Can relativistic corrections to SZ effect alleviate the Planck tension on σ_8 ?

Mathieu Remazeilles

The University of Manchester

Remazeilles, Bolliet, Rotti, Chluba arXiv:1809.09666

> "Future work with Planck data" ESAC Madrid, 3-4 Dec 2018

Planck tension on σ_8 between CMB and SZ

- Incompleteness of ACDM model? Evidence for massive neutrinos?
- Incorrect "mass-bias" between SZ gas and dark matter? Hydrodynamical simulations predict: $M_{gas} / M_{dark matter} = (1 - b) = 0.8$
- Miscalibrated SZ analysis by neglecting relativistic corrections? *Remazeilles, Bolliet, Rotti, Chluba 2018*

Some facts (1/2)

- So far, relativistic corrections to thermal SZ effect have always been neglected in any cosmological data analysis (e.g. *Planck*)
- The SZ spectral signature adopted for the extraction of Compton-*y* parameter has always been the non-relativistic limit:

$$Y_{0}(\nu) = x \coth \frac{x}{2} - 4 \text{ where } x \equiv \frac{h\nu}{kT_{CMB}}$$

• This is equivalent to saying that the electron gas temperature of all galaxy clusters is $T_e \simeq 0$ keV!

Some facts (2/2)

• But galaxy clusters are massive, therefore have hot temperatures:

$$kT_{e} \simeq 5 \text{ keV} \left[\sqrt{\Omega_{\rm m} (1+z)^{3} + \Omega_{\Lambda}} \frac{M_{500}}{3 \times 10^{14} h^{-1} M_{\odot}} \right]^{2/3}$$
 Arnaud et al 2005
Reichert et al 2016
Erler et al 2018

"Temperature-Mass relation"

• So the true SZ spectrum must be different from the non-relativistic limit assumed in *Planck* SZ analysis

 \rightarrow Miscalibration of Compton-*y* parameter signal

• While relativistic corrections might be negligible on individual clusters at *Planck* sensitivity, they become in fact relevant on an ensemble of clusters: power spectrum, cluster number counts

Relativistic temperature corrections to the thermal SZ effect

In hot galaxy clusters, relativistic corrections to the thermal SZ effect should be accounted for:

$$\Delta I^{SZ}(\nu, \vec{\theta}) = Y(\nu, T_e) y(\vec{\theta}; T_e)$$
$$= \left(Y_0(\nu) + \delta(\nu, T_e) \right) y(\vec{\theta}; T_e)$$

- $Y_0(v)$: non-relativistic spectrum at $T_e \simeq 0$ keV:
- signal of interest: Compton-y parameter $y(\vec{\theta}; T_e) \simeq \sigma_T \int n_e \frac{kT_e(l(\vec{\theta}))}{mc^2} dl(\vec{\theta})$

The spectral signature of SZ emission from galaxy clusters changes with the electron gas temperature

Relativistic corrections to the SZ spectrum

The spectral signature of SZ emission from galaxy clusters changes with the electron gas temperature

Relativistic corrections to the SZ spectrum

- Relativistic temperature corrections reduce the overall intensity at fixed Compton-y parameter
- ✓ Assuming the non-relativistic spectrum $Y_0(v)$ for cosmological SZ analysis leads to an underestimation of the Compton-*y* parameter

SZ Compton-y signal reconstruction: ILC

$$d(\nu, \vec{\theta}) = Y_0(\nu) \quad y(\vec{\theta}) + N(\nu, \vec{\theta})$$
Planck frequency signal of interest foregrounds + noise

• ILC = weighted linear combination of frequency maps:

$$\widehat{y}(\vec{\theta}) = \sum_{\nu} w(\nu) d(\nu, \vec{\theta})$$

such that
$$\begin{cases} \langle \hat{y}^2 \rangle = w^t \langle dd^t \rangle w \text{ minimum} & (1) \\ \sum_{\nu} w(\nu) Y_0(\nu) = 1 & (2) \end{cases}$$

• ILC weights :
$$w^t = \frac{Y_0^t C^{-1}}{Y_0^t C^{-1} Y_0}$$
 $(C \equiv \langle dd^t \rangle)$

$$\Rightarrow \widehat{y}(\overrightarrow{\theta}) = \underbrace{y(\overrightarrow{\theta})}_{recovered} + \underbrace{w^t N}_{inimized}$$

$$\underbrace{y(\overrightarrow{\theta})}_{recovered} + \underbrace{w^t N}_{residuals}$$

$$\underbrace{y(\overrightarrow{\theta})}_{residuals} + \underbrace{w^t N}_{residuals}$$

$$\underbrace{y(\overrightarrow{\theta})}_{residuals} + \underbrace{y(\overrightarrow{\theta})}_{residuals}$$

Planck 2015 results XXII

Miscalibrated Compton-y signal reconstruction

$$d(\nu, \vec{\theta}) = Y(\nu, T_e) \quad y(\vec{\theta}) + N(\nu, \vec{\theta})$$
Planck frequency signal of interest foregrounds + noise

• ILC = weighted linear combination of frequency maps:

$$\widehat{y}(\vec{\theta}) = \sum_{\nu} w(\nu) d(\nu, \vec{\theta})$$

such that
$$\begin{cases} \langle \hat{y}^2 \rangle = w^t \langle dd^t \rangle w \text{ minimum} & (1) \\ \sum_{\nu} w(\nu) Y_0(\nu) = 1 & (2) \end{cases}$$

• ILC weights :
$$w^t = \frac{Y_0^t C^{-1}}{Y_0^t C^{-1} Y_0}$$
 $(C \equiv \langle dd^t \rangle)$

$$\Rightarrow \widehat{y}(\overrightarrow{\theta}) = \frac{Y_0^t C^{-1} Y(T_e)}{Y_0^t C^{-1} Y_0} y(\overrightarrow{\theta}) + w^t N$$

Bias < 1

Planck 2015 results XXII

Underestimation of Compton-*y* **signal !**

Planck SZ power spectrum is miscalibrated

Planck analysis assumes $T_e \simeq 0$ keV for all galaxy clusters by using the **non-relativistic** SZ energy spectrum: $Y_0(\nu)$

Planck 2015 results. XXII. A&A 2016

Planck SZ cluster count is miscalibrated

Planck analysis assumes $T_e \simeq 0$ keV for all galaxy clusters by using the **non-relativistic** SZ energy spectrum: $Y_0(\nu)$

Planck 2015 results. XXIV. A&A 2016

Accounting for relativistic SZ effects will increase the inferred value of σ_8

Given the observed intensity:

$$\Delta I^{SZ}(\nu, \vec{\theta}) = Y(\nu, T_e) y(\vec{\theta})$$

Remazeilles, Bolliet, Rotti, Chluba (2018)

Average temperature of galaxy clusters?

- ✓ It is not $k\overline{T}_e \simeq 0$ keV for sure!
- ✓ $k\overline{T}_e \simeq 6^{+3.8}_{-2.9}$ keV by stacking *Planck* clusters detected at high significance *Erler et al (2018)*
- ✓ $k\overline{T}_e \gtrsim 5$ keV from cluster mass-dependence of thermal SZ power spectrum *Remazeilles, Bolliet, Rotti, Chluba (2018)*

See hereafter...

Compton *y*-parameter power spectrum

Komatsu & Seljak (2002)

$$C_{\ell}^{yy} = \int_{z_{min}}^{z_{max}} dz \frac{dV}{dzd\Omega} \int_{M_{min}}^{M_{max}} dM \underbrace{\frac{dn(M,z)}{dM}}_{halo\ mass} \underbrace{\frac{|y_{\ell}(M,z)|^2}{|y_{\ell}(M,z)|^2}}_{cluster\ pressure}$$

Planck 2015 results XXII

$$C_{\ell}^{yy} \propto \sigma_8^{8.1}$$

Which cluster masses and temperatures are probed by *Planck* ?

Remazeilles, Bolliet, Rotti, Chluba (2018)

Planck SZ power at $\ell \simeq 10^2$ -10³ is mostly sensitive to massive clusters with:

$$M\gtrsim 3\times 10^{14}\,h^{-1}M_\odot$$

 \Rightarrow *Planck* mostly sensitive to cluster temperatures: $T_e \gtrsim 5$ keV

(temperature-mass relation:
$$kT_e \simeq 5 \text{ keV} \left[\sqrt{\Omega_{\text{m}}(1+z)^3 + \Omega_{\Lambda}} \frac{M_{500}}{3 \times 10^{14} h^{-1} M_{\odot}} \right]^{2/3}$$
)

Revisiting the *Planck* NILC *y*-map

Planck 2015 results XXII (2016) Remazeilles, Bolliet, Rotti, Chluba (2018)

Updating the Planck y-map power spectrum

Planck $C_{\ell}^{\gamma\gamma}$ increases with average cluster temperature \overline{T}_{e}

$$C_{\ell}^{yy} \propto \sigma_8^{8.1} \implies \frac{\Delta \sigma_8}{\sigma_8} \simeq 0.019 \left(\frac{k \bar{T}_e}{5 \text{ keV}}\right)$$

 $\simeq 1\sigma$ increase for $\overline{T}_{e} \simeq 5$ keV !

Remazeilles, Bolliet, Rotti, Chluba (2018)

Updating the *Planck* y-map PDF

Planck y-map skewness increases with average cluster temperature \overline{T}_e

$$\langle y^3 \rangle \propto \sigma_8^{12} \implies \frac{\Delta \sigma_8}{\sigma_8} \simeq 0.025 \left(\frac{k \bar{T}_e}{5 \text{ keV}} \right) \qquad \simeq 1 \sigma \text{ increase} \text{ for } \bar{T}_e \simeq 5 \text{ keV !}$$

Remazeilles, Bolliet, Rotti, Chluba (2018)

What is the relevant average temperature of galaxy clusters ?

Moment expansion of relativistic SZ around some pivot temperature \overline{T}_e

$$\Delta I^{SZ}(\nu, \vec{\theta}) = Y(\nu, \bar{T}_e) y(\vec{\theta}) + \frac{\partial Y(\nu, \bar{T}_e)}{\partial T_e} (T_e - \bar{T}_e) y(\vec{\theta}) + \mathcal{O}(T_e^2)$$

$$C_{\ell}^{SZ} = Y(\nu, \overline{T}_{e})^{2} \underbrace{\left\langle |y_{\ell m}|^{2} \right\rangle}_{C_{\ell}^{yy}} + \underbrace{2 Y(\nu, \overline{T}_{e}) \frac{\partial Y(\nu, \overline{T}_{e})}{\partial T_{e}} \left\langle [(T_{e} - \overline{T}_{e})y]_{\ell m} y_{\ell m}^{*} \right\rangle}_{\text{linear bias in } T_{e}} + \mathcal{O}(T_{e}^{2})$$

✓ Planck's assumption $\overline{T}_e = 0$ is inappropriate: linear bias on C_{ℓ}^{SZ}

✓ The optimal pivot temperature \overline{T}_e is in fact the one that cancels out the linear bias:

$$\langle \left[(T_e - \overline{T}_e) y \right]_{\ell m} y_{\ell m}^* \rangle = \mathbf{0} \implies \overline{T}_e = \frac{\langle T_e y^2 \rangle}{\langle y^2 \rangle} = \frac{C_\ell^{T_e y, y}}{C_\ell^{yy}}$$

y²-weighted average temperature (scale-dependent!)

Remazeilles, Bolliet, Rotti, Chluba (2018)

Relevant average cluster temperature for SZ power spectrum analysis

Remazeilles, Bolliet, Rotti, Chluba (2018)

Mapping out cluster temperatures from data

$$d(\nu, \vec{\theta}) = \underbrace{Y(\nu, T_e = \overline{T}_e)}_{energy \ spectrum} \quad \underbrace{y(\vec{\theta}; T_e)}_{fluctuations} + \underbrace{\frac{\partial Y(\nu, T_e = \overline{T}_e)}{\partial T_e}}_{fluctuations} \quad \underbrace{(T_e(\vec{\theta}) - \overline{T}_e)y(\vec{\theta}; T_e)}_{fluctuations} + \underbrace{N(\nu, \vec{\theta})}_{foregrounds} + \underbrace{N(\nu, \vec{\theta})}_{roise}$$

• Weighted linear combination of frequency data ("Constrained-ILC": Remazeilles et al 2011):

$$\hat{z}\left(\vec{\theta};T_{e}\right) = \sum_{\nu} w(\nu) d\left(\nu,\vec{\theta}\right) \text{ such that } \begin{cases} \langle \hat{z}^{2} \rangle = w^{t} \langle dd^{t} \rangle w \text{ minimum} \\ \sum_{\nu} w(\nu) \partial Y(\nu,\overline{T}_{e}) / \partial T_{e} = 1 \\ \sum_{\nu} w(\nu) Y(\nu,\overline{T}_{e}) = 0 \end{cases}$$

• Analytic solution: $w^t = \frac{(Y^t C^{-1}Y)\partial_{T_e}Y^t C^{-1} - (\partial_{T_e}Y^t C^{-1}Y)Y^t C^{-1}}{(\partial_{T_e}Y^t C^{-1}\partial_{T_e}Y)(Y^t C^{-1}Y) - (\partial_{T_e}Y^t C^{-1}Y)^2}$ ($C \equiv \langle dd^t \rangle$) yields to:

$$\hat{z}(\vec{\theta}; T_e) = (T_e(\vec{\theta}) - \overline{T}_e) y(\vec{\theta}; T_e) + w^t N$$

Map of cluster temperatures over the sky: $(T_e(\vec{\theta}) - \overline{T}_e)y(\vec{\theta})$

Remazeilles et al, in prep.

Mapping out cluster temperatures from data

$$d(\nu, \vec{\theta}) = \underbrace{Y(\nu, T_e = \overline{T}_e)}_{energy \ spectrum} \quad \underbrace{y(\vec{\theta}; T_e)}_{fluctuations} + \underbrace{\frac{\partial Y(\nu, T_e = \overline{T}_e)}{\partial T_e}}_{fluctuations} \quad \underbrace{(T_e(\vec{\theta}) - \overline{T}_e)y(\vec{\theta}; T_e)}_{fluctuations} + \underbrace{N(\nu, \vec{\theta})}_{foregrounds} + \underbrace{N(\nu, \vec{\theta})}_{roise}$$

• Weighted linear combination of frequency data ("Constrained-ILC": Remazeilles et al 2011):

$$\widehat{y}(\vec{\theta}; T_e) = \sum_{\nu} w(\nu) d(\nu, \underline{\theta}) \text{ such that } \begin{cases} \langle \widehat{z}^2 \rangle = w^t \langle dd^t \rangle w \text{ minimum} \\ \sum_{\nu} w(\nu) \partial Y(\nu, \overline{T}_e) / \partial T_e = 0 \\ \sum_{\nu} w(\nu) Y(\nu, \overline{T}_e) = 1 \end{cases}$$

• Analytic solution: $w^t = \frac{(\partial_{T_e}Y^tC^{-1}\partial_{T_e}Y)Y^tC^{-1} - (Y^tC^{-1}Y)\partial_{T_e}Y^tC^{-1}}{(\partial_{T_e}Y^tC^{-1}\partial_{T_e}Y)(Y^tC^{-1}Y) - (\partial_{T_e}Y^tC^{-1}Y)^2}$ ($C \equiv \langle dd^t \rangle$) yields to:

$$\widehat{y}(\overrightarrow{\theta};T_e) = y(\overrightarrow{\theta};T_e) + w^t N$$

Map of Compton-y parameter over the sky: $y(\vec{\theta})$

Remazeilles et al, in prep.

Mapping out cluster temperatures from data

1. <u>First approach</u>:

• Cross-power spectrum between the y-map and the yT_e -map:

$$C_{\ell}^{yT_{e},y} = \langle yT_{e},y \rangle$$

• Auto-power spectrum of the y-map:

$$C_{\ell}^{yy} = \langle |y|^2 \rangle$$

• Ratio:
$$\overline{T}_{e}^{yy}(\ell) = \frac{\langle T_{e}y^{2} \rangle}{\langle y^{2} \rangle} = \frac{C_{\ell}^{T_{e}y,y}}{C_{\ell}^{yy}}$$

- 2. <u>Second approach</u>: Analogy with lensing
 - CMB lensing:

 $T^{obs} \simeq T^{true} + \nabla \Phi \nabla T^{true}$

Lensing field (quadratic estimator):

 $\widehat{\Phi}(L) = \int d^2 \ell \, K(L,\ell) T^{obs}(\ell) \, T^{obs}(L-\ell)$

• Suppose we have reconstructed the sum of the *y*- and yT_e -maps: $y^{obs} \simeq y^{true} + T_e y^{true}$ Temperature field (quadratic estimator):

$$\widehat{\boldsymbol{T}}_{\boldsymbol{e}}(L) = \int d^2\ell W(L,\ell) y^{obs}(\ell) y^{obs}(L-\ell)$$

Remazeilles et al, in prep.

Conclusions

- *Planck's* Compton-*y* signal (power spectrum and cluster counts), hence σ_8 , might have been underestimated by neglecting relativistic SZ effects
- Accounting for relativistic corrections to thermal SZ effect with $kT_e \simeq 5 \text{ keV}$ could alleviate the *Planck* tension on σ_8 by about one-sigma
- The relevant average temperature of clusters for SZ power spectrum analysis is y^2 -weighted and scale-dependent with $kT_e \simeq 5-9$ keV in the range of multipoles $\ell \simeq 10^2-10^3$ relevant to *Planck*
- We expect similar corrections from SZ cluster number count analysis *Rotti et al, in prep.*
- It is time to include relativistic temperature corrections in the processing of current and future sensitive SZ data.

Thank you!
$$\label{eq:second} \begin{split} & \text{Home}_{\mathcal{T}}(\mathbf{x}_{1}) = \mathbf{x}_{1} + \mathbf{x}_{2} + \mathbf{x}$$

Planck 2015 results XXII

Relativistic SZ vs Planck sensitivities

Relativistic SZ formulas

$$\Delta I^{SZ}(\boldsymbol{\nu}, \vec{\boldsymbol{\theta}}) = Y(\boldsymbol{\nu}, \boldsymbol{T}_{e}) \ y(\vec{\boldsymbol{\theta}}; \boldsymbol{T}_{e})$$

• Taylor expansion around $kT_e = 0 \text{ keV} - Itoh et al 1998$; Challinor & Lasenby 1998:

$$\Delta I^{SZ}(\nu,\vec{\theta}) \approx \left(Y_0(\nu) + Y_1(\nu)\frac{kT_e}{mc^2} + Y_2(\nu)\left(\frac{kT_e}{mc^2}\right)^2 + \dots\right) y(\vec{\theta};T_e)$$

But this expansion does not converge properly for hot clusters ($kT_e > 5 \text{ keV}$) and it is known that galaxy clusters have $k\overline{T}_e \equiv \langle kT_e \rangle \simeq 5 \text{ keV}$

• Moment expansion around $kT_e \neq 0$ keV from SZpack – Chluba et al 2012 Allows expansion of $Y(v, T_e)$ around e.g. $k\overline{T}_e = 5$ keV (or any $k\overline{T}_e$ value):

$$\Delta I^{SZ}(\nu,\vec{\theta}) \approx \left(Y(\nu,T_e=\overline{T}_e)+(T_e-\overline{T}_e)\frac{\partial Y(\nu,T_e=\overline{T}_e)}{\partial T_e}+\ldots\right) y(\vec{\theta};T_e)$$

Moment vs Itoh's expansion: $T_e = 5 \text{ keV}$ (1st order)

Moment vs Itoh's expansion: $T_e = 5 \text{ keV}$ (1st order)

Moment vs Itoh's expansion: $T_e = 10 \text{ keV}$ (1st order)

Moment vs Itoh's expansion: $T_e = 10 \text{ keV}$ (4th order)

Moment vs Itoh's expansion: $T_e = 20 \text{ keV}$ (4th order)

