are inverted R-2R ladder networks that convert 12-bit digital inputs into equivalent analog output voltages in proportion to the applied reference voltage inputs. DACs A and B share the REFAB reference input, while DACs C and D share the REFCD reference input. The two reference inputs allow different full-scale output voltage ranges for each pair of DACs. Figure 1 shows a simplified circuit diagram of one of the four DACs.

Reference Inputs

The two reference inputs accept positive DC and AC signals. The voltage at each reference input sets the full-scale output voltage for its two corresponding DACs. The reference input voltage range is 0V to (V_{DD} - 1.4V). The output voltages (V_{OUT}) are represented by a digitally programmable voltage source as:

VOUT_ = (VREF x NB / 4096) x Gain

where NB is the numeric value of the DAC's binary input code (0 to 4095), V_{REF} is the reference voltage, and Gain is the externally set voltage gain.

The impedance at each reference input is code-dependent, ranging from a low value of $10k\Omega$ when both DACs connected to the reference have an input code of 555 hex, to a high value exceeding several gigohms (leakage currents) with an input code of 000 hex. Because the input impedance at the reference pins is code-dependent, load regulation of the reference source is important.

The REFAB and REFCD reference inputs have a 10k Ω guaranteed minimum input impedance. When the two reference inputs are driven from the same source, the effective minimum impedance is 5k Ω . A voltage reference with a load regulation of 6ppm/mA, such as the MAX873, would typically deviate by 0.025LSB (0.061LSB worst case) when driving both MAX525 reference inputs simultaneously at 2.5V. Driving the REFAB and REFCD pins separately improves reference accuracy.

In shutdown mode, the MAX525's REFAB and REFCD inputs enter a high-impedance state with a typical input leakage current of 0.01μ A.

The reference input capacitance is also code dependent and typically ranges from 20pF with an input code of all 0s to 100pF with an input code of all 1s.

Output Amplifiers

All MAX525 DAC outputs are internally buffered by precision amplifiers with a typical slew rate of 0.6V/µs. Access to the inverting input of each output amplifier provides the user greater flexibility in output gain setting/ signal conditioning (see the *Applications Information* section).

With a full-scale transition at the MAX525 output, the typical settling time to $\pm 1/2LSB$ is 12µs when loaded with 5k Ω in parallel with 100pF (loads less than 2k Ω degrade performance).

The MAX525 output amplifier's output dynamic responses and settling performances are shown in the *Typical Operating Characteristics*.

Power-Down Mode

M/XI/M

MAX525
Low-Power, Quad, 12-Bit Voltage-Output DAC with Serial Interface

In power-down mode, the MAX525 output amplifiers and the reference inputs enter a high-impedance state. The serial interface remains active. Data in the input registers is retained in power-down, allowing the MAX525 to recall the output states prior to entering shutdown. Start up from power-down either by recalling the previous configuration or by updating the DACs with new data. When powering up the device or bringing it out of shutdown, allow 15µs for the outputs to stabilize.

Serial-Interface Configurations

The MAX525's 3-wire serial interface is compatible with both MicrowireTM (Figure 2) and SPITM/QSPITM (Figure 3). The serial input word consists of two address bits and two control bits followed by 12 data bits (MSB first), as shown in Figure 4. The 4-bit address/ control code determines the MAX525's response outlined in Table 1. The connection between DOUT and the serial-interface port is not necessary, but may be used for data echo. Data held in the MAX525's shift register can be shifted out of DOUT and returned to the microprocessor (μ P) for data verification.

The MAX525's digital inputs are double buffered. Depending on the command issued through the serial interface, the input register(s) can be loaded without affecting the DAC register(s), the DAC register(s) can be loaded directly, or all four DAC registers can be updated simultaneously from the input registers (Table 1).

Serial-Interface Description

The MAX525 requires 16 bits of serial data. Table 1 lists the serial-interface programming commands. For certain commands, the 12 data bits are "don't cares." Data is sent MSB first and can be sent in two 8-bit packets or one 16-bit word (CS must remain low until 16 bits are transferred). The serial data is composed of two DAC address bits (A1, A0) and two control bits (C1, C0), followed by the 12 data bits D11...D0 (Figure 4). The 4-bit address/control code determines:

- The register(s) to be updated
- The clock edge on which data is to be clocked out via the serial-data output (DOUT)
- The state of the user-programmable logic output (UPO)
- If the part is to go into shutdown mode (assuming PDL is high)
- How the part is configured when coming out of shutdown mode.

Figure 2. Connections for Microwire

Figure 3. Connections for SPI/QSPI

Figure 4. Serial-Data Format

Low-Power, Quad, 12-Bit Voltage-Output DAC with Serial Interface

Table 1. Serial-Interface Programming Commands

	1	6-BIT SE	ERIAL W	ORD					
A1	A0	C1	C0	D11D0 MSB LSB	FUNCTION				
0	0	0	1	12-bit DAC data	Load input register A; DAC registers unchanged.				
0	1	0	1	12-bit DAC data	Load input register B; DAC registers unchanged.				
1	0	0	1	12-bit DAC data	Load input register C; DAC registers unchanged.				
1	1	0	1	12-bit DAC data	Load input register D; DAC registers unchanged.				
0	0	1	1	12-bit DAC data	Load input register A; all DAC registers updated.				
0	1	1	1	12-bit DAC data	Load input register B; all DAC registers updated.				
1	0	1	1	12-bit DAC data	Load input register C; all DAC registers updated.				
1	1	1	1	12-bit DAC data	Load input register D; all DAC registers updated.				
0	1	0	0	XXXXXXXXXXXXX	Update all DAC registers from their respective input registers (start-up).				
1	0	0	0	12-bit DAC data	Load all DAC registers from shift register (start-up).				
1	1	0	0	XXXXXXXXXXXXX	Shutdown (provided $\overline{PDL} = 1$)				
0	0	1	0	XXXXXXXXXXXXXX	UPO goes low (default)				
0	1	1	0	XXXXXXXXXXXXX	UPO goes high				
0	0	0	0	XXXXXXXXXXXXXX	No operation (NOP) to DAC registers				
1	1	1	0	*****	Mode 1, DOUT clocked out on SCLK's rising edge. All DAC registers updated.				
1	0	1	0	*****	Mode 0, DOUT clocked out on SCLK's falling edge. All DAC registers updated (default).				

"X" = Don't care

Figure 5 shows the serial-interface timing requirements. The chip-select pin (\overline{CS}) must be low to enable the DAC's serial interface. When \overline{CS} is high, the interface control circuitry is disabled. \overline{CS} must go low at least tcss before the rising serial clock (SCLK) edge to properly clock in the first bit. When \overline{CS} is low, data is clocked into the internal shift register via the serial-data input pin (DIN) on SCLK's rising edge. The maximum guaranteed clock frequency is 10MHz. Data is latched into the appropriate MAX525 input/DAC registers on \overline{CS} 's rising edge.

The programming command Load-All-DACs-From-Shift-Register allows all input and DAC registers to be simultaneously loaded with the same digital code from the input shift register. The no operation (NOP) command leaves the register contents unaffected and is useful when the MAX525 is configured in a daisy chain (see the *Daisy Chaining Devices* section). The command to change the clock edge on which serial data is shifted out of DOUT also loads data from all input registers to their respective DAC registers.

Serial-Data Output (DOUT)

///XI//

The serial-data output, DOUT, is the internal shift register's output. The MAX525 can be programmed so that data is clocked out of DOUT on SCLK's rising edge (Mode 1) or falling edge (Mode 0). In Mode 0, output data at DOUT lags input data at DIN by 16.5 clock cycles, maintaining compatibility with Microwire[™], SPI[™]/QSPI[™], and other serial interfaces. In Mode 1, output data lags input data by 16 clock cycles. On power-up, DOUT defaults to Mode 0 timing.

User-Programmable Logic Output (UPO)

The user-programmable logic output, UPO, allows an external device to be controlled via the MAX525 serial interface (Table 1).

Low-Power, Quad, 12-Bit Voltage-Output DAC with Serial Interface

Figure 5. Serial-Interface Timing Diagram

Figure 6. Detailed Serial-Interface Timing Diagram

Power-Down Lockout (PDL)

The power-down lockout pin PDL disables software shutdown when low. When in shutdown, transitioning PDL from high to low wakes up the part with the output set to the state prior to shutdown. PDL could also be used to asynchronously wake up the device.

Daisy Chaining Devices

Any number of MAX525s can be daisy chained by connecting the DOUT pin of one device to the DIN pin of the following device in the chain (Figure 7). Since the MAX525's DOUT pin has an internal active pull-up, the DOUT sink/source capability determines the time required to discharge/charge a capacitive load. Refer to the serial-data-out VOH and VOL specifications in the *Electrical Characteristics*.

Figure 8 shows an alternate method of connecting several MAX525s. In this configuration, the data bus is common to all devices; data is not shifted through a daisy chain. More I/O lines are required in this configuration because a dedicated chip-select input (CS) is required for each IC.

MAX525

Low-Power, Quad, 12-Bit Voltage-Output DAC with Serial Interface

Figure 7. Daisy-Chaining MAX525s

MAX525

Figure 8. Multiple MAX525s Sharing a Common DIN Line

Low-Power, Quad, 12-Bit Voltage-Output DAC with Serial Interface

Applications Information

Unipolar Output

For a unipolar output, the output voltages and the reference inputs have the same polarity. Figure 9 shows the MAX525 unipolar output circuit, which is also the typical operating circuit. Table 2 lists the unipolar output codes.

For rail-to-rail outputs, see Figure 10. This circuit shows the MAX525 with the output amplifiers configured with a closed-loop gain of +2 to provide 0V to 5V full-scale range when a 2.5V reference is used.

Table 2. Unipolar Code Table

DAC MSB	CONTEN	ITS LSB	ANALOG OUTPUT
1111	1111	1111	$+V_{REF}\left(\frac{4095}{4096}\right)$
1000	0000	0001	+V _{REF} (2049)
1000	0000	0000	$+V_{\text{REF}}\left(\frac{2048}{4096}\right) = \frac{+V_{\text{REF}}}{2}$
0111	1111	1111	+V _{REF} (2047)
0000	0000	0001	$+V_{REF}(\frac{1}{4096})$
0000	0000	0000	OV

Table 3. Bipolar Code Table

DAC MSB	CONTEN	ITS LSB	ANALOG OUTPUT
1111	1111	1111	+V _{REF} (<u>2047</u>)
1000	0000	0001	$+V_{REF}(\frac{1}{2048})$
1000	0000	0000	OV
0111	1111	1111	$-V_{REF}(\frac{1}{2048})$
0000	0000	0001	-V _{REF} (<u>2047</u>)
0000	0000	0000	$-V_{\text{REF}}\left(\frac{2048}{2048}\right) = -V_{\text{REF}}$

Note: 1LSB = $(V_{REF}) \left(\frac{1}{4096}\right)$

MIXIM

Bipolar Output

The MAX525 outputs can be configured for bipolar operation using Figure 11's circuit.

VOUT = VREF [(2NB / 4096) - 1]

where NB is the numeric value of the DAC's binary input code. Table 3 shows digital codes (offset binary) and corresponding output voltages for Figure 11's circuit.

Figure 9. Unipolar Output Circuit

Low-Power, Quad, 12-Bit Voltage-Output DAC with Serial Interface

Figure 10. Unipolar Rail-to-Rail Output Circuit

Figure 11. Bipolar Output Circuit

Using an AC Reference

In applications where the reference has AC signal components, the MAX525 has multiplying capability within the reference input range specifications. Figure 12 shows a technique for applying a sine-wave signal to the reference input where the AC signal is offset before being applied to REFAB/REFCD. The reference voltage must never be more negative than DGND.

The MAX525's total harmonic distortion plus noise (THD + N) is typically less than -72dB, given a 1Vp-p signal swing and input frequencies up to 25kHz. The typical -3dB frequency is 650kHz, as shown in the *Typical Operating Characteristics* graphs.

Digitally Programmable Current Source

The circuit of Figure 13 places an NPN transistor (2N3904 or similar) within the op-amp feedback loop to implement a digitally programmable, unidirectional current source. This circuit can be used to drive 4mA to 20mA current loops, which are commonly used in industrial-control applications. The output current is calculated with the following equation:

$$IOUT = (V_{REF} / R) \times (NB / 4096)$$

where NB is the numeric value of the DAC's binary input code and R is the sense resistor shown in Figure 13.

Figure 12. AC Reference Input Circuit

MAX525

Low-Power, Quad, 12-Bit Voltage-Output DAC with Serial Interface

Figure 13. Digitally Programmable Current Source

Power-Supply Considerations

On power-up, all input and DAC registers are cleared (set to zero code) and DOUT is in Mode 0 (serial data is shifted out of DOUT on the clock's falling edge).

For rated MAX525 performance, limit REFAB/REFCD to less than 1.4V below V_{DD}. Bypass V_{DD} with a 4.7µF capacitor in parallel with a 0.1µF capacitor to AGND. Use short lead lengths and place the bypass capacitors as close to the supply pins as possible.

Grounding and Layout Considerations

Digital or AC transient signals between AGND and DGND can create noise at the analog outputs. Tie AGND and DGND together at the DAC, then tie this point to the highest-quality ground available.

Good printed circuit board ground layout minimizes crosstalk between DAC outputs, reference inputs, and digital inputs. Reduce crosstalk by keeping analog lines away from digital lines. Wire-wrapped boards are not recommended.

__Pin Configuration

Low-Power, Quad, 12-Bit Voltage-Output DAC with Serial Interface

_Ordering Information (continued)

PART	TEMP. RANGE	PIN-PACKAGE	INL (LSBs)
MAX525BC/D	$0^{\circ}C$ to $+70^{\circ}C$	Dice*	±1
MAX525AEPP	-40°C to +85°C	20 Plastic DIP	±1/2
MAX525BEPP	-40°C to +85°C	20 Plastic DIP	±1
MAX525AEAP	-40°C to +85°C	20 SSOP	±1/2
MAX525BEAP	-40°C to +85°C	20 SSOP	±1
MAX525AMJP	-55°C to +125°C	20 CERDIP**	±1/2
MAX525BMJP	-55°C to +125°C	20 CERDIP**	±1

* Dice are specified at $T_A = +25^{\circ}C$, DC parameters only.

**Contact factory for availability and processing to MIL-STD-883.

Chip Information

TRANSISTOR COUNT: 4337

_Package Information

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

4	c
	υ

_____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 1997 Maxim Integrated Products Printed USA

is a registered trademark of Maxim Integrated Products.

Burr-Brown Products from Texas Instruments

SBOS084A - NOVEMBER 2000

ADS7841

12-Bit, 4-Channel Serial Output Sampling ANALOG-TO-DIGITAL CONVERTER

FEATURES

- SINGLE SUPPLY: 2.7V to 5V
- 4-CHANNEL SINGLE-ENDED OR 2-CHANNEL DIFFERENTIAL INPUT
- UP TO 200kHz CONVERSION RATE
- ±1 LSB MAX INL AND DNL
- GUARANTEED NO MISSING CODES
- 72dB SINAD
- SERIAL INTERFACE
- DIP-16 OR SSOP-16 PACKAGE
- ALTERNATE SOURCE FOR MAX1247

APPLICATIONS

- DATA ACQUISITION
- TEST AND MEASUREMENT
- INDUSTRIAL PROCESS CONTROL
- PERSONAL DIGITAL ASSISTANTS
- BATTERY-POWERED SYSTEMS

DESCRIPTION

The ADS7841 is a 4-channel, 12-bit sampling Analog-to-Digital Converter (ADC) with a synchronous serial interface. The resolution is programmable to either 8 bits or 12 bits. Typical power dissipation is 2mW at a 200kHz throughput rate and a +5V supply. The reference voltage (V_{REF}) can be varied between 100mV and V_{CC} , providing a corresponding input voltage range of 0V to V_{REF} . The device includes a shutdown mode which reduces power dissipation to under 15 μ W. The ADS7841 is guaranteed down to 2.7V operation.

Low power, high speed, and on-board multiplexer make the ADS7841 ideal for battery operated systems such as personal digital assistants, portable multi-channel data loggers, and measurement equipment. The serial interface also provides low-cost isolation for remote data acquisition. The ADS7841 is available in a DIP-16 or a SSOP-16 package and is guaranteed over the -40° C to $+85^{\circ}$ C temperature range.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SPECIFICATION: +5V

At $T_A = -40^{\circ}C$ to $+85^{\circ}C$, $+V_{CC} = +5V$, $V_{REF} = +5V$, $f_{SAMPLE} = 200kHz$, and $f_{CLK} = 16 \bullet f_{SAMPLE} = 3.2MHz$, unless otherwise noted.

		А	DS7841E,	P	AD	S7841EB,	РВ	
PARAMETER	CONDITIONS	MIN	ТҮР	МАХ	MIN	ТҮР	MAX	UNITS
ANALOG INPUT Full-Scale Input Span Absolute Input Range Capacitance Leakage Current	Positive Input - Negative Input Positive Input Negative Input	0 -0.2 -0.2	25 ±1	V _{REF} +V _{CC} +0.2 +1.25	* * *	*	* * *	V V V pF μA
SYSTEM PERFORMANCE Resolution No Missing Codes Integral Linearity Error Differential Linearity Error Offset Error Offset Error Match Gain Error Gain Error Match Noise Power Supply Rejection		12	12 ±0.8 0.15 0.1 30 70	±2 ±3 1.0 ±4 1.0	12	* ±0.5 * * *	±1 ±1 * ±3 *	Bits Bits LSB ⁽¹⁾ LSB LSB LSB LSB LSB MVrms dB
SAMPLING DYNAMICS Conversion Time Acquisition Time Throughput Rate Multiplexer Settling Time Aperture Delay Aperture Jitter		3	500 30 100	12 200	*	* *	*	Clk Cycles Clk Cycles kHz ns ns ps
DYNAMIC CHARACTERISTICS Total Harmonic Distortion ⁽²⁾ Signal-to-(Noise + Distortion) Spurious Free Dynamic Range Channel-to-Channel Isolation	$V_{\rm IN}$ = 5Vp-p at 10kHz $V_{\rm IN}$ = 5Vp-p at 10kHz $V_{\rm IN}$ = 5Vp-p at 10kHz $V_{\rm IN}$ = 5Vp-p at 50kHz $V_{\rm IN}$ = 5Vp-p at 50kHz	68 72	-78 71 79 120	-72	70 76	80 72 81 *	-76	dB dB dB dB
REFERENCE INPUT Range Resistance Input Current	DCLK Static f _{SAMPLE} = 12.5kHz DCLK Static	0.1	5 40 2.5 0.001	+V _{CC} 100 3	*	* * *	* *	V GΩ μΑ μΑ μΑ
DIGITAL INPUT/OUTPUT Logic Family Logic Levels V _{IH} V _{IL} V _{OH} V _{OL} Data Format	$ I_{H} \le +5\mu A$ $ I_{IL} \le +5\mu A$ $I_{OH} = -250\mu A$ $I_{OL} = 250\mu A$	3.0 0.3 3.5 Si	CMOS	5.5 +0.8 0.4 ry	* * *	*	* * *	V V V V
POWER SUPPLY REQUIREMENTS +V _{CC} Quiescent Current Power Dissipation TEMPERATURE RANGE	Specified Performance $f_{SAMPLE} = 12.5 kHz$ Power-Down Mode ⁽³⁾ , $\overline{CS} = +V_{CC}$	4.75	550 300	5.25 900 3 4.5	*	*	* * *	V μA μA mW
Specified Performance		-40		+85	*		*	°C

* Same specifications as ADS7841E, P.

NOTE: (1) LSB means Least Significant Bit. With V_{REF} equal to +5.0V, one LSB is 1.22mV. (2) First five harmonics of the test frequency. (3) Auto power-down mode (PD1 = PD0 = 0) active or SHDN = GND.

SPECIFICATION: +2.7V

At $T_A = -40^{\circ}C$ to $+85^{\circ}C$, $+V_{CC} = +2.7V$, $V_{REF} = +2.5V$, $f_{SAMPLE} = 125kHz$, and $f_{CLK} = 16 \cdot f_{SAMPLE} = 2MHz$, unless otherwise noted.

		A	DS7841E,	Р	AD	S7841EB,	РВ	
PARAMETER	CONDITIONS	MIN	ТҮР	MAX	MIN	ТҮР	MAX	UNITS
ANALOG INPUT Full-Scale Input Span Absolute Input Range Capacitance Leakage Current	Positive Input - Negative Input Positive Input Negative Input	0 0.2 0.2	25 ±1	V _{REF} +V _{CC} +0.2 +0.2	* * *	* *	* * *	V V PF μA
SYSTEM PERFORMANCE Resolution No Missing Codes Integral Linearity Error Differential Linearity Error Offset Error Offset Error Match Gain Error Gain Error Match Noise Power Supply Rejection		12	12 ±0.8 0.15 0.1 30 70	±2 ±3 1.0 ±4 1.0	12	* ±0.5 * *	±1 ±1 * ±3 *	Bits Bits LSB ⁽¹⁾ LSB LSB LSB LSB LSB μVrms dB
SAMPLING DYNAMICS Conversion Time Acquisition Time Throughput Rate Multiplexer Settling Time Aperture Delay Aperture Jitter		3	500 30 100	12 125	*	* * *	*	Clk Cycles Clk Cycles kHz ns ns ps
DYNAMIC CHARACTERISTICS Total Harmonic Distortion ⁽²⁾ Signal-to-(Noise + Distortion) Spurious Free Dynamic Range Channel-to-Channel Isolation	V_{IN} = 2.5Vp-p at 10kHz V_{IN} = 2.5Vp-p at 10kHz V_{IN} = 2.5Vp-p at 10kHz V_{IN} = 2.5Vp-p at 50kHz	68 72	-77 71 78 100	-72	70 76	79 72 80 *	-76	dB dB dB dB
REFERENCE INPUT Range Resistance Input Current	DCLK Static f _{SAMPLE} = 12.5kHz DCLK Static	0.1	5 13 2.5 0.001	+V _{CC} 40 3	*	* * * *	* *	V GΩ μΑ μΑ μΑ
DIGITAL INPUT/OUTPUT Logic Family Logic Levels V _{IH} V _{IL} V _{OH} V _{OL} Data Format	Ι _{ΙΗ} ≤ +5μΑ Ι _{ΙL} ≤ +5μΑ Ι _{ΟΗ} = -250μΑ Ι _{ΟL} = 250μΑ	+V _{CC} • 0.7 -0.3 +V _{CC} • 0.8	CMOS traight Bina	5.5 +0.8 0.4	* * *	*	* * *	V V V V
POWER SUPPLY REQUIREMENTS +V _{CC} Quiescent Current Power Dissipation TEMPERATURE RANGE	Specified Performance $f_{SAMPLE} = 12.5 kHz$ Power-Down Mode ⁽³⁾ , $\overline{CS} = +V_{CC}$	2.7	280 220	3.6 650 3 1.8	*	*	* * * *	V μA μA mW
Specified Performance		-40		+85	*		*	°C

* Same specifications as ADS7841E, P.

NOTE: (1) LSB means Least Significant Bit. With V_{REF} equal to +2.5V, one LSB is 610mV. (2) First five harmonics of the test frequency. (3) Auto power-down mode (PD1 = PD0 = 0) active or SHDN = GND.

PIN CONFIGURATIONS

PIN DESCRIPTIONS

PIN	NAME	DESCRIPTION
1	+V _{CC}	Power Supply, 2.7V to 5V.
2	CH0	Analog Input Channel 0.
3	CH1	Analog Input Channel 1.
4	CH2	Analog Input Channel 2.
5	CH3	Analog Input Channel 3.
6	СОМ	Ground Reference for Analog Inputs. Sets zero code voltage in single-ended mode. Connect this pin to ground or ground reference
		point.
7	SHDN	Shutdown. When LOW, the device enters a very low power shutdown mode.
8	V _{REF}	Voltage Reference Input
9	+V _{CC}	Power Supply, 2.7V to 5V.
10	GND	Ground
11	MODE	Conversion Mode. When LOW, the device always performs a 12-bit conversion. When HIGH, the resolution is set by the MODE bit in the CONTROL byte.
12	DOUT	Serial Data Output. Data is shifted on the falling edge of DCLK. This output is high impedance when $\overline{\text{CS}}$ is HIGH.
13	BUSY	Busy Output. This output is high impedance when \overline{CS} is HIGH.
14	DIN	Serial Data Input. If CS is LOW, data is latched on rising edge of DCLK.
15	CS	Chip Select Input. Controls conversion timing and enables the serial input/output register.
16	DCLK	External Clock Input. This clock runs the SAR conversion process and synchronizes serial data I/O.

ABSOLUTE MAXIMUM RATINGS(1)

+V _{CC} to GND	0.3V to +6V
Analog Inputs to GND	0.3V to +V _{CC} + 0.3V
Digital Inputs to GND	-0.3V to +6V
Power Dissipation	
Maximum Junction Temperature	+150°C
Operating Temperature Range	40°C to +85°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10s)	+300°C

NOTE: (1) Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. Exposure to absolute maximum conditions for extended periods may affect device reliability.

PACKAGE/ORDERING INFORMATION

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PRODUCT	MINIMUM RELATIVE ACCURACY (LSB)	MAXIMUM GAIN ERROR (LSB)	SPECIFICATION TEMPERATURE RANGE	PACKAGE	PACKAGE DRAWING NUMBER	ORDERING NUMBER ⁽¹⁾	TRANSPORT MEDIA
ADS7841E	±2	±4	-40°C to +85°C	16-Lead SSOP	322	ADS7841E	Rails
"	"	"	"	"	"	ADS7841E/2K5	Tape and Reel
ADS7841P	±2	"	-40°C to +85°C	16-Pin PDIP	180	ADS7841P	Rails
ADS7841EB	±1	±3	-40°C to +85°C	16-Lead SSOP	322	ADS7841EB	Rails
"	"	"	"	"	"	ADS7841EB/2K5	Tape and Reel
ADS7841PB	±1	"	-40°C to +85°C	16-Pin PDIP	180	ADS7841PB	Rails

NOTES: (1) Models with a slash (/) are available only in Tape and Reel in the quantities indicated (e.g., /2K5 indicates 2500 devices per reel). Ordering 2500 pieces of "ADS7841E/2K5" will get a single 2500-piece Tape and Reel.

TYPICAL PERFORMANCE CURVES:+5V

At $T_A = +25^{\circ}C$, +V_{CC} = +5V, V_{REF} = +5V, f_{SAMPLE} = 200kHz, and f_{CLK} = 16 • f_{SAMPLE} = 3.2MHz, unless otherwise noted.

TYPICAL PERFORMANCE CURVES:+2.7V

At $T_A = +25^{\circ}C$, $+V_{CC} = +2.7V$, $V_{REF} = +2.5V$, $f_{SAMPLE} = 125kHz$, and $f_{CLK} = 16 \cdot f_{SAMPLE} = 2MHz$, unless otherwise noted.

SIGNAL-TO-NOISE RATIO AND SIGNAL-TO-

(NOISE+DISTORTION) vs INPUT FREQUENCY

10

Input Frequency (kHz)

SNR

SINAD

100

78

74

70

66

62

58

54

1

SNR and SINAD (dB)

TYPICAL PERFORMANCE CURVES:+2.7V (Cont.)

At $T_A = +25^{\circ}C$, $+V_{CC} = +2.7V$, $V_{REF} = +2.5V$, $f_{SAMPLE} = 125kHz$, and $f_{CLK} = 16 \cdot f_{SAMPLE} = 2MHz$, unless otherwise noted.

TYPICAL PERFORMANCE CURVES (Cont.)

At $T_A = +25^{\circ}C$, $+V_{CC} = +2.7V$, $V_{REF} = +2.5V$, $f_{SAMPLE} = 125kHz$, and $f_{CLK} = 16 \cdot f_{SAMPLE} = 2MHz$, unless otherwise noted.

THEORY OF OPERATION

The ADS7841 is a classic successive approximation register (SAR) analog-to-digital (A/D) converter. The architecture is based on capacitive redistribution which inherently includes a sample/hold function. The converter is fabricated on a 0.6µs CMOS process.

The basic operation of the ADS7841 is shown in Figure 1. The device requires an external reference and an external clock. It operates from a single supply of 2.7V to 5.25V. The external reference can be any voltage between 100mV and $+V_{CC}$. The value of the reference voltage directly sets the input range of the converter. The average reference input current depends on the conversion rate of the ADS7841.

The analog input to the converter is differential and is provided via a four-channel multiplexer. The input can be provided in reference to a voltage on the COM pin (which is generally ground) or differentially by using two of the four input channels (CH0 - CH3). The particular configuration is selectable via the digital interface.

ANALOG INPUT

Figure 2 shows a block diagram of the input multiplexer on the ADS7841. The differential input of the converter is derived from one of the four inputs in reference to the COM pin or two of the four inputs. Table I and Table II show the relationship between the A2, A1, A0, and SGL/DIF control bits and the configuration of the analog multiplexer. The control bits are provided serially via the DIN pin, see the Digital Interface section of this data sheet for more details.

When the converter enters the hold mode, the voltage difference between the +IN and -IN inputs (see Figure 2) is captured on the internal capacitor array. The voltage on the -IN input is limited between -0.2V and 1.25V, allowing the input to reject small signals which are common to both the +IN and -IN input. The +IN input has a range of -0.2V to $+V_{CC} + 0.2V$.

The input current on the analog inputs depends on the conversion rate of the device. During the sample period, the source must charge the internal sampling capacitor (typically 25pF). After the capacitor has been fully charged, there is no further input current. The rate of charge transfer from the analog source to the converter is a function of conversion rate.

A2	A1	A0	CH0	CH1	CH2	CH3	СОМ
0	0	1	+IN				–IN
1	0	1		+IN			–IN
0	1	0			+IN		–IN
1	1	0				+IN	–IN

TABLE I. Single-Ended Channel Selection (SGL/DIF HIGH).

A2	A1	A0	CH0	CH1	CH2	CH3	СОМ
0	0	1	+IN	–IN			
1	0	1	–IN	+IN			
0	1	0			+IN	–IN	
1	1	0			-IN	+IN	

TABLE II. Differential Channel Control (SGL/ $\overline{\text{DIF}}$ LOW).

FIGURE 2. Simplified Diagram of the Analog Input.

FIGURE 1. Basic Operation of the ADS7841.

REFERENCE INPUT

The external reference sets the analog input range. The ADS7841 will operate with a reference in the range of 100mV to $+V_{CC}$. Keep in mind that the analog input is the difference between the +IN input and the –IN input as shown in Figure 2. For example, in the single-ended mode, a 1.25V reference, and with the COM pin grounded, the selected input channel (CH0 - CH3) will properly digitize a signal in the range of 0V to 1.25V. If the COM pin is connected to 0.5V, the input range on the selected channel is 0.5V to 1.75V.

There are several critical items concerning the reference input and its wide voltage range. As the reference voltage is reduced, the analog voltage weight of each digital output code is also reduced. This is often referred to as the LSB (least significant bit) size and is equal to the reference voltage divided by 4096. Any offset or gain error inherent in the A/D converter will appear to increase, in terms of LSB size, as the reference voltage is reduced. For example, if the offset of a given converter is 2 LSBs with a 2.5V reference, then it will typically be 10 LSBs with a 0.5V reference. In each case, the actual offset of the device is the same, 1.22mV.

Likewise, the noise or uncertainty of the digitized output will increase with lower LSB size. With a reference voltage of 100mV, the LSB size is 24μ V. This level is below the internal noise of the device. As a result, the digital output code will not be stable and vary around a mean value by a number of LSBs. The distribution of output codes will be gaussian and the noise can be reduced by simply averaging consecutive conversion results or applying a digital filter.

With a lower reference voltage, care should be taken to provide a clean layout including adequate bypassing, a clean (low noise, low ripple) power supply, a low-noise reference, and a low-noise input signal. Because the LSB size is lower, the converter will also be more sensitive to nearby digital signals and electromagnetic interference. The voltage into the V_{REF} input is not buffered and directly drives the capacitor digital-to-analog converter (CDAC) portion of the ADS7841. Typically, the input current is 13µA with a 2.5V reference. This value will vary by microamps depending on the result of the conversion. The reference current diminishes directly with both conversion rate and reference voltage. As the current from the reference is drawn on each bit decision, clocking the converter more quickly during a given conversion period will not reduce overall current drain from the reference.

DIGITAL INTERFACE

Figure 3 shows the typical operation of the ADS7841's digital interface. This diagram assumes that the source of the digital signals is a microcontroller or digital signal processor with a basic serial interface (note that the digital inputs are over-voltage tolerant up to 5.5V, regardless of $+V_{CC}$). Each communication between the processor and the converter consists of eight clock cycles. One complete conversion can be accomplished with three serial communications, for a total of 24 clock cycles on the DCLK input.

The first eight clock cycles are used to provide the control byte via the DIN pin. When the converter has enough information about the following conversion to set the input multiplexer appropriately, it enters the acquisition (sample) mode. After three more clock cycles, the control byte is complete and the converter enters the conversion mode. At this point, the input sample/hold goes into the hold mode. The next twelve clock cycles accomplish the actual analogto-digital conversion. A thirteenth clock cycle is needed for the last bit of the conversion result. Three more clock cycles are needed to complete the last byte (DOUT will be LOW). These will be ignored by the converter.

FIGURE 3. Conversion Timing, 24-Clocks per Conversion, 8-Bit Bus Interface. No DCLK delay required with dedicated serial port.

Control Byte

Also shown in Figure 3 is the placement and order of the control bits within the control byte. Tables III and IV give detailed information about these bits. The first bit, the 'S' bit, must always be HIGH and indicates the start of the control byte. The ADS7841 will ignore inputs on the DIN pin until the start bit is detected. The next three bits (A2 - A0) select the active input channel or channels of the input multiplexer (see Tables I and II and Figure 2).

Bit 7 (MSB)	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0 (LSB)
S	A2	A1	A0	MODE	SGL/DIF	PD1	PD0

TABLE III. Order of the Control Bits in the Control Byte.

BIT	NAME	DESCRIPTION
7	S	Start Bit. Control byte starts with first HIGH bit on DIN. A new control byte can start every 15th clock cycle in 12-bit conversion mode or every 11th clock cycle in 8-bit conversion mode.
6 - 4	A2 - A0	Channel Select Bits. Along with the SGL/DIF bit, these bits control the setting of the multiplexer input as detailed in Tables I and II.
3	MODE	12-Bit/8-Bit Conversion Select Bit. If the MODE pin is HIGH, this bit controls the number of bits for the next conversion: 12-bits (LOW) or 8-bits (HIGH). If the MODE pin is LOW, this bit has no function and the conversion is always 12 bits.
2	SGL/DIF	Single-Ended/Differential Select Bit. Along with bits A2 - A0, this bit controls the setting of the multiplexer input as detailed in Tables I and II.
1 - 0	PD1 - PD0	Power-Down Mode Select Bits. See Table V for details.

TABLE IV. Descriptions of the Control Bits within the Control Byte.

The MODE bit and the MODE pin work together to determine the number of bits for a given conversion. If the MODE pin is LOW, the converter always performs a 12-bit conversion regardless of the state of the MODE bit. If the MODE pin is HIGH, then the MODE bit determines the number of bits for each conversion, either 12 bits (LOW) or 8 bits (HIGH).

The SGL/DIF bit controls the multiplexer input mode: either single-ended (HIGH) or differential (LOW). In single-ended mode, the selected input channel is referenced to the COM pin. In differential mode, the two selected inputs provide a differential input. See Tables I and II and Figure 2 for more information. The last two bits (PD1 - PD0) select the power-down mode as shown in Table V. If both inputs are HIGH, the device is always powered up. If both inputs are LOW, the device enters a power-down mode between conversions. When a new conversion is initiated, the device will resume normal operation instantly—no delay is needed to allow the device to power up and the very first conversion will be valid.

16-Clocks per Conversion

The control bits for conversion n+1 can be overlapped with conversion 'n' to allow for a conversion every 16 clock cycles, as shown in Figure 4. This figure also shows possible serial communication occurring with other serial peripherals between each byte transfer between the processor and the converter. This is possible provided that each conversion completes within 1.6ms of starting. Otherwise, the signal that has been captured on the input sample/hold may droop enough to affect the conversion result. In addition, the ADS7841 is fully powered while other serial communications are taking place.

PD1	PD0	Description
0	0	Power-down between conversions. When each conversion is finished, the converter enters a low power mode. At the start of the next conversion, the device instantly powers up to full power. There is no need for additional delays to assure full operation and the very first conversion is valid.
0	1	Reserved for future use.
1	0	Reserved for future use.
1	1	No power-down between conversions, device al- ways powered.

TABLE V. Power-Down Selection.

FIGURE 4. Conversion Timing, 16-Clocks per Conversion, 8-bit Bus Interface. No DCLK delay required with dedicated serial port.

Digital Timing

Figure 5 and Tables VI and VII provide detailed timing for the digital interface of the ADS7841.

15-Clocks per Conversion

Figure 6 provides the fastest way to clock the ADS7841. This method will not work with the serial interface of most

SYMBOL	DESCRIPTION	MIN	TYP	MAX	UNITS
t _{ACQ}	Acquisition Time	1.5			μs
t _{DS}	DIN Valid Prior to DCLK Rising	100			ns
t _{DH}	DIN Hold After DCLK HIGH	10			ns
t _{DO}	DCLK Falling to DOUT Valid			200	ns
t _{DV}	CS Falling to DOUT Enabled			200	ns
t _{TR}	CS Rising to DOUT Disabled			200	ns
t _{css}	$\overline{\text{CS}}$ Falling to First DCLK Rising	100			ns
t _{CSH}	CS Rising to DCLK Ignored	0			ns
t _{CH}	DCLK HIGH	200			ns
t _{CL}	DCLK LOW	200			ns
t _{BD}	DCLK Falling to BUSY Rising			200	ns
t _{BDV}	CS Falling to BUSY Enabled			200	ns
t _{BTR}	CS Rising to BUSY Disabled			200	ns

TABLE VI. Timing Specifications (+V_{CC} = +2.7V to 3.6V, T_A = -40°C to +85°C, C_{LOAD} = 50pF).

microcontrollers and digital signal processors as they are generally not capable of providing 15 clock cycles per serial transfer. However, this method could be used with field programmable gate arrays (FPGAs) or application specific integrated circuits (ASICs). Note that this effectively increases the maximum conversion rate of the converter beyond the values given in the specification tables, which assume 16 clock cycles per conversion.

SYMBOL	DESCRIPTION	MIN	TYP	MAX	UNITS
t _{ACQ}	Acquisition Time	900			ns
t _{DS}	DIN Valid Prior to DCLK Rising	50			ns
t _{DH}	DIN Hold After DCLK HIGH	10			ns
t _{DO}	DCLK Falling to DOUT Valid			100	ns
t _{DV}	CS Falling to DOUT Enabled			70	ns
t _{TR}	CS Rising to DOUT Disabled			70	ns
t _{css}	CS Falling to First DCLK Rising	50			ns
t _{CSH}	CS Rising to DCLK Ignored	0			ns
t _{CH}	DCLK HIGH	150			ns
t _{CL}	DCLK LOW	150			ns
t _{BD}	DCLK Falling to BUSY Rising			100	ns
t _{BDV}	CS Falling to BUSY Enabled			70	ns
t _{BTR}	CS Rising to BUSY Disabled			70	ns

TABLE VII. Timing Specifications (+V_{CC} = +4.75V to +5.25V, $T_A = -40^{\circ}$ C to +85°C, $C_{LOAD} = 50$ pF).

FIGURE 5. Detailed Timing Diagram.

DIN S A2 A1 A0 MODE SQL/ PD1 PD0 S A2 A1 A0 MODE SQL/ PD1 PD0 S A2 A1 A0
BUSY —
DOUT 11 10 9 8 7 6 5 4 3 2 1 0 11 10 9 8 7 6 5 4 3 2

FIGURE 6. Maximum Conversion Rate, 15-Clocks per Conversion.

Data Format

The ADS7841 output data is in straight binary format as shown in Figure 7. This figure shows the ideal output code for the given input voltage and does not include the effects of offset, gain, or noise.

FIGURE 7. Ideal Input Voltages and Output Codes.

8-Bit Conversion

The ADS7841 provides an 8-bit conversion mode that can be used when faster throughput is needed and the digital result is not as critical. By switching to the 8-bit mode, a conversion is complete four clock cycles earlier. This could be used in conjunction with serial interfaces that provide a 12-bit transfer or two conversions could be accomplished with three 8-bit transfers. Not only does this shorten each conversion by four bits (25% faster throughput), but each conversion can actually occur at a faster clock rate. This is because the internal settling time of the ADS7841 is not as critical, settling to better than 8 bits is all that is needed. The clock rate can be as much as 50% faster. The faster clock rate and fewer clock cycles combine to provide a 2x increase in conversion rate.

POWER DISSIPATION

There are three power modes for the ADS7841: full power (PD1 - PD0 = 11B), auto power-down (PD1 - PD0 = 00B), and shutdown (\overline{SHDN} LOW). The affects of these modes varies depending on how the ADS7841 is being operated. For example, at full conversion rate and 16 clocks per conversion, there is very little difference between full power mode and auto power-down. Likewise, if the device has entered auto power-down, a shutdown (\overline{SHDN} LOW) will not lower power dissipation.

When operating at full-speed and 16-clocks per conversion (as shown in Figure 4), the ADS7841 spends most of its time acquiring or converting. There is little time for auto powerdown, assuming that this mode is active. Thus, the difference between full power mode and auto power-down is negligible. If the conversion rate is decreased by simply slowing the frequency of the DCLK input, the two modes remain approximately equal. However, if the DCLK frequency is kept at the maximum rate during a conversion, but conversion are simply done less often, then the difference between the two modes is dramatic. Figure 8 shows the difference between reducing the DCLK frequency ("scaling" DCLK to match the conversion rate) or maintaining DCLK at the highest frequency and reducing the number of conversion per second. In the later case, the converter spends an increasing percentage of its time in power-down mode (assuming the auto power-down mode is active).

If DCLK is active and \overline{CS} is LOW while the ADS7841 is in auto power-down mode, the device will continue to dissipate some power in the digital logic. The power can be reduced to a minimum by keeping \overline{CS} HIGH. The differences in supply current for these two cases are shown in Figure 9.

Operating the ADS7841 in auto power-down mode will result in the lowest power dissipation, and there is no conversion time "penalty" on power-up. The very first conversion will be valid. SHDN can be used to force an immediate power-down.

FIGURE 8. Supply Current vs Directly Scaling the Frequency of DCLK with Sample Rate or Keeping DCLK at the Maximum Possible Frequency.

FIGURE 9. Supply Current vs State of \overline{CS} .

LAYOUT

For optimum performance, care should be taken with the physical layout of the ADS7841 circuitry. This is particularly true if the reference voltage is low and/or the conversion rate is high.

The basic SAR architecture is sensitive to glitches or sudden changes on the power supply, reference, ground connections, and digital inputs that occur just prior to latching the output of the analog comparator. Thus, during any single conversion for an n-bit SAR converter, there are n "windows" in which large external transient voltages can easily affect the conversion result. Such glitches might originate from switching power supplies, nearby digital logic, and high power devices. The degree of error in the digital output depends on the reference voltage, layout, and the exact timing of the external event. The error can change if the external event changes in time with respect to the DCLK input.

With this in mind, power to the ADS7841 should be clean and well bypassed. A 0.1μ F ceramic bypass capacitor should be placed as close to the device as possible. In addition, a 1μ F to 10μ F capacitor and a 5Ω or 10Ω series resistor may be used to lowpass filter a noisy supply. The reference should be similarly bypassed with a 0.1μ F capacitor. Again, a series resistor and large capacitor can be used to lowpass filter the reference voltage. If the reference voltage originates from an op amp, make sure that it can drive the bypass capacitor without oscillation (the series resistor can help in this case). The ADS7841 draws very little current from the reference on average, but it does place larger demands on the reference circuitry over short periods of time (on each rising edge of DCLK during a conversion).

The ADS7841 architecture offers no inherent rejection of noise or voltage variation in regards to the reference input. This is of particular concern when the reference input is tied to the power supply. Any noise and ripple from the supply will appear directly in the digital results. While high frequency noise can be filtered out as discussed in the previous paragraph, voltage variation due to line frequency (50Hz or 60Hz) can be difficult to remove.

The GND pin should be connected to a clean ground point. In many cases, this will be the "analog" ground. Avoid connections which are too near the grounding point of a microcontroller or digital signal processor. If needed, run a ground trace directly from the converter to the power supply entry point. The ideal layout will include an analog ground plane dedicated to the converter and associated analog circuitry.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, license, warranty or endorsement thereof.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations and notices. Representation or reproduction of this information with alteration voids all warranties provided for an associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Resale of TI's products or services with <u>statements different from or beyond the parameters</u> stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service, is an unfair and deceptive business practice, and TI is not responsible nor liable for any such use.

Also see: Standard Terms and Conditions of Sale for Semiconductor Products. www.ti.com/sc/docs/stdterms.htm

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2001, Texas Instruments Incorporated

January 2001

LM4051 Precision Micropower Shunt Voltage Reference

General Description

Ideal for space critical applications, the LM4051 precision voltage reference is available in the sub-miniature (3 mm x 1.3 mm) SSOT-23 surface-mount package. The LM4051's advanced design eliminates the need for an external stabilizing capacitor while ensuring stability with any capacitive load, thus making the LM4051 easy to use. Further reducing design effort is the availability of a fixed (1.225V) and adjustable reverse breakdown voltage. The minimum operating current is 60 μ A for the LM4051-1.2 and the LM4051-ADJ. Both versions have a maximum operating current of 12 mA.

The LM4051 comes in three grades (A, B, and C). The best grade devices (A) have an initial accuracy of 0.1%, while the B-grade have 0.2% and the C-grade 0.5%, all with a tempco of 50 ppm/°C guaranteed from -40° C to 125° C.

The LM4051 utilizes fuse and zener-zap trim of reference voltage during wafer sort to ensure that the prime parts have an accuracy of better than $\pm 0.1\%$ (A grade) at 25°C.

Features

- Small packages: SSOT-23
- No output capacitor required
- Tolerates capacitive loads
- Reverse breakdown voltage options of 1.225V and adjustable

Key Specifications (LM4051-1.2)

- Output voltage tolerance (A grade, 25°C) ±0.1%(max)
 Low output noise (10 Hz to 10kHz) 20μV_{rms}
 Wide operating current range Industrial temperature range (tempco guaranteed from -40°C to +125°C)
- Low temperature coefficient 50 ppm/°C (max)

Applications

- Portable, Battery-Powered Equipment
- Data Acquisition Systems
- Instrumentation
- Process Control
- Energy Management
- Automotive and Industrial
- Precision Audio Components
- Base Stations
- Battery Chargers
- Medical Equipment
- Communication

Connection Diagrams

*This pin must be left floating or connected to pin 2.

Top View See NS Package Number MF03A

SSOT-23

Ordering Information

Reverse Breakdown Voltage Tolerance at 25°C and Average Reverse Breakdown Voltage Temperature Coefficient	LM4051 Supplied as 1000 Units, Tape and Reel	LM4051 Supplied as 3000 Units, Tape and Reel	Part Marking
±0.1%, 50 ppm/°C max (A grade)	LM4051AIM3-1.2	LM4051AIM3X-1.2	RHA
	LM4051AIM3-ADJ	LM4051AIM3X-ADJ	RIA
±0.2%, 50 ppm/°C max (B grade)	LM4051BIM3-1.2	LM4051BIM3X-1.2	RHB
	LM4051BIM3-ADJ	LM4051BIM3X-ADJ	RIB
±0.5%, 50 ppm/°C max (C grade)	LM4051CIM3-1.2	LM4051CIM3X-1.2	RHC
	LM4051CIM3-ADJ	LM4051CIM3X-ADJ	RIC

SOT-23 Package Marking Information Only three fields of marking are possible on the SSOT-23's small surface. This table gives the meaning of the three fields.

Field Definition
First Field:
R = Reference
Second Field:
H = 1.225V Voltage Option
I = Adjustable
Third Field:
A-C = Initial Reverse Breakdown
Voltage or Reference Voltage Tolerance
$A = \pm 0.1\%, B = \pm 0.2\%, C = \pm 0.5\%$

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Reverse Current	20 mA
Forward Current	10 mA
Maximum Output Voltage	
(LM4051-ADJ)	15V
Power Dissipation ($T_A = 25^{\circ}C$) (Note 2)	
M3 Package	280 mW
Storage Temperature	–65°C to +150°C
Lead Temperature	
M3 Packages	
Vapor phase (60 seconds)	+215°C
Infrared (15 seconds)	+220°C

ESD Susceptibility Human Body Model (Note 3) Machine Model (Note 3)

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

Operating Ratings(Notes 1, 2)

Temperature Range	$(T_{min} \le T_A \le T_{max})$
Industrial Temperature Range	$-40^{\circ}C \le T_A \le +85^{\circ}C$
Reverse Current	
LM4051-1.2	60 µA to 12 mA
LM4051-ADJ	60 µA to 12 mA
Output Voltage Range	
LM4051-ADJ	1.24V to 10V

LM4051-1.2 Electrical Characteristics

Boldface limits apply for $T_A = T_J = T_{MIN}$ **to** T_{MAX} **;** all other limits $T_A = T_J = 25^{\circ}$ C. The grades A, B and C designate initial Reverse Breakdown Voltage tolerances of ±0.1%, ±0.2% and ±0.5% respectively.

Symbol	Parameter	Conditions	Typical (Note 4)	LM4051AIM3 (Limits) (Note 5)	LM4051BIM3 (Limits) (Note 5)	LM4051CIM3 Limts (Note 5)	Units (Limit)
V _R	Reverse Breakdown Voltage	I _R = 100 μA	1.225				V
	Reverse Breakdown Voltage	I _R = 100 μA		±1.2	±2.4	±6	mV (max)
	Tolerance (Note 6)			±5.2	±6.4	±10.1	mV (max)
I _{RMIN}	Minimum Operating		39				μΑ
	Current			60	60	60	μA (max)
				65	65	65	µA (max)
$\Delta V_R / \Delta T$	Average Reverse	I _R = 10 mA	±20				ppm/°C
	Breakdown	I _R = 1 mA	±15				ppm/°C
	Coefficient (Note 6)	$I_R = 100 \ \mu A$ $\Delta T = -40^{\circ}C \text{ to } 125^{\circ}C$	±15	±50	±50	±50	ppm/°C (max)
$\Delta V_R / \Delta I_R$	Reverse Breakdown	$I_{RMIN} \le I_R \le 1 \text{ mA}$	0.3				mV
	Voltage Change with Operating Current Change			1.1	1.1	1.1	mV (max)
				1.5	1.5	1.5	mV (max)
		$1 \text{ mA} \le I_R \le 12 \text{ mA}$	1.8				mV
				6.0	6.0	6.0	mV (max)
				8.0	8.0	8.0	mV (max)
Z _R	Reverse Dynamic Impedance	I _R = 1 mA, f = 120 Hz	0.5				Ω
e _N	Wideband Noise	I _R = 100 μA 10 Hz ≤ f ≤ 10 kHz	20				μV _{rms}
ΔV _R	Reverse Breakdown Voltage Long Term Stability (Note 9)	t = 1000 hrs T = 25°C ±0.1°C I_R = 100 µA	120				ppm
V _{HYST}	Output Hysteresis (Note 10)	$\Delta T = -40^{\circ}C$ to $125^{\circ}C$	0.36				mV/V

2 kV

200V

LM4051-ADJ (Adjustable) Electrical Characteristics

Boldface limits apply for $T_A = T_J = T_{MIN}$ to T_{MAX} ; all other limits $T_J = 25^{\circ}$ C unless otherwise specified (SSOT-23, see (Note 7), $I_{RMIN} \le I_R \le 12$ mA, $V_{REF} \le V_{OUT} \le 10$ V. The grades A, B and C designate initial Reference Voltage Tolerances of ±0.1%, ±0.2% and ±0.5%, respectively for $V_{OUT} = 5$ V.

Symbol	Parameter	Conditions	Typical (Note 4)	LM4051AIM3 (Note 5)	LM4051BIM3 (Note 5)	LM4051CIM3 (Note 5)	Units (Limit)
V _{REF}	Reference Voltage	I _R = 100 μA, V _{OUT} = 5V	1.212				V
	Reference Voltage	I _R = 100 μA, V _{OUT} = 5V		±1.2	±2.4	±6	mV (max)
	Tolerance (Note 6),			±5.2	±6.4	±10.1	mV (max)
	(Note 8)						
I _{RMIN}	Minimum Operating		36				μΑ
	Current			60	60	65	μA (max)
				65	65	70	μA (max)
$\Delta V_{REF} / \Delta I_{R}$	Reference	$I_{RMIN} \le I_R \le 1mA$	0.3				mV
	VoltageChange with	V _{OUT} ≥ 1.6V		1.1	1.1	1.1	mV (max)
	Operating Current	(Note 7)		1.5	1.5	1.5	mV(max)
	Change	$1 \text{ mA} \le I_R \le 12 \text{ mA}$	0.6				mV
		$V_{OUT} \ge 1.6V(Note 7)$		6	6	6	mV (max)
			4.00	8	8	8	mv (max)
$\Delta V_{REF} / \Delta V_{O}$	Reference Voltage	$I_{R} = 0.1 \text{ mA}$	-1.69	2.0	2.0	2.0	mV/V
	Voltage Change			-2.8	-2.8	-2.8	mV/V (max)
	Foodbook Current		70	-3.5	-3.5	-3.5	niv/v (max)
I _{FB}	Feedback Current		70	120	120	120	nA nA (mov)
				150	150	150	nA (max)
	Average	$V_{out} = 2.5V$					ni (maxy
AVREF/AI	ReferenceVoltage	$1 - 10m^{10}$	20				nnm/°C
	Temperature	$I_R = 1011A$	20				ppm/ C
	Coefficient (Note 8)		15	. 50		. 50	ppm/ C
		I _R = 100μΑ	15	±50	±50	±50	ppm/°C
							(max)
		$\Delta I = -40^{\circ}C$ to $+125^{\circ}C$					
Z _{OUT}	Dynamic Output	$I_R = 1 \text{ mA},$					
	Impedance	f = 120 HZ,					
		$I_{AC} = 0.1 I_{R}$					
		$V_{OUT} = V_{REF}$	0.3				Ω
		$V_{OUT} = 10V$	2				<u>Ω</u>
e _N	Wideband Noise	$I_{R} = 100 \ \mu A$	20				μν _{rms}
		$V_{OUT} = V_{REF}$					
	Poforonoo Voltago	t = 1000 bro	120				
۸۷. –	Long Term Stability	$I_{-} = 1000 \text{ ms},$	120				ppm
[⊥] [™] REF	(Note 9)	$T = 25^{\circ}C \pm 0.1^{\circ}C$					
Vince		$\Delta T = -40^{\circ}$ C to $\pm 125^{\circ}$ C	03				m\//\/
* HYST	(Note 10)		0.0				111 V/ V
	(1	1	1	1	

Electrical Characteristics (continued)

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

Note 2: The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{Jmax} (maximum junction temperature), θ_{JA} (junction to ambient thermal resistance), and T_A (ambient temperature). The maximum allowable power dissipation at any temperature is $PD_{max} = (T_{Jmax} - T_A)/\theta_{JA}$ or the number given in the Absolute Maximum Ratings, whichever is lower. For the LM4051, $T_{Jmax} = 125$ °C, and the typical thermal resistance (θ_{JA}), when board mounted, is 280°C/W for the SSOT-23 package.

Note 3: The human body model is a 100 pF capacitor discharged through a 1.5 kΩ resistor into each pin. The machine model is a 200 pF capacitor discharged directly into each pin.

Note 4: Typicals are at $T_J = 25^{\circ}C$ and represent most likely parametric norm.

Note 5: Limits are 100% production tested at 25°C. Limits over temperature are guaranteed through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate National's AOQL.

Note 6: The boldface (over-temperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance $\pm [(\Delta V_R/\Delta T)(max \Delta T)(V_R)]$. Where, $\Delta V_R/\Delta T$ is the V_R temperature coefficient, $max\Delta T$ is the maximum difference in temperature from the reference point of 25 °C to T MAX or TMIN, and V_R is the reverse breakdown voltage. The total over-temperature tolerance for the different grades in the industrial temperature range where max ΔT =65°C is shown below:

A-grade: ±0.425% = ±0.1% ±50 ppm/°C x 65°C B-grade: ±0.522% = ±0.2% ±50 ppm/°C x 65°C C-grade: ±0.825% = ±0.5% ±50 ppm/°C x 65°C

Therefore, as an example, the A-grade LM4051-1.2 has an over-temperature Reverse Breakdown Voltage tolerance of ±1.2V x 0.425% = ±5.2 mV.

Note 7: When $V_{OUT} \le 1.6V$, the LM4051-ADJ in the SSOT-23 package must operate at reduced I_R . This is caused by the series resistance of the die attach between the die (-) output and the package (-) output pin. See the Output Saturation curve in the Typical Performance Characteristics section.

Note 8: Reference voltage and temperature coefficient will change with output voltage. See Typical Performance Characteristics curves.

Note 9: Long term stability is V_R @ 25°C measured during 1000 hrs.

Note 10: Thermal hysteresis is defined as the changes in 25°C output voltage before and after cycling the device from -40°C or +125°C.

Typical Performance Characteristics

Temperature Drift for Different Average Temperature Coefficient

Output Impedance vs Frequency

LM4051

Typical Performance Characteristics (Continued)

Noise Voltage

Reverse Characteristics and

Minimum Operating Current

Start-Up Characteristics

Reference Voltage vs Temperature and Output Voltage

Typical Performance Characteristics (Continued)

Output Impedance vs Frequency

Output Impedance vs Frequency

Reverse Characteristics

Typical Performance Characteristics (Continued)

Large Signal Response

Thermal Hysteresis

Functional Block Diagram

Applications Information

The LM4051 is a precision micro-power curvature-corrected bandgap shunt voltage reference. For space critical applications, the LM4051 is available in the sub-miniature SSOT-23 surface-mount package. The LM4051 has been designed for stable operation without the need of an external capacitor connected between the "+" pin and the "-" pin. If, however, a bypass capacitor is used, the LM4051 remains stable. Design effort is further reduced with the choice of either a fixed 1.2V or an adjustable reverse breakdown voltage. The minimum operating current is 60 µA for the LM4051-1.2 and the LM4051-ADJ. Both versions have a maximum operating current of 12 mA.

LM4051s using the SSOT-23 package have pin 3 connected as the (-) output through the package's die attach interface. Therefore, the LM4051-1.2's pin 3 must be left floating or connected to pin 2 and the LM4051-ADJ's pin 3 is the (-) output.

In a conventional shunt regulator application (*Figure 1*), an external series resistor (R_S) is connected between the supply voltage and the LM4051. R_S determines the current that flows through the load (I_L) and the LM4051 (I_Q). Since load current and supply voltage may vary, R_S should be small enough to supply at least the minimum acceptable I_Q to the LM4051 even when the supply voltage is at its minimum and the load current is at its maximum value. When the supply voltage is at its minimum, R_S should be large enough so that the current flowing through the LM4051 is less than 12 mA.

 R_S should be selected based on the supply voltage, (V_S), the desired load and operating current, (I_L and I_Q), and the LM4051's reverse breakdown voltage, V_R.

$$\mathsf{R}_{\mathsf{S}} = \frac{\mathsf{V}_{\mathsf{S}} - \mathsf{V}_{\mathsf{R}}}{\mathsf{I}_{\mathsf{L}} + \mathsf{I}_{\mathsf{Q}}}$$

The LM4051-ADJ's output voltage can be adjusted to any value in the range of 1.24V through 10V. It is a function of the internal reference voltage (V_{REF}) and the ratio of the external feedback resistors as shown in *Figure 2*. The output voltage is found using the equation

$$V_{O} = V_{REF}[(R2/R1) + 1]$$
 (1)

$$\mathsf{R}_{\mathsf{S}} = \frac{\mathsf{V}_{\mathsf{S}} - \mathsf{V}_{\mathsf{R}}}{\mathsf{I}_{\mathsf{L}} + \mathsf{I}_{\mathsf{Q}} + \mathsf{I}_{\mathsf{F}}}$$

(2)

where V_O is the output voltage. The actual value of the internal $V_{\sf REF}$ is a function of $V_O.$ The "corrected" $V_{\sf REF}$ is determined by

$$V_{REF} = V_O \left(\Delta V_{REF} / \Delta V_O \right) + V_Y$$
(3)

where

 $\Delta V_{\text{REF}}/\Delta V_{\text{O}} \text{ is found in the Electrical Characteristics and is typically -1.55 mV/V. You can get a more accurate indication of the output voltage by replacing the value of V_{\text{REF}} in equation (1) with the value found using equation (3).$

Typical Applications

FIGURE 3. Bounded amplifier reduces saturation-induced delays and can prevent succeeding stage damage. Nominal clamping voltage is $\pm V_0$ (LM4051's reverse breakdown voltage) +2 diode V_F .

FIGURE 4. Voltage Level Detector

FIGURE 5. Voltage Level Detector

LM4051 Typical Applications (Continued)

LM4051

Typical Applications (Continued)

 $*I_{OUT} = \frac{1.2V}{R2}$

LM4051

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

November 2000

National Semiconductor

LM61 2.7V, SOT-23 or TO-92 Temperature Sensor

General Description

The LM61 is a precision integrated-circuit temperature sensor that can sense a -30° C to $+100^{\circ}$ C temperature range while operating from a single +2.7V supply. The LM61's output voltage is linearly proportional to Celsius (Centigrade) temperature ($+10 \text{ mV/}^{\circ}$ C) and has a DC offset of +600 mV. The offset allows reading negative temperatures without the need for a negative supply. The nominal output voltage of the LM61 ranges from +300 mV to +1600 mV for a -30° C to $+100^{\circ}$ C temperature range. The LM61 is calibrated to provide accuracies of $\pm 2.0^{\circ}$ C at room temperature and $\pm 3^{\circ}$ C over the full -25° C to $+85^{\circ}$ C temperature range.

The LM61's linear output, +600 mV offset, and factory calibration simplify external circuitry required in a single supply environment where reading negative temperatures is required. Because the LM61's quiescent current is less than 125 μ A, self-heating is limited to a very low 0.2°C in still air. Shutdown capability for the LM61 is intrinsic because its inherent low power consumption allows it to be powered directly from the output of many logic gates.

Features

- Calibrated linear scale factor of +10 mV/°C
- Rated for full –30° to +100°C range
- Suitable for remote applications

Applications

- Cellular Phones
- Computers
- Power Supply Modules
- Battery Management
- FAX Machines
- Printers
- HVAC
- Disk Drives
- Appliances

Key Specifications

- Accuracy at 25°C
- Accuracy for -30°C to +100°C
- Accuracy for –25°C to +85°C
- Temperature Slope
- Power Supply Voltage Range
- Current Drain @ 25°C
- Nonlinearity
- Output Impedance

±4.0°C (max) ±3.0°C (max) +10 mV/°C +2.7V to +10V 125 μA (max) ±0.8°C (max) 800 Ω (max)

±2.0 or ±3.0°C

(max)

Typical Application

Temperature (T)	Typical V _o
+100°C	+1600 mV
+85°C	+1450 mV
+25°C	+850 mV
0°C	+600 mV
–25°C	+350 mV
–30°C	+300 mV

LM61

Connection Diagrams

See NS Package Number Z03A

Ordering Information

Order Number	Device Marking	Supplied In	Accuracy Over Specified Temperature Range (°C)	Accuracy Over Specified Opecified Temperature mperature Range ange (°C) Content	
LM61BIM3	T1B	1000 Units on Tape and Reel	+ 3	_25°C to +85°C	
LM61BIM3X	T1B	3000 Units on Tape and Reel	± 0	-23 0 10 +03 0	SOT-22
LM61CIM3	T1C	1000 Units on Tape and Reel	+ 4	20°C to 1100°C	301-23
LM61CIM3X	T1C	3000 Units on Tape and Reel		-30 C 10 +100 C	
LM61BIZ	LM61BIZ	Bulk	± 3	–25°C to +85°C	TO 02
LM61CIZ	LM61CIZ	Bulk	± 4	-30°C to +100°C	10-92

Absolute Maximum Ratings (Note 1)

Supply Voltage	+12V to -0.2V
Output Voltage	(+V _S + 0.6V) to -0.6V
Output Current	10 mA
Input Current at any pin (Note 2)	5 mA
Storage Temperature	–65°C to +150°C
Maximum Junction Temperature (T _{JMAX})	+125°C
ESD Susceptibility (Note 3) :	
Human Body Model	2500V
Machine Model	250V

Lead Temperature:	
TO-92 Package:	
Soldering (10 seconds)	+260°C
SOT-23 Package (Note 4):	
Vapor Phase (60 seconds)	+215°C
Infrared (15 seconds)	+220°C

Operating Ratings(Note 1)

Specified Temperature Range:	$T_{MIN} \le T_A \le T_{MAX}$
LM61C	$-30^{\circ}C \le T_A \le +100^{\circ}C$
LM61B	$-25^{\circ}C \le T_A \le +85^{\circ}C$
Supply Voltage Range $(+V_S)$	+2.7V to +10V
Thermal Resistance, θ_{JA} (Note 5) SOT-23 TO-92	450°C/W 180°C/W

Electrical Characteristics

Unless otherwise noted, these specifications apply for $+V_S = +3.0 V_{DC}$. Boldface limits apply for $T_A = T_J = T_{MIN}$ to T_{MAX} ; all other limits $T_A = T_J = 25^{\circ}$ C.

Parameter	Conditions	Typical	LM61B	LM61C	Units
		(Note 6)	Limits	Limits	(Limit)
			(Note 7)	(Note 7)	
Accuracy (Note 8)			±2.0	±3.0	°C (max)
			±3.0	±4.0	°C (max)
Output Voltage at 0°C		+600			mV
Nonlinearity (Note 9)			±0.6	±0.8	°C (max)
Sensor Gain		+10	+9.7	+9.6	mV/°C (min)
(Average Slope)			+10.3	+10.4	mV/°C (max)
Output Impedance	$+3.0V \le +V_{S} \le +10V$		0.8	0.8	kΩ (max)
	$-30^{\circ}C \le T_{A} \le +85^{\circ}C, +V_{S} = +2.7V$		2.3	2.3	kΩ (max)
	$+85^{\circ}C \le T_{A} \le +100^{\circ}C, +V_{S} = +2.7V$		5	5	kΩ (max)
Line Regulation (Note 10)	$+3.0V \le +V_S \le +10V$		±0.7	±0.7	mV/V (max)
	$+2.7V \le +V_S \le +3.3V$		±5.7	±5.7	mV (max)
Quiescent Current	$+2.7V \le +V_{S} \le +10V$	82	125	125	µA (max)
			155	155	μA (max)
Change of Quiescent Current	$+2.7V \le +V_S \le +10V$	±5			μA
Temperature Coefficient of		0.2			µA/°C
Quiescent Current					
Long Term Stability (Note 11)	T _J =T _{MAX} =+100°C, for 1000 hours	±0.2			°C

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

Note 2: When the input voltage (V₁) at any pin exceeds power supplies (V₁ < GND or V₁ > +V_S), the current at that pin should be limited to 5 mA.

Note 3: The human body model is a 100 pF capacitor discharged through a 1.5 kΩ resistor into each pin. The machine model is a 200 pF capacitor discharged directly into each pin.

Note 4: See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" or the section titled "Surface Mount" found in any post 1986 National Semiconductor Linear Data Book for other methods of soldering surface mount devices.

Note 5: The junction to ambient thermal resistance (θ_{JA}) is specified without a heat sink in still air.

Note 6: Typicals are at $T_J = T_A = 25^{\circ}C$ and represent most likely parametric norm.

Note 7: Limits are guaranteed to National's AOQL (Average Outgoing Quality Level).

Note 8: Accuracy is defined as the error between the output voltage and +10 mV/°C times the device's case temperature plus 600 mV, at specified conditions of voltage, current, and temperature (expressed in °C).

Note 9: Nonlinearity is defined as the deviation of the output-voltage-versus-temperature curve from the best-fit straight line, over the device's rated temperature range.

Note 10: Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output due to heating effects can be computed by multiplying the internal dissipation by the thermal resistance.

LM61

Electrical Characteristics (Continued)

Note 11: For best long-term stability, any precision circuit will give best results if the unit is aged at a warm temperature, and/or temperature cycled for at least 46 hours before long-term life test begins. This is especially true when a small (Surface-Mount) part is wave-soldered; allow time for stress relaxation to occur. The majority of the drift will occur in the first 1000 hours at elevated temperatures. The drift after 1000 hours will not continue at the first 1000 hour rate.

Typical Performance Characteristics The LM61 in the SOT-23 package mounted to a printed circuit board as shown in *Figure 2* was used to generate the following thermal curves.

Thermal Time Constant

60

50

40

30

20

10

0

0

TIME CONSTANT (SEC)

Thermal Response in Still Air with Heat Sink

Thermal Response in Stirred Oil Bath with Heat Sink

LM61

Thermal Response in Still Air without a Heat Sink

200 400 600

AIR VELOCITY (FPM)

800 1000

DS012897-4

Quiescent Current vs. Temperature

Noise Voltage

Typical Performance Characteristics The LM61 in the SOT-23 package mounted to a printed circuit board as shown in *Figure 2* was used to generate the following thermal curves. (Continued)

Supply Voltage vs Supply Current

Start-Up Response

FIGURE 2. Printed Circuit Board Used for Heat Sink to Generate All Curves. 1/2" Square Printed Circuit Board with 2 oz. Copper Foil or Similar.

1.0 Mounting

The LM61 can be applied easily in the same way as other integrated-circuit temperature sensors. It can be glued or cemented to a surface. The temperature that the LM61 is sensing will be within about +0.2 °C of the surface temperature that LM61's leads are attached to.

This presumes that the ambient air temperature is almost the same as the surface temperature; if the air temperature were much higher or lower than the surface temperature, the actual temperature measured would be at an intermediate temperature between the surface temperature and the air temperature.

To ensure good thermal conductivity the backside of the LM61 die is directly attached to the GND pin. The lands and traces to the LM61 will, of course, be part of the printed circuit board, which is the object whose temperature is being measured.

Alternatively, the LM61 can be mounted inside a sealed-end metal tube, and can then be dipped into a bath or screwed into a threaded hole in a tank. As with any IC, the LM61 and

accompanying wiring and circuits must be kept insulated and dry, to avoid leakage and corrosion. This is especially true if the circuit may operate at cold temperatures where condensation can occur. Printed-circuit coatings and varnishes such as Humiseal and epoxy paints or dips are often used to ensure that moisture cannot corrode the LM61 or its connections.

The thermal resistance junction to ambient (θ_{JA}) is the parameter used to calculate the rise of a device junction temperature due to its power dissipation. For the LM61 the equation used to calculate the rise in the die temperature is as follows:

$$\mathsf{T}_\mathsf{J} = \mathsf{T}_\mathsf{A} + \theta_\mathsf{J}_\mathsf{A} \left[(+\mathsf{V}_\mathsf{S} \; \mathsf{I}_\mathsf{Q}) + (+\mathsf{V}_\mathsf{S} - \mathsf{V}_\mathsf{O}) \; \mathsf{I}_\mathsf{L} \right]$$

where I_Q is the quiescent current and I_L is the load current on the output. Since the LM61's junction temperature is the actual temperature being measured care should be taken to minimize the load current that the LM61 is required to drive. The table shown in *Figure 3* summarizes the rise in die temperature of the LM61 without any loading with a 3.3V supply, and the thermal resistance for different conditions. LM61

1.0 Mounting (Continued)

	SOT-23*		SOT-23**		TO-92*		TO-92***	
	no heat sink		small heat fin		no heat sink		small heat fin	
	θ _{JA}	T _J – T _A	θ _{JA}	T _J – T _A	θ _{JA}	T _J – T _A	θ _{JA}	T _J – T _A
	(°C/W)	(°C)	(°C/W)	(°C)	(°C/W)	(°C)	(°C/W)	(°C)
Still air	450	0.26	260	0.13	180	0.09	140	0.07
Moving air			180	0.09	90	0.05	70	0.03

*Part soldered to 30 gauge wire.

**Heat sink used is 1/2" square printed circuit board with 2 oz. foil with part attached as shown in Figure 2.

***Part glued and leads soldered to 1" square of 1/16" printed circuit board with 2oz. foil or similar.

FIGURE 3. Temperature Rise of LM61 Due to Self-Heating and Thermal Resistance (θ_{JA})

2.0 Capacitive Loads

The LM61 handles capacitive loading well. Without any special precautions, the LM61 can drive any capacitive load as shown in Figure 4. Over the specified temperature range the LM61 has a maximum output impedance of 5 k Ω . In an extremely noisy environment it may be necessary to add some filtering to minimize noise pickup. It is recommended that 0.1 μF be added from +V $_S$ to GND to bypass the power supply voltage, as shown in Figure 5. In a noisy environment it may be necessary to add a capacitor from the output to ground. A 1 μ F output capacitor with the 5 k Ω maximum output impedance will form a 32 Hz lowpass filter. Since the thermal time constant of the LM61 is much slower than the 5 ms time constant formed by the RC, the overall response time of the LM61 will not be significantly affected. For much larger capacitors this additional time lag will increase the overall response time of the LM61.

² **M X W** ±15kV ESD-Protected, Slew-Rate-Limited, Low-Power, RS-485/RS-422 Transceivers

_General Description

The MAX481E, MAX483E, MAX485E, MAX487E–MAX491E, and MAX1487E are low-power transceivers for RS-485 and RS-422 communications in harsh environments. Each driver output and receiver input is protected against ±15kV electrostatic discharge (ESD) shocks, without latchup. These parts contain one driver and one receiver. The MAX483E, MAX487E, MAX488E, and MAX489E feature reduced slewrate drivers that minimize EMI and reduce reflections caused by improperly terminated cables, thus allowing error-free data transmission up to 250kbps. The driver slew rates of the MAX481E, MAX485E, MAX490E, MAX491E, and MAX1487E are not limited, allowing them to transmit up to 2.5Mbps.

These transceivers draw as little as 120µA supply current when unloaded or when fully loaded with disabled drivers (see *Selection Table*). Additionally, the MAX481E, MAX483E, and MAX487E have a low-current shutdown mode in which they consume only 0.5µA. All parts operate from a single +5V supply.

Drivers are short-circuit current limited, and are protected against excessive power dissipation by thermal shutdown circuitry that places their outputs into a high-impedance state. The receiver input has a fail-safe feature that guarantees a logic-high output if the input is open circuit.

The MAX487E and MAX1487E feature quarter-unit-load receiver input impedance, allowing up to 128 transceivers on the bus. The MAX488E–MAX491E are designed for full-duplex communications, while the MAX481E, MAX483E, MAX485E, MAX487E, and MAX1487E are designed for half-duplex applications. For applications that are not ESD sensitive see the pin- and function-compatible MAX481, MAX483, MAX485, MAX487–MAX491, and MAX1487.

Applications

Low-Power RS-485 Transceivers Low-Power RS-422 Transceivers Level Translators Transceivers for EMI-Sensitive Applications Industrial-Control Local Area Networks

___Features

- + ESD Protection: ±15kV—Human Body Model
- Slew-Rate Limited for Error-Free Data Transmission (MAX483E/487E/488E/489E)
- Low Quiescent Current: 120µA (MAX483E/487E/488E/489E) 230µA (MAX1487E) 300µA (MAX481E/485E/490E/491E)
- ♦ -7V to +12V Common-Mode Input Voltage Range
- Three-State Outputs
- 30ns Propagation Delays, 5ns Skew (MAX481E/485E/490E/491E/1487E)
- Full-Duplex and Half-Duplex Versions Available
- Allows up to 128 Transceivers on the Bus (MAX487E/MAX1487E)
- Current Limiting and Thermal Shutdown for Driver Overload Protection

_Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX481ECPA	0°C to +70°C	8 Plastic DIP
MAX481ECSA	0°C to +70°C	8 SO
MAX481EEPA	-40°C to +85°C	8 Plastic DIP
MAX481EESA	-40°C to +85°C	8 SO

Ordering Information continued on last page.

_Selection Table

PART NUMBER	HALF/FULL DUPLEX	DATA RATE (Mbps)	SLEW-RATE LIMITED	LOW-POWER SHUTDOWN	RECEIVER/ DRIVER ENABLE	QUIESCENT CURRENT (µA)	NUMBER OF TRANSMITTERS ON BUS	PIN COUNT
MAX481E	Half	2.5	No	Yes	Yes	300	32	8
MAX483E	Half	0.25	Yes	Yes	Yes	120	32	8
MAX485E	Half	2.5	No	No	Yes	300	32	8
MAX487E	Half	0.25	Yes	Yes	Yes	120	128	8
MAX488E	Full	0.25	Yes	No	No	120	32	8
MAX489E	Full	0.25	Yes	No	Yes	120	32	14
MAX490E	Full	2.5	No	No	No	300	32	8
MAX491E	Full	2.5	No	No	Yes	300	32	14
MAX1487E	Half	2.5	No	No	Yes	230	128	8

M/X/M

_ Maxim Integrated Products 1

For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V _{CC})12V
Control Input Voltage (RE, DE)0.5V to (V _{CC} + 0.5V)
Driver Input Voltage (DI)0.5V to (V _{CC} + 0.5V)
Driver Output Voltage (Y, Z; A, B)8V to +12.5V
Receiver Input Voltage (A, B)8V to +12.5V
Receiver Output Voltage (RO)0.5V to (V _{CC} + 0.5V)
Continuous Power Dissipation ($T_A = +70^{\circ}C$)
8-Pin Plastic DIP (derate 9.09mW/°C above +70°C)727mW

14-Pin Plastic DIP (derate 10.00mW/°C above +70°C) ..800mW Operating Temperature Ranges ~~~

MAX4C/MAX148/EC_ A	0°C to +70°C
MAX4E/MAX1487EE_ A	40°C to +85°C
Storage Temperature Range	65°C to +160°C
Lead Temperature (soldering, 10sec)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

 $(V_{CC} = 5V \pm 5\%, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS	;	MIN	TYP	MAX	UNITS
Differential Driver Output (no load)	Vod1					5	V
Differential Driver Output	Veza	R = 50Ω (RS-422)		2			V
(with load)	VOD2	R = 27Ω (RS-485), Figure 8		1.5		5	v
Change in Magnitude of Driver Differential Output Voltage for Complementary Output States	ΔVod	R = 27Ω or 50Ω , Figure 8				0.2	V
Driver Common-Mode Output Voltage	V _{OC}	R = 27Ω or 50Ω , Figure 8				3	V
Change in Magnitude of Driver Common-Mode Output Voltage for Complementary Output States	ΔVod	R = 27Ω or 50Ω , Figure 8				0.2	V
Input High Voltage	Vih	DE, DI, RE		2.0			V
Input Low Voltage	VIL	DE, DI, RE				0.8	V
Input Current	lin1	DE, DI, RE				±2	μA
	I _{IN2}	$\begin{array}{l} DE = OV;\\ V_{CC} = OV \text{ or } 5.25V, \end{array}$	VIN = 12V			1.0	- mA
Input Current (A, B)		all devices except MAX487E/MAX1487E	V _{IN} = -7V			-0.8	
		MAX487E/MAX1487E,	$V_{IN} = 12V$			0.25	
		$DE = 0V, V_{CC} = 0V \text{ or } 5.25V$	$V_{IN} = -7V$			-0.2	IIIA
Receiver Differential Threshold Voltage	VTH	$-7V \le V_{CM} \le 12V$		-0.2		0.2	V
Receiver Input Hysteresis	ΔV_{TH}	$V_{CM} = 0V$			70		mV
Receiver Output High Voltage	Voh	$I_{O} = -4mA$, $V_{ID} = 200mV$		3.5			V
Receiver Output Low Voltage	Vol	$I_{O} = 4mA, V_{ID} = -200mV$				0.4	V
Three-State (high impedance) Output Current at Receiver	I _{OZR}	$0.4V \le V_O \le 2.4V$				±1	μΑ
Pacaivar Innut Pasistanca	PIN	$-7V \le V_{CM} \le 12V$, all devices except MAX487E/MAX1487E		12			kΩ
Receiver input Resistance		$-7V \le V_{CM} \le 12V$, MAX487E/N	IAX1487E	48			kΩ

M/IXI/M

DC ELECTRICAL CHARACTERISTICS (continued)

(V_{CC} = 5V $\pm 5\%$, T_A = T_{MIN} to T_MAX, unless otherwise noted.) (Notes 1, 2)

PARAMETER	SYMBOL	COND	ITIONS		MIN	TYP	MAX	UNITS
		MAX488E/MAX489E, DE, DI, \overline{RE} = 0V or V _C	с			120	250	
		MAX490E/MAX491E, DE, DI, \overline{RE} = 0V or V _C	с			300	500	
No. Lood Consult: Consult		MAX481E/MAX485E,	$DE = V_{CC}$			500	900	1
(Note 3)	Icc	RE = 0V or V _{CC}	DE = OV			300	500	μA
		MAX1487E,	DE = VCC			300	500	1
		$\overline{RE} = OV \text{ or } V_{CC}$	DE = OV			230	400	1
		$\begin{array}{c c} MAX483E/MAX487E, \\ \hline RE = 0V \text{ or } V_{CC} \\ \hline DE = 0V \\ \hline \end{array}$		DE - Voo		350	650	1
			DL = V((MAX487E		250	400	1
			DE = OV			120	250	1
Supply Current in Shutdown	ISHDN	MAX481E/483E/487E,	DE = 0V, RE	= VCC		0.5	10	μΑ
Driver Short-Circuit Current, V _O = High	I _{OSD1}	-7V ≤ V _O ≤12V (Note 4)		35		250	mA
Driver Short-Circuit Current, V _O = Low	IOSD2	$-7V \le V_O \le 12V$ (Note 4)		35		250	mA	
Receiver Short-Circuit Current	IOSR	$0V \le V_O \le V_{CC}$			7		95	mA
ESD Protection		A, B, Y and Z pins, tested	l using Humar	Body Model		±15		kV

SWITCHING CHARACTERISTICS—MAX481E/MAX485E, MAX490E/MAX491E, MAX1487E

PARAMETER	SYMBOL	CC	ONDITIONS	MIN	TYP	MAX	UNITS
	t _{PLH}	Figures 10 and 12,	$R_{DIFF} = 54\Omega$,	10	40	60	nc
	t PHL	$C_{L1} = C_{L2} = 100 pF$	-	10	40	60	115
Driver Output Skew to Output	t SKEW	Figures 10 and 12, R	$D_{\text{DIFF}} = 54\Omega, C_{L1} = C_{L2} = 100 \text{pF}$		5	10	ns
Driver Rise or Fall Time	te te	Figures 10 and 12, RDIFE = 54Ω	MAX481E, MAX485E, MAX1487E	3	20	40	ns
	47.4	$C_{L1} = C_{L2} = 100 \text{pF}$	MAX490EC/E, MAX491EC/E	5	20	25	115
Driver Enable to Output High	tzн	Figures 11 and 13,	$C_L = 100 pF$, S2 closed		45	70	ns
Driver Enable to Output Low	tzL	Figures 11 and 13,	CL = 100pF, S1 closed		45	70	ns
Driver Disable Time from Low	t _{LZ}	Figures 11 and 13,	Figures 11 and 13, C _L = 15pF, S1 closed			70	ns
Driver Disable Time from High	t _{HZ}	Figures 11 and 13,	$C_L = 15 pF$, S2 closed		45	70	ns
Receiver Input to Output	тың тың	Figures 10 and 14, RDIFE = 54Ω	MAX481E, MAX485E, MAX1487E	20	60	200	ns
		$C_{L1} = C_{L2} = 100 \text{pF}$ MAX490EC/E, MAX491EC/E			60	150	
tpLH - tpHL Differential Receiver Skew	t _{SKD}	Figures 10 and 14, $C_{L1} = C_{L2} = 100 pF$	$R_{\text{DIFF}} = 54\Omega,$		5		ns
Receiver Enable to Output Low	tzL	Figures 9 and 15, (C _{RL} = 15pF, S1 closed		20	50	ns
Receiver Enable to Output High	tzH	Figures 9 and 15, (C _{RL} = 15pF, S2 closed		20	50	ns
Receiver Disable Time from Low	t _{LZ}	Figures 9 and 15, (20	50	ns	
Receiver Disable Time from High	tHZ	Figures 9 and 15, (C _{RL} = 15pF, S2 closed		20	50	ns
Maximum Data Rate	fmax			2.5			Mbps
Time to Shutdown	t _{SHDN}	MAX481E (Note 5)		50	200	600	ns

SWITCHING CHARACTERISTICS—MAX481E/MAX485E, MAX490E/MAX491E, MAX1487E (continued)

(V_{CC} = 5V $\pm 5\%,\,T_A$ = T_{MIN} to $T_{MAX},\,unless$ otherwise noted.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Driver Enable from Shutdown to Output High (MAX481E)	tzh(shdn)	Figures 11 and 13, CL = 100pF, S2 closed		45	100	ns
Driver Enable from Shutdown to Output Low (MAX481E)	tzl(shdn)	Figures 11 and 13, C _L = 100pF, S1 closed		45	100	ns
Receiver Enable from Shutdown to Output High (MAX481E)	tzh(shdn)	Figures 9 and 15, $C_L = 15pF$, S2 closed, A - B = 2V		225	1000	ns
Receiver Enable from Shutdown to Output Low (MAX481E)	tzl(shdn)	Figures 9 and 15, $C_L = 15pF$, S1 closed, B - A = 2V		225	1000	ns

SWITCHING CHARACTERISTICS—MAX483E, MAX487E/MAX488E/MAX489E

(V_{CC} = 5V \pm 5%, T_A = T_{MIN} to T_{MAX}, unless otherwise noted.) (Notes 1, 2)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Driver Input to Output	t PLH	Figures 10 and 12, $R_{DIFF} = 54\Omega$,	250	800	2000	pc.
	t PHL	$C_{L1} = C_{L2} = 100 pF$	250	800	2000	115
Driver Output Skew to Output	t SKEW	Figures 10 and 12, $R_{DIFF} = 54\Omega$, $C_{L1} = C_{L2} = 100 pF$		20	800	ns
Driver Rise or Fall Time	t _R , t _F	Figures 10 and 12, $R_{DIFF} = 54\Omega$, $C_{L1} = C_{L2} = 100 pF$	250		2000	ns
Driver Enable to Output High	tzH	Figures 11 and 13, CL = 100pF, S2 closed	250		2000	ns
Driver Enable to Output Low	tzL	Figures 11 and 13, CL = 100pF, S1 closed	250		2000	ns
Driver Disable Time from Low	tLZ	Figures 11 and 13, C _L = 15pF, S1 closed	300		3000	ns
Driver Disable Time from High	t _{HZ}	Figures 11 and 13, CL = 15pF, S2 closed	300		3000	ns
Dessiver Input to Output	t _{PLH}	Figures 10 and 14, $R_{DIFF} = 54\Omega$,	250		2000	
	t PHL	$C_{L1} = C_{L2} = 100 pF$	250		2000	115
I tPLH - tPHL I Differential Receiver Skew	tskd	Figures 10 and 14, R _{DIFF} = 54 Ω , C _{L1} = C _{L2} = 100pF		100		ns
Receiver Enable to Output Low	tzL	Figures 9 and 15, C _{RL} = 15pF, S1 closed		25	50	ns
Receiver Enable to Output High	t _{ZH}	Figures 9 and 15, C _{RL} = 15pF, S2 closed		25	50	ns
Receiver Disable Time from Low	tLZ	Figures 9 and 15, C _{RL} = 15pF, S1 closed		25	50	ns
Receiver Disable Time from High	t _{HZ}	Figures 9 and 15, C _{RL} = 15pF, S2 closed		25	50	ns
Maximum Data Rate	fMAX	t _{PLH} , t _{PHL} < 50% of data period	250			kbps
Time to Shutdown	t SHDN	MAX483E/MAX487E (Note 5)	50	200	600	ns
Driver Enable from Shutdown to Output High	tzh(shdn)	MAX483E/MAX487E, Figures 11 and 13, $C_L = 100pF$, S2 closed			2000	ns
Driver Enable from Shutdown to Output Low	tzl(shdn)	MAX483E/MAX487E, Figures 11 and 13, $C_L = 100pF$, S1 closed			2000	ns
Receiver Enable from Shutdown to Output High	tzh(shdn)	MAX483E/MAX487E, Figures 9 and 15, C _L = 15pF, S2 closed			2500	ns
Receiver Enable from Shutdown to Output Low	tzl(shdn)	MAX483E/MAX487E, Figures 9 and 15, $C_L = 15pF$, S1 closed			2500	ns

M/IXI/M

4

NOTES FOR ELECTRICAL/SWITCHING CHARACTERISTICS

- Note 1: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to device ground unless otherwise specified.
- Note 2: All typical specifications are given for $V_{CC} = 5V$ and $T_A = +25^{\circ}C$.
- Note 3: Supply current specification is valid for loaded transmitters when DE = 0V.
- **Note 4:** Applies to peak current. See *Typical Operating Characteristics*.

 $(V_{CC} = 5V, T_A = +25^{\circ}C, unless otherwise noted.)$

Note 5: The MAX481E/MAX483E/MAX487E are put into shutdown by bringing RE high and DE low. If the inputs are in this state for less than 50ns, the parts are guaranteed not to enter shutdown. If the inputs are in this state for at least 600ns, the parts are guaranteed to have entered shutdown. See Low-Power Shutdown Mode section.

Typical Operating Characteristics

_Pin Description

	PIN			
MAX481E/MAX483E MAX485E/MAX487E MAX1487E	MAX488E MAX490E	MAX489E MAX491E	NAME	FUNCTION
1	2	2	RO	Receiver Output: If A > B by 200mV, RO will be high; If A < B by 200mV, RO will be low.
2	_	3	RE	Receiver Output Enable. RO is enabled when \overline{RE} is low; RO is high impedance when \overline{RE} is high.
3	_	4	DE	Driver Output Enable. The driver outputs, Y and Z, are enabled by bringing DE high. They are high imped- ance when DE is low. If the driver outputs are enabled, the parts function as line drivers. While they are high impedance, they function as line receivers if RE is low.
4	3	5	DI	Driver Input. A low on DI forces output Y low and out- put Z high. Similarly, a high on DI forces output Y high and output Z low.
5	4	6, 7	GND	Ground
—	5	9	Y	Noninverting Driver Output
_	6	10	Z	Inverting Driver Output
6		_	A	Noninverting Receiver Input and Noninverting Driver Output
—	8	12	A	Noninverting Receiver Input
7	—	_	В	Inverting Receiver Input and Inverting Driver Output
_	7	11	В	Inverting Receiver Input
8	1	14	Vcc	Positive Supply: $4.75V \le V_{CC} \le 5.25V$
_	—	1, 8, 13	N.C.	No Connect—not internally connected

7

_Function Tables (MAX481E/MAX483E/MAX485E/MAX487E/MAX1487E)

Table 1. Transmitting

	INPUTS	OUTPUTS			
RE	DE	DI Z		Y	
Х	1	1	0	1	
Х	1	0	1	0	
0	0	Х	High-Z	High-Z	
1	0	х	High-Z*	High-Z*	

X = Don't care

High-Z = High impedance * Shutdown mode for MAX481E/MAX483E/MAX487E

Applications Information

The MAX481E/MAX483E/MAX485E/MAX487E–MAX491E and MAX1487E are low-power transceivers for RS-485 and RS-422 communications. These "E" versions of the MAX481, MAX483, MAX485, MAX487–MAX491, and MAX1487 provide extra protection against ESD. The rugged MAX481E, MAX483E, MAX485E, MAX497E– MAX491E, and MAX1487E are intended for harsh environments where high-speed communication is important. These devices eliminate the need for transient suppressor diodes and the associated high capacitance loading. The standard (non-"E") MAX481, MAX483, MAX485, MAX487–MAX491, and MAX1487 are recommended for applications where cost is critical.

The MAX481E, MAX485E, MAX490E, MAX491E, and MAX1487E can transmit and receive at data rates up to 2.5Mbps, while the MAX483E, MAX487E, MAX488E, and MAX489E are specified for data rates up to 250kbps. The MAX488E-MAX491E are full-duplex transceivers, while the MAX481E, MAX483E, MAX487E, and MAX1487E are half-duplex. In addition, driverenable (DE) and receiver-enable (RE) pins are included on the MAX481E, MAX483E, MAX487E, M

±15kV ESD Protection

As with all Maxim devices, ESD-protection structures are incorporated on all pins to protect against electrostatic discharges encountered during handling and assembly. The driver outputs and receiver inputs have extra protection against static electricity. Maxim's engi-

	INPUTS	
RE	DE	A-B

Table 2. Receiving

	DL	A-D	NO
0	0	≥ +0.2V	1
0	0	≤ -0.2V	0
0	0	Inputs open	1
1	0	Х	High-Z*

X = Don't care

High-Z = High impedance * Shutdown mode for MAX481E/MAX483E/MAX487E

neers developed state-of-the-art structures to protect these pins against ESD of ±15kV without damage. The ESD structures withstand high ESD in all states: normal operation, shutdown, and powered down. After an ESD event, Maxim's MAX481E, MAX483E, MAX485E, MAX487E-MAX491E, and MAX1487E keep working without latchup.

ESD protection can be tested in various ways; the transmitter outputs and receiver inputs of this product family are characterized for protection to ± 15 kV using the Human Body Model.

Other ESD test methodologies include IEC10004-2 contact discharge and IEC1000-4-2 air-gap discharge (formerly IEC801-2).

ESD Test Conditions

OUTPUT

ESD performance depends on a variety of conditions. Contact Maxim for a reliability report that documents test set-up, test methodology, and test results.

Human Body Model

Figure 4 shows the Human Body Model, and Figure 5 shows the current waveform it generates when discharged into a low impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest, which is then discharged into the test device through a $1.5k\Omega$ resistor.

IEC1000-4-2

The IEC1000-4-2 standard covers ESD testing and performance of finished equipment; it does not specifically refer to integrated circuits (Figure 6).

≶

Voc

Figure 5. Human Body Model Current Waveform

Figure 7. IEC1000-4-2 ESD Generator Current Waveform

Figure 9. Receiver Timing Test Load

M/IXI/M

Figure 8. Driver DC Test Load

Figure 10. Driver/Receiver Timing Test Circuit

Figure 12. Driver Propagation Delays

Figure 14. Receiver Propagation Delays

Figure 11. Driver Timing Test Load

Figure 13. Driver Enable and Disable Times (except MAX488E and MAX490E)

Figure 15. Receiver Enable and Disable Times (except MAX488E and MAX490E)

MAX481E/MAX483E/MAX485E/MAX487E-MAX491E/MAX1487E

MAXIM -

Figure 16. Driver Output Waveform and FFT Plot of MAX485E/MAX490E/MAX491E/MAX1487E Transmitting a 150kHz Signal

The major difference between tests done using the Human Body Model and IEC1000-4-2 is higher peak current in IEC1000-4-2, because series resistance is lower in the IEC1000-4-2 model. Hence, the ESD withstand voltage measured to IEC1000-4-2 is generally lower than that measured using the Human Body Model. Figure 7 shows the current waveform for the 8kV IEC1000-4-2 ESD contact-discharge test.

The air-gap test involves approaching the device with a charged probe. The contact-discharge method connects the probe to the device before the probe is energized.

Machine Model

The Machine Model for ESD tests all pins using a 200pF storage capacitor and zero discharge resistance. Its objective is to emulate the stress caused by contact that occurs with handling and assembly during manufacturing. Of course, all pins require this protection during manufacturing—not just inputs and outputs. Therefore, after PC board assembly, the Machine Model is less relevant to I/O ports.

MAX487E/MAX1487E: 128 Transceivers on the Bus

The 48k Ω , 1/4-unit-load receiver input impedance of the MAX487E and MAX1487E allows up to 128 transceivers on a bus, compared to the 1-unit load (12k Ω input impedance) of standard RS-485 drivers (32 transceivers maximum). Any combination of MAX487E/MAX1487E and other RS-485 transceivers with a total of 32 unit loads or less can be put on the bus. The MAX481E, MAX483E, MAX485E, and MAX488E-MAX491E have standard 12k Ω receiver input impedance.

Figure 17. Driver Output Waveform and FFT Plot of MAX483E/MAX487E–MAX489E Transmitting a 150kHz Signal

MAX483E/MAX487E/MAX488E/MAX489E: Reduced EMI and Reflections

The MAX483E and MAX487E–MAX489E are slew-rate limited, minimizing EMI and reducing reflections caused by improperly terminated cables. Figure 16 shows the driver output waveform and its Fourier analysis of a 150kHz signal transmitted by a MAX481E, MAX485E, MAX490E, MAX491E, or MAX1487E. High-frequency harmonics with large amplitudes are evident. Figure 17 shows the same information displayed for a MAX483E, MAX487E, MAX487E, MAX488E, or MAX489E transmitting under the same conditions. Figure 17's high-frequency harmonics have much lower amplitudes, and the potential for EMI is significantly reduced.

Low-Power Shutdown Mode (MAX481E/MAX483E/MAX487E)

A low-power shutdown mode is initiated by bringing both $\overline{\text{RE}}$ high and DE low. The devices will not shut down unless both the driver and receiver are disabled. In shutdown, the devices typically draw only 0.5µA of supply current.

 $\overline{\text{RE}}$ and DE may be driven simultaneously; the parts are guaranteed not to enter shutdown if $\overline{\text{RE}}$ is high and DE is low for less than 50ns. If the inputs are in this state for at least 600ns, the parts are guaranteed to enter shutdown.

For the MAX481E, MAX483E, and MAX487E, the t_{ZH} and t_{ZL} enable times assume the part was not in the low-power shutdown state (the MAX485E, MAX488E–MAX491E, and MAX1487E can not be shut down). The t_{ZH}(SHDN) and t_{ZL}(SHDN) enable times assume the parts were shut down (see *Electrical Characteristics*).

Figure 18. Receiver Propagation Delay Test Circuit

It takes the drivers and receivers longer to become enabled from the low-power shutdown state ($t_{ZH(SHDN)}$, $t_{ZL(SHDN)}$) than from the operating mode (t_{ZH} , t_{ZL}). (The parts are in operating mode if the RE, DE inputs equal a logical 0,1 or 1,1 or 0, 0.)

Driver Output Protection

Excessive output current and power dissipation caused by faults or by bus contention are prevented by two mechanisms. A foldback current limit on the output stage provides immediate protection against short circuits over the whole common-mode voltage range (see *Typical Operating Characteristics*). In addition, a thermal shutdown circuit forces the driver outputs into a high-impedance state if the die temperature rises excessively.

Propagation Delay

Many digital encoding schemes depend on the difference between the driver and receiver propagation delay times. Typical propagation delays are shown in Figures 19–22 using Figure 18's test circuit.

The difference in receiver delay times, $t_{PLH} - t_{PHL}$, is typically under 13ns for the MAX481E, MAX485E, MAX490E, MAX491E, and MAX1487E, and is typically less than 100ns for the MAX483E and MAX487E-MAX489E.

The driver skew times are typically 5ns (10ns max) for the MAX481E, MAX485E, MAX490E, MAX491E, and MAX1487E, and are typically 100ns (800ns max) for the MAX483E and MAX487E–MAX489E.

Typical Applications

The MAX481E, MAX483E, MAX485E, MAX487E– MAX491E, and MAX1487E transceivers are designed for bidirectional data communications on multipoint bus transmission lines. Figures 25 and 26 show typical network application circuits. These parts can also be used as line repeaters, with cable lengths longer than 4000 feet.

To minimize reflections, the line should be terminated at both ends in its characteristic impedance, and stub lengths off the main line should be kept as short as possible. The slew-rate-limited MAX483E and MAX487E-MAX489E are more tolerant of imperfect termination. Bypass the V_{CC} pin with 0.1μ F.

Isolated RS-485

For isolated RS-485 applications, see the MAX253 and MAX1480 data sheets.

Line Length vs. Data Rate

The RS-485/RS-422 standard covers line lengths up to 4000 feet. Figures 23 and 24 show the system differential voltage for the parts driving 4000 feet of 26AWG twisted-pair wire at 110kHz into 100Ω loads.

Figure 19. MAX481E/MAX485E/MAX490E/MAX1487E Receiver tPHL

Figure 23. MAX481E/MAX485E/MAX490E/MAX491E/ MAX1487E System Differential Voltage at 110kHz Driving 4000ft of Cable

Figure 20. MAX481E/MAX485E/MAX490E/MAX491E/ MAX1487E Receiver tpLH

Figure 22. MAX483E/MAX487E–MAX489E Receiver tPLH

Figure 24. MAX483E/MAX1487E–MAX489E System Differential Voltage at 110kHz Driving 4000ft of Cable

M/IXI/M

14

Figure 25. MAX481E/MAX483E/MAX485E/MAX487E/MAX1487E Typical Half-Duplex RS-485 Network

Figure 26. MAX488E–MAX491E Full-Duplex RS-485 Network

PART	TEMP. RANGE	PIN-PACKAGE
MAX483ECPA	0°C to +70°C	8 Plastic DIP
MAX483ECSA	0°C to +70°C	8 SO
MAX483EEPA	-40°C to +85°C	8 Plastic DIP
MAX483EESA	-40°C to +85°C	8 SO
MAX485ECPA	0°C to +70°C	8 Plastic DIP
MAX485ECSA	0°C to +70°C	8 SO
MAX485EEPA	-40°C to +85°C	8 Plastic DIP
MAX485EESA	-40°C to +85°C	8 SO
MAX487ECPA	0°C to +70°C	8 Plastic DIP
MAX487ECSA	0°C to +70°C	8 SO
MAX487EEPA	-40°C to +85°C	8 Plastic DIP
MAX487EESA	-40°C to +85°C	8 SO
MAX488ECPA	0°C to +70°C	8 Plastic DIP
MAX488ECSA	0°C to +70°C	8 SO
MAX488EEPA	-40°C to +85°C	8 Plastic DIP
MAX488EESA	-40°C to +85°C	8 SO

		\
PART	TEMP. RANGE	PIN-PACKAGE
MAX489ECPD	0°C to +70°C	14 Plastic DIP
MAX489ECSD	0°C to +70°C	14 SO
MAX489EEPD	-40°C to +85°C	14 Plastic DIP
MAX489EESD	-40°C to +85°C	14 SO
MAX490ECPA	0°C to +70°C	8 Plastic DIP
MAX490ECSA	0°C to +70°C	8 SO
MAX490EEPA	-40°C to +85°C	8 Plastic DIP
MAX490EESA	-40°C to +85°C	8 SO
MAX491ECPD	0°C to +70°C	14 Plastic DIP
MAX491ECSD	0°C to +70°C	14 SO
MAX491EEPD	-40°C to +85°C	14 Plastic DIP
MAX491EESD	-40°C to +85°C	14 SO
MAX1487ECPA	0°C to +70°C	8 Plastic DIP
MAX1487ECSA	0°C to +70°C	8 SO
MAX1487EEPA	-40°C to +85°C	8 Plastic DIP
MAX1487EESA	-40°C to +85°C	8 SO

Ordering Information (continued)

Chip Information

TRANSISTOR COUNT: 295

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

_____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600

© 1996 Maxim Integrated Products

16

Printed USA

is a registered trademark of Maxim Integrated Products.

OPA2241 OPA2241 OPA4241 OPA251 OPA2251 OPA2251

Single-Supply, *Micro*POWER OPERATIONAL AMPLIFIERS

OPA241 Family optimized for +5V supply. **OPA251 Family** optimized for ±15V supply.

FEATURES

- *Micro*POWER: $I_Q = 25\mu A$
- SINGLE-SUPPLY OPERATION
- RAIL-TO-RAIL OUTPUT (within 50mV)
- WIDE SUPPLY RANGE Single Supply: +2.7V to +36V Dual Supply: ±1.35V to ±18V
- LOW OFFSET VOLTAGE: ±250µV max
- HIGH COMMON-MODE REJECTION: 124dB
- HIGH OPEN-LOOP GAIN: 128dB
- SINGLE, DUAL, AND QUAD

APPLICATIONS

- BATTERY OPERATED INSTRUMENTS
- PORTABLE DEVICES
- MEDICAL INSTRUMENTS
- TEST EQUIPMENT

DESCRIPTION

The OPA241 series and OPA251 series are specifically designed for battery powered, portable applications. In addition to very low power consumption ($25\mu A$), these amplifiers feature low offset voltage, rail-to-rail output swing, high common-mode rejection, and high open-loop gain.

The OPA241 series is optimized for operation at low power supply voltage while the OPA251 series is optimized for high power supplies. Both can operate from either single (+2.7V to +36V) or dual supplies ($\pm 1.35V$ to $\pm 18V$). The input common-mode voltage range extends 200mV below the negative supply—ideal for single-supply applications.

They are unity-gain stable and can drive large capacitive loads. Special design considerations assure that these products are easy to use. High performance is maintained as the amplifiers swing to their specified limits. Because the initial offset voltage ($\pm 250\mu V$ max) is so low, user adjustment is usually not required. However, external trim pins are provided for special applications (single versions only).

The OPA241 and OPA251 (single versions) are available in standard 8-pin DIP and SO-8 surface-mount packages. The OPA2241 and OPA2251 (dual versions) come in 8-pin DIP and SO-8 surface-mount packages. The OPA4241 and OPA4251 (quad versions) are available in 14-pin DIP and SO-14 surface-mount packages. All are fully specified from -40° C to $+85^{\circ}$ C and operate from -55° C to $+125^{\circ}$ C.

SPECIFICATIONS: $V_s = 2.7V$ to 5V

At T_A = +25°C, R_L = 100k Ω connected to V_S/2, unless otherwise noted. **Boldface** limits apply over the specified temperature range, $T_A = -40^{\circ}C$ to $+85^{\circ}C$.

		OPA241UA, PA OPA2241UA, PA OPA4241UA, PA		OP OP/ OP/	A251UA, I A2251UA, A4251UA,	PA PA PA			
PARAMETER		CONDITION	MIN	TYP ⁽¹⁾	MAX	MIN	TYP ⁽¹⁾	MAX	UNITS
OFFSET VOLTAGEInput Offset Voltage $T_A = -40^{\circ}C$ to +85°Cvs Temperaturevs Power Supply $T_A = -40^{\circ}C$ to +85°CChannel Separation (dual, quad)	V _{OS} dV _{OS} /dT PSRR	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ $V_S = 2.7V \text{ to } 36V$ $V_S = 2.7V \text{ to } 36V$		±50 ± 100 ± 0.4 3 0.3	±250 ± 400 30 30 30		±100 ±130 ±0.6 *	* *	μV μV μV/°C μV/V μV/V μV/V
INPUT BIAS CURRENT Input Bias Current ⁽²⁾ $T_A = -40^{\circ}C$ to +85°C Input Offset Current $T_A = -40^{\circ}C$ to +85°C	I _B I _{OS}			-4 ±0.1	-20 - 25 ±2 ± 2		*		nA nA nA nA
NOISE Input Voltage Noise, f = 0.1Hz to 1 Input Voltage Noise Density, f = 1k Current Noise Density, f = 1kHz	0Hz KHz e _n i _n			1 45 40			* * *		μVp-p nV/√Hz fA/√Hz
INPUT VOLTAGE RANGE Common-Mode Voltage Range Common-Mode Rejection Ratio $T_A = -40^{\circ}C$ to +85°C	V _{CM} CMRR	$V_{CM} = -0.2V$ to (V+) -0.8V $V_{CM} = 0V$ to (V+) -0.8V	-0.2 80 80	106	(V+) –0.8		*		V dB dB
INPUT IMPEDANCE Differential Common-Mode				10 ⁷ 2 10 ⁹ 4			* *		Ω pF Ω pF
OPEN-LOOP GAIN Open-Loop Voltage Gain $T_A = -40^{\circ}C$ to +85°C $T_A = -40^{\circ}C$ to +85°C	A _{OL}	$\begin{array}{l} R_L = 100 k\Omega, \ V_O = (V-) + 100 mV \ to \ (V+) - 100 mV \\ R_L = 100 k\Omega, \ V_O = (V-) + 100 mV \ to \ (V+) - 100 mV \\ R_L = 10 k\Omega, \ V_O = (V-) + 200 mV \ to \ (V+) - 200 mV \\ R_I = 10 k\Omega, \ V_O = (V-) + 200 mV \ to \ (V+) - 200 mV \end{array}$	100 100 100 100	120 120			*		dB dB dB dB
FREQUENCY RESPONSE Gain-Bandwidth Product Slew Rate Overload Recovery Time	GBW SR	$V_{S} = 5V, G = 1$ $V_{IN} \bullet G = V_{S}$		35 0.01 60			* *		kHz V/μs μs
OUTPUT Voltage Output Swing from Rail ⁽³⁾ $T_A = -40^{\circ}C$ to +85°C	Vo	R_L = 100kΩ to V _S /2, A_{OL} ≥ 70dB R_L = 100kΩ to V _S /2, A_{OL} ≥ 100dB R_L = 100kΩ to V _S /2, A_{OL} ≥ 100dB R_I = 10kΩ to V _S /2, A_{OL} ≥ 100dB		50 75 100	100 100 200		* *		mV mV mV mV
$T_A = -40^{\circ}C$ to +85°C Short-Circuit Current Single Versions Dual, Quad Versions Capacitive Load Drive	I _{SC} C _{LOAD}	$R_L = 10k\Omega$ to $V_S/2$, $A_{OL} \ge 100dB$	See	-24/+4 -30/+4 Typical C	200 urve		* * *		mV mA mA
POWER SUPPLYSpecified Voltage RangeOperating Voltage RangeQuiescent Current (per amplifier) $T_A = -40^{\circ}C$ to +85°C	V _s I _Q	$\mathbf{T}_{\mathbf{A}} = -40^{\circ}\mathbf{C} \text{ to } +85^{\circ}\mathbf{C}$ $\mathbf{I}_{\mathbf{O}} = 0$ $\mathbf{I}_{\mathbf{O}} = 0$	+2.7	+2.7 to +5 ±25	+36 ±30 ±36	*	*	*	V V μΑ μΑ
TEMPERATURE RANGE Specified Range Operating Range Storage Range Thermal Resistance 8-Pin DIP	$ heta_{JA}$		-40 -55 -55	100	+85 +125 +125	* * *	*	* * *	°C ℃ ℃
SO-8 Surface Mount 14-Pin DIP SO-14 Surface Mount				150 80 100			* *		°C/W °C/W °C/W

* Specifications the same as OPA241UA, PA.

NOTES: (1) V_S = +5V. (2) The negative sign indicates input bias current flows out of the input terminals. (3) Output voltage swings are measured between the output and power supply rails.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

SPECIFICATIONS: $V_S = \pm 15V$

At $T_A = +25^{\circ}C$, $R_L = 100k\Omega$ connected to ground, unless otherwise noted. Boldface limits apply over the specified temperature range, $T_A = -40^{\circ}C$ to +85°C.

			OPA241UA, PA OPA2241UA, PA OPA4241UA, PA		OPA251UA, PA OPA2251UA, PA OPA4251UA, PA				
PARAMETER		CONDITION	MIN	ТҮР	МАХ	MIN	TYP	MAX	UNITS
OFFSET VOLTAGEInput Offset Voltage $T_A = -40^{\circ}C$ to +85°Cvs TemperaturedVvs Power SupplyF $T_A = -40^{\circ}C$ to +85°CChannel Separation (dual, quad)	V _{os} / _{os} /dT PSRR	T_A = −40°C to +85°C V _S = ±1.35V to ±18V V _S = ±1.35V to ±18V		±100 ± 150 ± 0.6 *	* *		±50 ±100 ±0.5 3 0.3	±250 ± 300 30 30 30	μV μV μV/°C μV/V μV/V μV/V
INPUT BIAS CURRENT Input Bias Current ⁽¹⁾ $T_A = -40^{\circ}C$ to +85°C Input Offset Current $T_A = -40^{\circ}C$ to +85°C	I _B I _{OS}			*			-4 ±0.1	-20 - 25 ±2 ±2	nA nA nA nA
NOISE Input Voltage Noise, f = 0.1Hz to 10Hz Input Voltage Noise Density, f = 1kHz Current Noise Density, f = 1kHz	e _n i _n			* * *			1 45 40		μVp-p nV/√Hz fA/√Hz
INPUT VOLTAGE RANGECommon-Mode Voltage RangeCommon-Mode Rejection Ratio $T_A = -40^{\circ}C$ to +85°C	V _{CM} CMRR	$V_{CM} = -15.2V$ to 14.2V $V_{CM} = -15V$ to 14.2V		*		(V–) –0.2 100 100	124	(V+) -0.8	V dB dB
INPUT IMPEDANCE Differential Common-Mode				* *			10 ⁷ 2 10 ⁹ 4		Ω pF Ω pF
OPEN-LOOP GAIN Open-Loop Voltage Gain $T_A = -40^{\circ}C$ to +85°C $T_A = -40^{\circ}C$ to +85°C	A _{OL}	$ \begin{array}{l} R_L = 100 k \Omega, \ V_O = -14.75 V \ to \ +14.75 V \\ R_L = 100 k \Omega, \ V_O = -14.75 V \ to \ +14.75 V \\ R_L = 20 k \Omega, \ V_O = -14.7 V \ to \ +14.7 V \\ R_L = 20 k \Omega, \ V_O = -14.7 V \ to \ +14.7 V \\ \end{array} $		*		100 100 100 100	128 128		dB dB dB dB
FREQUENCY RESPONSE Gain-Bandwidth Product Slew Rate Overload Recovery Time	GBW SR	G = 1 V _{IN} • G = V _S		* * *			35 0.01 60		kHz V/μs μs
OUTPUT Voltage Output Swing from $Rail^{(2)}$ $T_A = -40^{\circ}C$ to +85°C	Vo	$\begin{array}{l} R_L = 100 k\Omega, \ A_{OL} \geq 70 dB \\ R_L = 100 k\Omega, \ A_{OL} \geq 100 dB \\ R_L = 100 k\Omega, \ A_{OL} \geq 100 dB \\ R_L = 20 k\Omega, \ A_{OL} \geq 100 dB \end{array}$		* *			50 75 100	250 250 300	mV mV mV mV
T _A = -40°C to +85°C Short-Circuit Current Single Versions Dual Versions Capacitive Load Drive	I _{SC} C _{LOAD}	$R_L = 20k\Omega, A_{OL} \ge 100dB$		* * *		See	–21/+4 –50/+4 Typical C	300 urve	mV mA mA
POWER SUPPLYSpecified Voltage RangeOperating Voltage RangeQuiescent Current (per amplifier) $T_A = -40^{\circ}C$ to $+85^{\circ}C$	V _S I _Q	$\mathbf{T}_{\mathbf{A}} = -40^{\circ}\mathbf{C} \text{ to } +85^{\circ}\mathbf{C}$ $\mathbf{I}_{\mathbf{O}} = 0$ $\mathbf{I}_{\mathbf{O}} = 0$	*	*	*	±1.35	±15 ±27	±18 ±38 ±45	V V μΑ μΑ
TEMPERATURE RANGE Specified Range Operating Range Storage Range Thermal Resistance 8-Pin DIP SO-8 Surface Mount 14-Pin DIP SO-14 Surface Mount	$ heta_{JA}$		* * *	* * *	* *	40 55 55	100 150 80 100	+85 +125 +125	°C °C °C °C/W °C/W °C/W °C/W

 $\boldsymbol{\ast}$ Specifications the same as OPA251UA, PA.

NOTES: (1) The negative sign indicates input bias current flows out of the input terminals. (2) Output voltage swings are measured between the output and power supply rails.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Supply Voltage, V+ to V	
Input Voltage ⁽²⁾	(V–) –0.5V to (V+) +0.5V
Output Short Circuit to Ground ⁽³⁾	Continuous
Operating Temperature	–55°C to +125°C
Storage Temperature	–55°C to +125°C
Junction Temperature	150°C
Lead Temperature (soldering, 10s)	300°C

NOTES: (1) Stresses above these ratings may cause permanent damage. (2) Input terminals are diode-clamped to the power supply rails. Input signals that can swing more that 0.5V beyond the supply rails should be current-limited to 5mA or less. (3) One amplifier per package.

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PACKAGE/ORDERING INFORMATION

PRODUCT	SPECIFIED VOLTAGE	OPERATING VOLTAGE RANGE	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾	SPECIFICATION TEMPERATURE RANGE	
OPA241 SERIES						
Single OPA241PA OPA241UA	2.7V to 5V 2.7V to 5V	2.7V to 36V 2.7V to 36V	8-Pin DIP SO-8 Surface Mount	006 182	–40°C to +85°C –40°C to +85°C	
Dual OPA2241PA OPA2241UA	2.7V to 5V 2.7V to 5V	2.7V to 36V 2.7V to 36V	8-Pin DIP SO-8 Surface Mount	006 182	-40°C to +85°C -40°C to +85°C	
Quad OPA4241PA OPA4241UA	2.7V to 5V 2.7V to 5V	2.7V to 36V 2.7V to 36V	14-Pin DIP SO-14 Surface Mount	010 235	-40°C to +85°C -40°C to +85°C	
OPA251 SERIES						
Single OPA251PA OPA251UA	±15V ±15V	2.7V to 36V 2.7V to 36V	8-Pin DIP SO-8 Surface Mount	006 182	–40°C to +85°C –40°C to +85°C	
Dual OPA2251PA OPA2251UA	±15V ±15V	2.7V to 36V 2.7V to 36V	8-Pin DIP SO-8 Surface Mount	006 182	-40°C to +85°C -40°C to +85°C	
Quad OPA4251PA OPA4251UA	±15V ±15V	2.7V to 36V 2.7V to 36V	14-Pin DIP SO-14 Surface Mount	010 235	–40°C to +85°C –40°C to +85°C	

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

TYPICAL PERFORMANCE CURVES

At $T_A = +25^{\circ}C$, and $R_L = 100k\Omega$ connected to $V_S/2$ (ground for $V_S = \pm 15V$), unless otherwise noted.

Curves apply to OPA241 and OPA251 unless specified.

QUIESCENT CURRENT vs TEMPERATURE

TYPICAL PERFORMANCE CURVES (CONT)

At $T_A = +25^{\circ}$ C, and $R_L = 100 k\Omega$ connected to $V_S/2$ (ground for $V_S = \pm 15$ V), unless otherwise noted. Curves apply to OPA241 and OPA251 unless specified.

SHORT-CIRCUIT CURRENT vs TEMPERATURE 50 ... 45 40 Short-Circuit Current (mA) I_{sc} 35 ٧s +5 30 25 $V_s = +5V$ 20 Single Versions 15 ···· Dual, Quad Versions $V_s = \pm 15V$ 10 $+I_{SC}$, $V_{S} = +5V$, $\pm 15V$ (all versions) 5 0 25 50 75 100 -75 -50 -25 0 125 Temperature (°C)

TYPICAL PERFORMANCE CURVES (CONT)

At $T_A = +25^{\circ}$ C, and $R_L = 100 k\Omega$ connected to $V_S/2$ (ground for $V_S = \pm 15$ V), unless otherwise noted. Curves apply to OPA241 and OPA251 unless specified.

OPA241 SERIES OFFSET VOLTAGE

PRODUCTION DISTRIBUTION

Offset Voltage (µV)

 $V_{S} = +5V$

30

25

20

15

10

5

0

-225

Percent of Amplifiers (%)

Typical production

and quads included.

distribution of

packaged units.

Singles, duals,

OPA241 SERIES OFFSET VOLTAGE DRIFT PRODUCTION DISTRIBUTION

OPA251 SERIES OFFSET VOLTAGE DRIFT PRODUCTION DISTRIBUTION

Offset Voltage (µV) **OPA251 SERIES OFFSET VOLTAGE** PRODUCTION DISTRIBUTION 30 $V_{S} = \pm 15V$ Typical production distribution of 25 packaged units. Percent of Amplifiers (%) Singles, duals, 20 and quads included. 15 10 5 0

TYPICAL PERFORMANCE CURVES (CONT)

At $T_A = +25^{\circ}$ C, and $R_L = 100$ k Ω connected to $V_S/2$ (ground for $V_S \pm 15$ V), unless otherwise noted. Curves apply to OPA241 and OPA251 unless specified.

QUIESCENT CURRENT PRODUCT DISTRIBUTION 25 $V_{S} = +5V$ Typical production distribution of packaged units. 20 Percent of Amplifiers (%) Per Amplifier Singles, duals, and quads included. 15 10 5 0 Quiescent Current (µA)

200µs/div

200µs/div

200µs/div

2ms/div

APPLICATIONS INFORMATION

The OPA241 and OPA251 series are unity-gain stable and suitable for a wide range of general purpose applications. Power supply pins should be bypassed with $0.01\mu F$ ceramic capacitors.

OPERATING VOLTAGE

The OPA241 series is laser-trimmed for low offset voltage and drift at low supply voltage ($V_s = +5V$). The OPA251 series is trimmed for ±15V operation. Both products operate over the full voltage range (+2.7V to +36V or ±1.35V to ±18V) with some compromises in offset voltage and drift performance. However, all other parameters have similar performance. Key parameters are guaranteed over the specified temperature range, -40°C to +85°C. Most behavior remains unchanged throughout the full operating voltage range. Parameters which vary significantly with operating voltage or temperature are shown in typical performance curves.

OFFSET VOLTAGE TRIM

As mentioned previously, offset voltage of the OPA241 series is laser-trimmed at \pm 5V. The OPA251 series is trimmed at \pm 15V. Because the initial offset is so low, user adjustment is usually not required. However, the OPA241 and OPA251 (single op amp versions) provide offset voltage trim connections on pins 1 and 5. Offset voltage can be adjusted by connecting a potentiometer as shown in Figure 1. This adjustment should be used only to null the offset of the op amp, not to adjust system offset or offset produced by the signal source. Nulling offset could degrade the offset drift behavior of the op amp. While it is not possible to predict the exact change in drift, the effect is usually small.

FIGURE 1. OPA241 and OPA251 Offset Voltage Trim Circuit.

CAPACITIVE LOAD AND STABILITY

The OPA241 series and OPA251 series can drive a wide range of capacitive loads. However, all op amps under certain conditions may be unstable. Op amp configuration, gain, and load value are just a few of the factors to consider when determining stability. Figures 2 and 3 show the regions where the OPA241 series and OPA251 series have the potential for instability. As shown, the unity gain configuration with low supplies is the most susceptible to the effects of capacitive load. With $V_S =$ +5V, G = +1, and $I_{OUT} = 0$, operation remains stable with load capacitance up to approximately 200pF. Increasing supply voltage, output current, and/or gain significantly improves capacitive load drive. For example, increasing the supplies to ±15V and gain to 10 allows approximately 2700pF to be driven.

One method of improving capacitive load drive in the unity gain configuration is to insert a resistor inside the feedback loop as shown in Figure 4. This reduces ringing with large capacitive loads while maintaining dc accuracy. For example, with $V_S = \pm 1.35V$ and $R_S = 5k\Omega$, the OPA241 series and OPA251 series perform well with capacitive loads in excess of 1000pF. Without the series resistor, capacitive load drive is typically 200pF for these conditions. However, this method will result in a slight reduction of output voltage swing.

FIGURE 2. Stability—Capacitive Load versus Output Current for Low Supply Voltage.

FIGURE 3. Stability—Capacitive Load versus Output Current for ±15V Supplies.

FIGURE 4. Series Resistor in Unity Gain Configuration Improves Capacitive Load Drive.

FIGURE 5. Low and High-Side Battery Current Sensing.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated

General Description

The MAX406/MAX407/MAX409/MAX417-MAX419 are single, dual, and quad low-voltage, micropower, precision op amps designed for battery-operated systems. They feature a supply current of less than 1.2µA per amplifier that is relatively constant over the entire supply range, which represents a 15 to 20 times improvement over industry-standard micropower op amps. A unique output stage enables these op amps to operate at ultra-low supply current while maintaining linearity under loaded conditions. In addition, the output is capable of sourcing 1.8mA when powered by a 9V battery.

The common-mode input-voltage range extends from the negative rail to within 1.1V of the positive supply (for the singles, 1.2V for the duals and quads), and the output stage swings rail-to-rail. The entire family is designed to maintain good DC characteristics over the operating temperature range, minimizing the input referred errors.

The MAX406 is a single op amp with two modes of operation: compensated mode and decompensated mode. Floating BW (pin 8) or connecting it to V- internally compensates the amplifier. In this mode, the MAX406 is unity-gain stable with a 5V/ms typical slew rate and an 8kHz gain bandwidth. Connecting BW to V+ puts the MAX406 into decompensated mode with a 20V/ms typical slew rate and a 40kHz gain bandwidth (A_{VCL} \ge 2V/V).

The dual MAX407 and quad MAX418 are internally compensated to be unity-gain stable. The MAX409/MAX417/ MAX419 single/dual/quad op amps feature 150kHz typical bandwidth, 75V/ms slew rate, and stability for gains of 10V/V or greater.

> Battery-Powered Systems Medical Instruments Electrometer Amplifiers Intrinsically Safe Systems Photodiode Pre-Amps pH Meters

Features

- ♦ 1.2µA Max Quiescent Current per Amplifier
- ♦ +2.5V to +10V Single-Supply Range
- ♦ 500µV Max Offset Voltage (MAX406A/MAX409A)
- < 0.1pA Typical Input Bias Current</p>
- Output Swings Rail-to-Rail
- Input Voltage Range Includes Negative Rail

_Selection Table

PART NUMBER	NO. OF AMPLI- FIERS	GAIN-BW PRODUCT (kHz,TYP)	GAIN STABILITY (V/V)	OFFSET VOLTAGE (mV, MAX)
MAX406A	1	8*/40**	1*/2**	0.5
MAX406B	1	8*/40**	1*/2**	2.0
MAX407	2	8	1	3.0
MAX409A	1	150	10	0.5
MAX409B	1	150	10	2.0
MAX417	2	150	10	3.0
MAX418	4	8	1	4.0
MAX419	4	150	10	4.0

* With BW pin open or connected to V-

** With BW pin connected to V+

____Typical Operating Circuit

MAXIM

Maxim Integrated Products 1

Call toll free 1-800-998-8800 for free samples or literature

Applications

ABSOLUTE MAXIMUM RATINGS

Total Supply Voltage (V+ to V-)	12V
Input Voltage(V+ + 0.3V) to (V 0.3V)
Continuous Current	
All Input Pins	10mA
All Other Pins	50mA
Short-Circuit Duration	Continuous
Continuous Power Dissipation ($T_A = +70^{\circ}C$)	
8-Pin Plastic DIP (derate 9.09mW/°C above +70	0°C)727mW
8-Pin SO (derate 5.88mW/°C above +70°C)	471mW
8-Pin CERDIP (derate 8.00mW/°C above +70°C	;)640mW

MAX4C	0°C to +70°C
MAX4E	40°C to +85°C
MAX4M	55°C to +125°C
Storage Temperature Range	65°C to +160°C
_ead Temperature (soldering, 10sec)	+300°C

Note 1: Absolute Maximum Ratings do not apply to devices supplied in die or wafer form.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(V+ = 2.5V, V- = -2.5V, T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN	ТҮР	MAX	UNITS
		MAX406A, MAX409A			0.25	0.5	
		MAX406B, MAX409I	3		0.75	2.0	1
Input Offset Voltage	Vos	MAX407, MAX417			1.0	3.0	mV
		MAX418, MAX419			1.0	4.0	
Input Bias Current	IB	V _{CM} = 0V (Note 2)			<0.1	10.0	pА
		D: 1140	MAX406A, MAX409A	200	1000		
Large-Signal Voltage Gain	Avol	$R_L = 1M\Omega$, $V_{OUT} = \pm 2V$	MAX406B, MAX407, MAX409B, MAX41_	100	1000		V/mV
		$R_L = 1M\Omega$, $V_{OUT} = \pm 4V$, $V_{+} = 5V$, $V_{-} = -5V$		10	23]
	GBW	MAX406A/B	Compensated mode	4	8		kHz
Gain Bandwidth			Decompensated mode (A _V = 2V/V)	20	40		
		MAX407, MAX418		4	8		1
		MAX409A/B, MAX41	7, MAX419, A _{VCL} ≥ 10V/V	80	150		1
Input Common-Mode	0140	MAX406A/B, MAX40	9A/B	V-		V + -1.1	.,
Range	CMR	MAX407, MAX41_		V-		V + -1.2	
Output Voltage Swing	Vo	$R_L = 1M\Omega$		±2.47	±2.49		V
			MAX406A, MAX409A	70	80		
Common-Mode Rejection Ratio	CMRR	CMRR (Note 3)	MAX406B, MAX407, MAX409B, MAX41_	60	80		dB
			MAX406A, MAX409A		50	100	μ\/\
Power-Supply Rejection Ratio	PSRR	$V_{IN} = 0V$, $V_{+} = 2.5V$ to 7.5V	MAX406B, MAX409B		150	300	
nejection natio			MAX407, MAX41_		200	600	

ΜΙΧΙΜ

ELECTRICAL CHARACTERISTICS (continued)

(V+ = 2.5V, V- = -2.5V, T_A = +25°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN	ТҮР	МАХ	UNITS
			Compensated mode	3	5		
		MAX406A/B	Decompensated mode $(A_V = 2V/V)$	12	20	-	
Slew Hate	SR	MAX407, MAX418		3	5		V/ms
		MAX409A/B, MAX417, MAX419 A _{VCL} ≥ 10V/V		40	80		
Supply Current Per Amplifier	ISY				1.0	1.2	μA
Output Sink Current	IOSINK	V _{OUT} = 0V		100	200		μА
Output Source Current	IOSOURCE	V _{OUT} = 0V		300	600		μA
Supply Voltage (V+ to V-)	Vs			2.5		10.0	v
Input Noise Voltage	0.	fo = 1kHz			150		nV/√Hz
	en	$f_0 = 0.1Hz$ to $10Hz$			6		μV _{p-p}

ELECTRICAL CHARACTERISTICS

(V+ = 2.5V, V- = -2.5V, $T_A = 0^{\circ}C$ to +70°C, unless otherwise noted.)

PARAMETER	SYMBOL	CONE	MIN	ТҮР	МАХ	UNITS	
		MAX406A, MAX409A	· · · · · · · · · · · · · · · · · · ·			0.95	
	No	MAX406B, MAX409B				3.00	
Input Offset voltage	VOS	MAX407				4.00	mv
		MAX41_				5.00	
Offset-Voltage Tempco	TCVOS	MAX406A, MAX409A, 100% drift tested			2	10	μV/°C
Input Bias Current	ΙB	V _{CM} = 0V				20	pА
	Avol	$R_L = 1M\Omega$,	MAX406A, MAX409A	100			
Large-Signal		$V_{OUT} = \pm 2V$	MAX406B	50			V/mV
voltage Gain		$R_L = 1M\Omega$, $(V_{OUT} = \pm 4V, V + = 5V, V - = -5V)$		10			
Output Voltage Swing	Vo	$R_L = 1M\Omega$		±2.45			V
Common-Mode			MAX406A, MAX409A	66			
Rejection Ratio	Rejection Ratio		MAX406B, MAX407 MAX409B, MAX41_	60			dB
:			MAX406A, MAX409A			150	
Power-Supply Rejection Ratio	PSRR	V _{IN} = 0V, V+ = 2.5V to 7.5V MAX406B, MAX409B MAX407, MAX41_	MAX406B, MAX409B			450	μ∨∕∨
					800		

ΜΙΧΙΜ

ELECTRICAL CHARACTERISTICS (continued) (V+ = 2.5V, V- = -2.5V, T_A = 0° C to $+70^{\circ}$ C, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS	MIN	түр	МАХ	UNITS
Supply Current Per Amplifier	ISY				1.6	μA
Output Sink Current	losink	V _{OUT} = 0V	50			μA
Output Source Current	IOSOURCE	V _{OUT} = 0V	250			μΑ

ELECTRICAL CHARACTERISTICS

 $(V + = 2.5V, V - = -2.5V, T_A = -40^{\circ}C$ to $+85^{\circ}C$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS		MIN	ТҮР	МАХ	UNITS
		MAX406A, MAX409A				1.10	
	Vee	MAX406B, MAX409B				3.00	
input onset voltage	v0s	MAX407, MAX417				4.00	
		MAX418, MAX419				5.00	
Offset-Voltage Tempco	TCVOS	MAX406A, MAX409A,	100% drift tested			10	μV/∘C
Input Bias Current	ΙB	V _{CM} = 0V				50	рА
		$B_{\rm L} = 1MQ$	MAX406A, MAX409A	50			
Large-Signal Voltage Gain	A _{VOL}	$V_{OUT} = \pm 2V$	MAX406B, MAX407, MAX409B, MAX41_	25			V/mV
		$R_L = 1 M \Omega, V_{OUT} = \pm 4 V, V_{+} = 5 V, V_{-} = -5 V$		10			
Output Voltage Swing	Vo	$R_L = 1M\Omega$		±2.45			V
Common-Mode			MAX406A, MAX409A	66			
Rejection Ratio	CMRR	(Note 3)	MAX406B, MAX407, MAX409B, MAX41_	60			dB
			MAX406A, MAX409A			150	
Power-Supply Rejection Ratio	PSRR	$V_{IN} = 0V,$ V+ = 2.5V to 7.5V	MAX406B, MAX409B			450	μV/V
			MAX407, MAX41_			800	
Supply Current Per Amplifier	ISY					1.7	μA
Output Sink Current	IOSINK	V _{OUT} = 0V		40			μA
Output Source Current	IOSOURCE	Vout = 0V		250			μA

MIXIW

ELECTRICAL CHARACTERISTICS

(V+ = 2.5V, V- = -2.5V, T_A = -55°C to +125°C, unless otherwise noted.)

PARAMETER	SYMBOL.	CO	MIN	ТҮР	MAX	UNITS	
		MAX406A, MAX409A				1.5	
		MAX406B, MAX409B				4.0	1
Input Offset Voltage	Vos	MAX407, MAX417	,	+-	· · · · ·	5.0	mV
		MAX418, MAX419				6.0	
Offset-Voltage Tempco	TCVOS	MAX406A, MAX409A,	100% drift tested			10	μV/°C
Input Bias Current	IB	V _{CM} = 0V				1.0	nA
		P 1MO	MAX406A, MAX409A	10			
Large-Signal Voltage Gain	Avol	$V_{OUT} = \pm 2V$	MAX406B, MAX407, MAX409B, MAX41_	5			V/mV
		$R_{L} = 1M\Omega$, $V_{OUT} = \pm 4V$, $V_{+} = 5V$, $V_{-} = -5V$		10			
Output Voltage Swing	Vo	$R_L = 1M\Omega$		±2.45			V
Common Modo			MAX406A, MAX409A	66			
Rejection Ratio	CMRR	(Note 3)	MAX406B, MAX407, MAX409B, MAX41_	60			dB
			MAX406A, MAX409A			150	
Power-Supply Rejection Ratio	PSRR	$V_{IN} = 0V$, V+ = 2.5V to 7.5V	MAX406B, MAX409B			450	μV/V
hojootion natio			MAX407, MAX41_			800	
Supply Current Per Amplifier	ISY					2.0	μΑ
Output Sink Current	Iosink	V _{OUT} = 0V		20			μA
Output Source Current	IOSOURCE	V _{OUT} = 0V		200			μΑ

Note 2: Production-automated test equipment cannot resolve input bias currents below 1pA. Lab equipment has shown the MAX40_, MAX41_ typical input bias currents below 0.1pA.

Note 3: MAX406A/MAX409A: V_{CM} = V- to (V+ - 1.1V). MAX407, MAX41_ V_{CM} = V- to (V+ - 1.2V).

MIXIM

M/XI M

MIXIM

MAX409/MAX417/MAX419 LARGE-SIGNAL TRANSIENT RESPONSE

Av = 10V/V, V_{SUPPLY} = $\pm 2.5V$, LOAD = 1M Ω II 110pF

100µS

Typical Operating Characteristics (continued)

500mV

ΟV

MAX409/MAX417/MAX419 LARGE-SIGNAL TRANSIENT RESPONSE

 A_V = 10V/V, V_{SUPPLY} = ±2.5V, LOAD = 1M Ω II 10pF

MAX406 PIN	MAX407 MAX417 PIN	MAX409 PIN	MAX418 MAX419 PIN	NAME	FUNCTION
1		1		NULL	Nulling. Connect to one end of 100k potentiometer for offset voltage trimming. See Figure 1.
	1		1	OUTA	Amplifier Output A
2		2		IN-	Inverting Input
	2		2	INA-	Inverting Input A
3		3		IN+	Noninverting Input
	3		3	INA+	Noninverting Input A
4	4	4	11	V-	Negative Power-Supply Pin. Connect to (-) terminal of power supply or ground.
5	· · · · · · · · · · · · · · · · · · ·	5		NULL	Nulling. Connect to one end of 100k potentiometer for offse voltage trimming. Connect wiper to V+. See Figure 1.
	5		5	INB+	Noninverting Input B
6		6		OUT	Amplifier Output
	6		6	INB-	Inverting Input B
7	8	7	4	V+	Positive Supply Pin. Connect to (+) terminal of power supply.
	7		7	OUTB	Amplifier Output B
8		-		BW	Bandwidth Selection Pin. Leave floating or connect to V- fo unity-gain stability (compensated mode) or connect to V- (decompensated mode).
		8		I.C.	Internal Connection. Make no connection to this pin.
			8	OUTC	Amplifier Output C
			9	INC-	Inverting Input C
			10	INC+	Noninverting Input C
			12	IND+	Noninverting Input D
			13	IND-	Inverting Input D
			14	OUTD	Amplifier Output D

MAX406/MAX407/MAX409/MAX417-MAX419

Single-Supply Op Amps

Applications Information

1.2µA Max, Single/Dual/Quad,

Trimming Voltage Offset

The MAX406/MAX409's typical input offset voltage is between 0.25mV and 0.75mV, depending on the grade. If the application requires additional offset adjustment, connect a 100k Ω trim pot between pins 1, 5, and 7 for the MAX406/MAX409 (Figure 1). The dual and quad amplifiers' offset voltages are not adjustable.

Input Overdrive vs. Supply Current

The supply current of the MAX406/MAX407/MAX409/ MAX417-MAX419 remains relatively constant over the supply range if the amplifier output is not overdriven to the negative supply rail. For example, when connecting the amplifier as a comparator and applying a -100mV input overdrive, supply current rises above the 1µA per amplifier typical value and varies with supply voltage. (see Supply Current vs. Supply Voltage in Overdrive, *Typical Operating Characteristics*).

Total Supply-Voltage Considerations

Although the MAX406/MAX407/MAX409/MAX417-MAX419 can operate with supply voltages between 2.5V and 10V, best performance is achieved with supply voltages below 7V. The Open-Loop Gain vs. Supply Voltage graph in the *Typical Operating Characteristics* shows how open-loop gain is reduced at voltages that exceed 7V.

Bandwidth

The MAX407/MAX418 are internally compensated for stable unity-gain operation, with an 8kHz typical gain bandwidth. The MAX409/MAX417/MAX419 have a 150kHz typical gain-bandwidth product and are stable with a gain of 10V/V or greater.

Figure 2. Compensation for Feedback Node Capacitance

The MAX406 operates in one of two modes. Floating BW or connecting BW to V- internally compensates the amplifier for stable unity-gain operation. Connecting BW to V+ reduces the compensation and allows the amplifier to be used at higher speeds. When operating in decompensated mode, the MAX406 is stable for closed loop gains $\geq 2V/V$, with a 40kHz typical gain bandwidth and a 20V/ms typical slew rate.

Stability

Unlike other industry-standard micropower CMOS op amps, the MAX406/MAX407/MAX409/MAX417-MAX419 maintain stability in their minimum gain configuration while driving heavy capacitive loads, as demonstrated in the Percent Overshoot vs. Capacitive Load graph in the *Typical Operating Characteristics*.

Although this product family is primarily designed for low-frequency applications, good layout is extremely important. This is because low power requirements demand high-impedance circuits. A 10M Ω impedance and a 1pF capacitance will provide a breakpoint at approximately 16kHz, which is near the amplifier's bandwidth. The layout should minimize stray capacitance at the amplifier's inputs. However, some stray capacitance may be unavoidable, and it may be necessary to add a 2pF to 10pF capacitor across the feedback resistor as shown in Figure 2. Select the smallest capacitor value that insures stability.

_____Typical Application Circuits

Buffered pH Probe Allows Low-Cost Cable The MAX406 has less than 20pA input leakage current over the commercial temperature range, and is typically less than 100fA at +25°C. These characteristics are ideal for buffering pH probes and a variety of other high output impedance chemical sensors. The circuit in

Figure 3. Buffered pH Probe Allows Low-Cost Cable

Figure 3 eliminates expensive low-leakage cables that often connect pH probes to meters. A MAX406 and a lithium battery are included in the probe housing. A conventional low-cost coaxial cable carries the buffered pH signal to the MAX131 A/D converter. In most cases, the probe assembly's battery life exceeds the functional life of the probe itself.

Micropower, 4-Channel Simultaneous Sample-and-Hold

Switch leakage and buffer input bias current in sample and hold circuits limit performance by discharging the signal voltage on the hold capacitor (an effect called "droop"). The 2pA typical room temperature leakage current for the MAX327 and 100fA typical input bias current for the MAX407 translates to a typical droop rate of 200μ V/sec for Figure 4's circuit. Another advantage is low power consumption. The MAX327 guarantees no more than 250μ A supply current with ±15V supplies, but most of this is drawn by internal logiclevel translators. By using rail-to-rail logic (CD4000, 74C00, or 74HC00 families) to drive IN1-IN3, the level translators are turned off and the supply current falls well below 1 μ A when the switches are off. This technique turns any Maxim switch or multiplexer into an ultra low-power device. Figure 4's circuit typically draws 6 μ A with 0V to 9V logic input levels.

Remotely Powered Sensor Amp

Figure 5 shows a simple 2-wire current transmitter that uses no power at the transmitting end except from the transmitted signal itself. At the transmitter, a 0V to 1V input drives both a MAX406 and an NPN transistor connected as a voltage-controlled current sink. The 0mA to 2mA output is sent through a twisted pair to the receiver and develops a voltage across the receiver sense resistor R2. The resulting sense voltage is buffered by another MAX406, producing a 0V to 1V ground-referenced output signal. R1 and R2 should be well matched. The MAX406's supply current is added to the 0mA to 2mA signal, resulting in a 500µV offset at the output. This offset, in addition to the MAX406's input offset, varies with temperature. MAX406/MAX407/MAX409/MAX417-MAX419

Figure 5. Remotely Powered Sensor Amp

MAX406/MAX407/MAX409/MAX417-MAX419

MIXIM

Negative Reference Circuit Draws Less Than $11 \mu A$

By biasing a low-power, low-dropout reference (MAX872) so it sits in the feedback path of a MAX406, a precise -2.50V reference is produced that requires no external components, as shown in Figure 6. This is superior to a standard inverting configuration, which requires two resistors that can add errors.

Other advantages of this circuit are:

- 1. Maximum current drain is 11µA.
- 2. The output load is driven by the op amp so there is no degradation of voltage due to load regulation.
- 3. No compensation is needed for load capacitance.

The supplies do not have to be carefully regulated. The positive supply can be as low as 1.1V and the negative supply can be as little as 2.7V.

	Ordering	Information
PART	TEMP. RANGE	PIN-PACKAGE
MAX406ACPA	0°C to +70°C	8 Plastic DIP
MAX406BCPA	0°C to +70°C	8 Plastic DIP
MAX406ACSA	0°C to +70°C	8 SO
MAX406BCSA	0°C to +70°C	8 SO
MAX406C/D	0°C to +70°C	Dice*
MAX406AEPA	-40°C to +85°C	8 Plastic DIP
MAX406BEPA	-40°C to +85°C	8 Plastic DIP
MAX406AESA	-40°C to +85°C	8 SO
MAX406BESA	-40°C to +85°C	8 SO
MAX406AMJA	-55°C to +125°C	8 CERDIP
MAX406BMJA	-55°C to +125°C	8 CERDIP
MAX407CPA	0°C to +70°C	8 Plastic DIP
MAX407CSA	0°C to +70°C	8 SO
MAX407C/D	0°C to +70°C	Dice*
MAX407EPA	-40°C to +85°C	8 Plastic DIP
MAX407ESA	-40°C to +85°C	8 SO
MAX407MJA	-55°C to +125°C	8 CERDIP
MAX409ACPA	0°C to +70°C	8 Plastic DIP
MAX409BCPA	0°C to +70°C	8 Plastic DIP
MAX409ACSA	0°C to +70°C	8 SO
MAX409BCSA	0°C to +70°C	8 SO
MAX409BC/D	0°C to +70°C	Dice*
MAX409AEPA	-40°C to +85°C	8 Plastic DIP
MAX409BEPA	-40°C to +85°C	8 Plastic DIP
MAX409AESA	-40°C to +85°C	8.50
MAX409BESA	-40°C to +85°C	8.50
MAX409AMJA	-55°C to +125°C	8 CERDIP
MAX409BMJA	-55°C to +125°C	8 CERDIP
MAX417CPA	0°C to +70°C	8 Plastic DIP
MAX417CSA	0°C to +70°C	8 SQ
MAX417C/D	0°C to +70°C	Dice*
MAX417EPA	-40°C to +85°C	8 Plastic DIP
MAX417ESA	-40°C to +85°C	8 SO
MAX417MJA	-55°C to +125°C	8 CEBDIP
MAX418CPD	$0^{\circ}C$ to $+70^{\circ}C$	14 Plastic DIP
MAX418CSD	0°C to +70°C	14.50
MAX418EPD	-40°C to +85°C	14 Plastic DIP
MAX418ESD	-40°C to +85°C	14 SQ
MAX418MJD	-55°C to +125°C	14 CERDIP
MAX419CPD	0°C to +70°C	14 Plastic DIP
MAX419CSD	0°C to +70°C	14 SO
MAX419EPD	-40°C to +85°C	14 Plastic DIP
MAX419ESD	-40°C to +85°C	14 SO
MAX419MJD	-55°C to +125°C	14 CERDIP
*Dice are specified	d at +25°C. DC param	eters only

MAX406/MAX407/MAX409/MAX417-MAX419

MIXIM

14

ΜΙΧΙΜ

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

16 Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600 © 1993 Maxim Integrated Products Printed USA

MAXIM is a registered trademark of Maxim Integrated Products.