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Galactic dust + synchrotron @100 GHz

Primordial CMB B-mode power spectrum

Large-scale primordial CMB B-mode polarization:
signature of primordial gravitational waves of quantum origin

Amplitude of primordial CMB B-modes (tensor-to-scalar ratio): 
relates to the energy scale of inflation:  r = 0.008 x ( E

inflation
 / 1016 GeV ) 4 

Gravitational waves



  

Galactic dust + synchrotron @100 GHz

Primordial CMB B-mode power spectrum

Gravitational waves

50 nK r.m.s. fluctuations!

Galactic dust + synchrotron @100 GHz



  

Galactic dust + synchrotron @100 GHz

Primordial CMB B-mode power spectrum

Gravitational
lensing

Gravitational waves

Gravitational lensing by LSS transforms 
CMB E-modes into spurious B-modes!



  

Galactic dust + synchrotron @100 GHz

Primordial CMB B-mode power spectrum

Gravitational
lensing

Gravitational waves

This is the B-mode signal we see 
in the sky: our Galaxy!

Astrophysical foregrounds



  

Short digression



  

Anisotropic µ-type distortions at z > 104

foreground intensity @100GHz

Same dynamic range than for primordial B-modes at r ~ 10-3 

→ to be definitely considered by future CMB satellites!

Anisotropic µ-type distortions (Pajer & Zaldarriaga 2012) caused 
by exciting physics at pre-recombination epochs: 

→ Silk damping, annihilation/decay of DM particles, primordial BH, ... 

foreground polarization @100 GHz

f
NL

(k ≈ 740 Mpc-1) = 4500



  

µ-T correlation signal between CMB temperature and µ-distortion anisotropies

→ even more accessible signal, allowing to constrain f
NL

(k≈740 Mpc-1) 

→ to be definitely considered by future CMB satellites!

More details in Remazeilles & Chluba (2018): arXiv:1802.10101

foreground intensity @100GHz

foreground polarization @100 GHz

Anisotropic µ-type distortions at z > 104

f
NL

(k ≈ 740 Mpc-1) = 4500

https://arxiv.org/abs/1802.10101


  

CMB B-mode vs Foregrounds
Remazeilles et al (2017), for the CORE collaboration

CORE bands

Polarization less complex than intensity (fewer foregrounds) but more challenging (weaker signal): 

→ Very large dynamic range between CMB B-mode and foregrounds

→ Component separation much more sensitive to foreground uncertainties!

Foregrounds cannot be avoided by limiting the frequency range of observations
   

→ At ~300 GHz, synchrotron and CMB B-modes (r=10-2) have similar amplitude and colour!

→ A broad frequency coverage is essential to break those spectral degeneracies



  

EPIC PRISM

Future CMB satellites aim at detecting r = 10-3

Kogut et al., 2011

30 – 6000 GHz

6.6 µK.arcmin 
for Δν=30 GHz

PIXIE (NASA?)  CORE (ESA? ISRO?)

Delabrouille et al, 2018

60 – 600 GHz 
1.7 µK.arcmin

LiteBIRD (JAXA – Phase A)

Matsumura et al, 2013

40 – 402 GHz 

2.5 µK.arcmin

PICO (NASA?)

S. Hannany, priv. comm.

21 – 800 GHz

1 µK.arcmin



  

Galactic dust + synchrotron @100 GHz

Large scales
measurable from 

space only

Small scales
measurable from

ground and space

Why going into space?



  

Galactic dust + synchrotron @100 GHz

Large scales
measurable from 

space only

Small scales
measurable from

ground and space

Why going into space?

Problem: at recombination scales (20 < ℓ < 200), measurements may be fooled by 
many kind of power spectra degeneracies between primordial B-modes, 
lensing B-modes, extragalactic sources, and noise (similar slopes)



  

Galactic dust + synchrotron @100 GHz

Large scales
measurable from 

space only

Small scales
measurable from

ground and space

Problem: at recombination scales (20 < ℓ < 200), measurements may be fooled by 
many kind of power spectra degeneracies between primordial B-modes, 
lensing B-modes, extragalactic sources, and noise (similar slopes)

Detecting the reionization peak (2 < ℓ < 20) from space will allow to break power 
spectrum degeneracies, providing better evidence for primordial B-mode detection 

Why going into space?



  

CORE

→ Not selected by ESA, but we have cleared 
     the path on the foreground challenges

→ Series of 10 CORE papers 
    (JCAP special issue)

Accepted by JCAP (2017)



  

CORE specifications

100% of the sky

19 frequency bands: 
60 – 600 GHz

Aggregated sensitivity: 
1.7 µK.arcmin

High spatial resolution 
allowing for 60% delensing

Challinor et al 2017,
for the CORE collaboration

Delabrouille et al 2017, for the CORE collaboration 



  

CORE sky simulations: Stokes Q maps

r = 10-3, τ = 0.055

T
d

β
d

Lensed CMB AME @60 GHzRadio & IR sources

Thermal dust @353 GHz Dust temperatureDust spectral index

Synchrotron @23 GHz Synchrotron spectral index

β
s

Remazeilles et al 2017, for the CORE collaboration
smoothed to 1°

for illustration purposes

CORE
19 frequency bands:

60 – 600 GHz



  

Component separation methods

COMMANDER – Eriksen et al 2004, 2008 ; Remazeilles et al 2016, 2017

Bayesian multi-component spectral fit in each pixel through Gibbs sampling

SMICA – Delabrouille et al 2003 ; Cardoso et al 2008

Blind power spectra fit in harmonic space

NILC – Delabrouille et al 2009 ; Remazeilles et al 2011 ; Basak et al 2012, 2013

Minimum-variance internal linear combination in wavelet space

X-FORECAST – Errard et al 2016 ; Stompor et al 2016

Spectral fit of foreground mixing matrix + linear combination

The first 3 algorithms have been thoroughly used on Planck data
Planck 2015 results. IX., A&A 2016

The 4 algorithms have been  employed on CORE simulations for B-mode detection forecasts
Remazeilles et al, for the CORE collaboration, JCAP 2017



  

CORE reconstruction of the primordial B-mode
– without lensing –

14σ detection of r = 10-2 after foreground cleaning

Remazeilles et al 2017, for the CORE collaboration

r = 10-2



  

12σ detection of r = 5 10-3 after foreground cleaning

r = 5  10-3

CORE reconstruction of the primordial B-mode
– without lensing –

Remazeilles et al 2017, for the CORE collaboration



  

CORE reconstruction of the primordial B-mode
– with lensing –

4σ detection of r = 5 10-3 
after foreground cleaning and 60% delensing 

r = (5.4 ± 1.5)  10-3

Remazeilles et al 2017, for the CORE collaboration

r = 5  10-3



  

foreground residuals!

CORE reconstruction of the primordial B-mode
– without lensing –

Remazeilles et al 2017, for the CORE collaboration

3σ bias on r = 10-3 after foreground cleaning

r = 10-3



  

Lack of frequencies < 60 GHz

Error Δβ
synch

 ~ 2%  ⇒  error Δr ~ 10-3  when extrapolated from 23 to 145 GHz

Sub-percent precision on foreground spectral parameters is required 
to allow the detection of B-modes at the level of r = 10-3 

B-mode excess power

Same mean
and standard 

deviation,
but different 
skewness!

β
synch

Remazeilles et al 2017, for the CORE collaboration

input
Commander



  

On the importance 
of a broad frequency range 



  

PICO
21 frequency bands : 21 – 800 GHz

Overall sensitivity : ~ 1 µK.arcmin



  

PICO reconstruction of primordial B-modes
21 – 800 GHz

σ(r = 10-3) = 0.4 x 10-3

after foreground cleaning
M. Remazeilles

Commander

Input

Foregrounds:

● Synchrotron
(power-law with
curvature)

● Thermal dust
(MBB)

r = 10-3



  

PICO reconstruction of primordial B-modes
43 – 462 GHz

Narrowing the frequency range of observations
causes biases on large-scales due to foregrounds

M. Remazeilles

Commander

Input

Foregrounds:

● Synchrotron
(power-law with
curvature)

● Thermal dust
(MBB)

r = 10-3



  

COMMANDER results on foregrounds
PICO 21 – 800 GHz

β
synch

β
dust

T
dust

M. Remazeilles



  

COMMANDER results on foregrounds
PICO 43 – 462 GHz

β
synch

β
dust

T
dust

M. Remazeilles

Lack of frequency range / high frequencies

Lack of precision/constraint on T
dust

Translates into a bias on CMB B-mode 
by extrapolation towards CMB frequencies



  

β
synch

β
dust

T
dust

β
synch

β
dust

T
dust

PICO 
21 – 800 GHz

PICO
43 – 462 GHz

σ(r=10-3) = 0.4  10-3 σ(r=10-3) = 0.7  10-3

(75% increase)



  

Primordial CMB B-mode (r=10-3)
Lensing CMB B-mode
Total CMB B-mode

Input CMB B-mode realization
Commander CMB B-mode reconstruction

PICO
21 – 800 GHz

Input
Commander

dust temperature [K]



  

Primordial CMB B-mode (r=10-3)
Lensing CMB B-mode
Total CMB B-mode

Input CMB B-mode realization
Commander CMB B-mode reconstruction

descoped PICO
43 – 462 GHz

Input
Commander

dust temperature [K]



  

Subtle issues for
B-mode component separation 



  

#1. Foreground mismodelling

Remazeilles, Dickinson, Eriksen, Wehus, MNRAS (2016)

Impact on r of mismodelling two MBB dust components 
as a single MBB component:

The Sneaky Point:
  

CMB experiments with narrow frequency range < 400 GHz
show no evidence (χ2 ~ 1) for incorrect foreground modelling!  



  

#2. Extragalactic compact foregrounds
cannot be ignored

Polarized Radio and IR compact sources at ~ 100 GHz dominate
the primordial CMB B-mode at r = 10-3 on angular scales ℓ  50≳

Curto et al 2013



  

#3. What about magnetic dust (MD)?

Diffuse MD not yet observed!

In theory, MD might be highly polarized ~35% 

Spectral degeneracy at ~ 100 GHz between CMB and MD

→ can be a killer for component separation

Ferromagnetic lattice with spins aligned.

Thermal fluctuations will move them away, 
producing magnetic dipole radiation 

Draine & Hensley 2013



  

The actual foreground SED on the maps differs from the real SED in the sky !  

Chluba, Hill, Abitbol, 2017 

Pixelization/averaging creates spurious curvatures 
on the foreground SED!

→ Bias of Δr ≈ 10-3 if ignored in the parametric fitting

Remazeilles et al 2017, 
for the CORE collaboration 

#4. Averaging effects

one value β
dust

 per line-of-sight

(effective SED: ∑
i
 ν βi  = ν β + C Log(ν) +... )

Dust spectral indices in the sky Mapping / pixelization

many values β
dust

 per pixelone value β
dust

 per line-of-sight



  

Alternative solutions: effective modelling?

Moment expansion of the full foreground SED:

(ν/ν0)β (1 + C1 (ln (ν/ν0))2  + C2 (ln (ν/ν0))3  + … )  

Chluba, Hill, Abitbol, 2017 



  

Moment expansion:
dust temperature vs curvature 

M. Remazeilles

Example on LiteBIRD 40 – 402 GHz

Without frequencies > 400 GHz, dust temperature is not well constrained

Curvature is local thus better constrained than temperature
over a narrow frequency range

MBB
  

(ν/ν0)β B(ν,T) 

Curved power-law
  

(ν/ν0)β (1 + C (ln (ν/ν0))2  + ...) 



  

Conclusions
After foregrounds cleaning (COMMANDER + SMICA / NILC) and 60% delensing,

CORE 60 – 600 GHz able to recover the primordial CMB B-mode power spectrum
at r = 5  10-3 on both reionization and recombination peaks without bias.

CORE 60 – 600 GHz able to detect r = 5  10-3 at 4σ significance without bias.
→ allows to constrain the Starobinsky's R2 inflation model.

After foregrounds cleaning (COMMANDER),

PICO 21 – 800 GHz able to detect r = 10-3 at 2.5σ significance without bias.

PICO 43 – 462 GHz (narrow frequency range) fails to detect r = 10-3 
→ significant bias due to foreground contamination on large scales

General issues that future CMB B-mode experiments will be facing:

Foreground mismodelling: omitting curvature, AME, dust components, decorrelation
Lack of frequency range / sensitivity to β

synch
 and T

dust 
 

Averaging effects of foreground SEDs by pixelization / beam convolution
Spectral degeneracies, e.g. CMB and magnetic dust?

Alternative solutions: moment expansion (Chluba et al 2017)  

Thanks for your attention!



  

Backup slides



  

Why a broad frequency range is essential?
  To provide “lever arms” at low/high frequency for sensitive constraints 
  on T

dust
 and β

synch 

     → If not, then ~1% errors on T
dust

 and β
synch

 will extrapolate to an error Δr ~ 10 -3 

         on the B-mode power at CMB frequencies ~100 GHz

               Remazeilles et al 2017, for the CORE collaboration

 To provide “red flags” on incorrect foreground modelling/assumptions
 and χ2-evidence for false detections of r

     → Over a narrow frequency range, a multi-component fit can still get a good χ2 for
          the accurate fitting of the total sky emission (despite incorrect foreground models), 
          nevertheless CMB and foreground B-modes might not be accurately separated!

    
              Remazeilles, Dickinson, Eriksen, Wehus, MNRAS (2016)
 

 To break spectral degeneracies:

  → At 70 – 100 GHz, the SEDs of CMB, magnetic dust, synchrotron with 
       flattening curvature, are very much similar!
  

    Draine & Hensley, ApJ (2013)
      Remazeilles, Dickinson, Eriksen, Wehus, MNRAS (2016)



  

Eriksen et al 2004, 2008
Remazeilles et al 2016, 2017

2. Likelihood estimation of r and A 
lens

:

3. Blackwell-Rao posterior: 

1. Component separation  (Bayesian parametric fit with Gibbs sampler):

amplitudes (CMB & foregrounds)

power spectra (CMB)

spectral indices (foregrounds)

Methodology

→ End-to-end propagation of the foreground uncertainties

COMMANDER



  

 

r = (0.6 ± 0.4) x 10-3

Sample variance σ(r = 10-3) = 0.4 x 10-3

That's the minimal uncertainty that can be achieved from 
2 < ℓ < 50 in the absence of foregrounds on 50% of the sky

sample variance + noise
(50% of the sky)

r = 10-3 + lensing, f
sky

=50%

 M. Remazeilles

PICO reconstruction of primordial B-modes
No foregrounds, 50% mask

Commander
Input



  

Component Spectrum Polarization 
fraction

References

Synchrotron - Power-law β~-3, variations Δβ~0.2 

- In theory, curvature C=-0.3

- Flattening from multiple power-laws / 
populations of electrons

~15-20% 

(up to ~50%)

Page et al (2007), Kogut et 
al (2007), Macellari et al 
(2011), Vidal et al (2015)

Thermal dust - Modified black-body 

- Possibly 2 components/flattening at   
frequencies <300 GHz

- Decorrelation across frequencies 

~5% - 10%

(up to ~20+%)

Ponthieu et al (2005), 
Planck intermediate results. 
XIX (2015), Planck 
intermediate results. L 
(2016)

Magnetic dust? - Similar to thermal dust, but flatter index at 
frequencies ~100 GHz

- Not yet detected (70GHz-300 GHz)

Variable

(up to ~35% ?)

<~5% 

Draine & Lazarian (1999), 
Draine & Hensley (2013), 
Hoang & Lazarian (2015)

Anomalous
Microwave
Emission (AME)

- Peaked spectrum ~10-60 GHz <~1% Lazarian & Draine (2000), 
Dickinson (2011), Lopez-
Caraballo et al. (2011), 
Macellari et al. (2011), 
Rubino-Martin et al. (2012), 
Planck 2015 results. XXV

Free-free - Power-law β~-2.14 with positive 
curvature (steepening at frequencies 
>~100 GHz)

Intrisically zero,

in practice <~1% 

Rybicki & Lightman (1979), 
Keating et al. (1998), 
Macellari et al. (2011)

Galactic foregrounds in polarization
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