Component separation for CMB B-mode satellite missions

Mathieu Remazeilles

The University of Manchester

Rencontres de Moriond La Thuile, 17-24 March 2018

- Large-scale primordial CMB B-mode polarization: signature of primordial gravitational waves of quantum origin
- Amplitude of primordial CMB B-modes (tensor-to-scalar ratio): relates to the energy scale of inflation: r = 0.008 x (E_{inflation} / 10¹⁶ GeV)⁴

Short digression

Anisotropic μ -type distortions at $z > 10^4$

Same dynamic range than for primordial B-modes at r ~ 10⁻³

 \rightarrow to be definitely considered by future CMB satellites!

- Anisotropic μ-type distortions (Pajer & Zaldarriaga 2012) caused by exciting physics at pre-recombination epochs:
 - → Silk damping, annihilation/decay of DM particles, primordial BH, ...

Anisotropic μ -type distortions at $z > 10^4$

 μ -T correlation signal between CMB temperature and μ -distortion anisotropies

- \rightarrow even more accessible signal, allowing to constrain $f_{_{NI}}$ (k \approx 740 Mpc⁻¹)
- \rightarrow to be definitely considered by future CMB satellites!

More details in Remazeilles & Chluba (2018): arXiv:1802.10101

CMB B-mode vs Foregrounds

Polarization less complex than intensity (fewer foregrounds) but more challenging (weaker signal):

- \rightarrow Very large dynamic range between CMB B-mode and foregrounds
- \rightarrow Component separation much more sensitive to foreground uncertainties!
- Foregrounds cannot be avoided by limiting the frequency range of observations
 - \rightarrow At ~300 GHz, synchrotron and CMB B-modes (r=10⁻²) have similar amplitude and colour!
 - \rightarrow A broad frequency coverage is essential to break those spectral degeneracies

Future CMB satellites aim at detecting $r = 10^{-3}$

LiteBIRD (JAXA – Phase A)

Matsumura et al, 2013

40 – 402 GHz 2.5 μK.arcmin

PIXIE (NASA?)

Kogut et al., 2011

30 – 6000 GHz

6.6 μK.arcmin for Δv=30 GHz

CORE (ESA? ISRO?)

Delabrouille et al, 2018

60 – 600 GHz 1.7 μK.arcmin

PICO (NASA?)

S. Hannany, priv. comm.

21 – 800 GHz 1 μK.arcmin

Why going into space?

Why going into space?

Problem: at recombination scales (20 < l < 200), measurements may be fooled by many kind of power spectra degeneracies between primordial B-modes, lensing B-modes, extragalactic sources, and noise (similar slopes)

Why going into space?

- Problem: at recombination scales (20 < l < 200), measurements may be fooled by many kind of <u>power spectra degeneracies</u> between primordial B-modes, lensing B-modes, extragalactic sources, and noise (similar slopes)
- Detecting the reionization peak (2 < l < 20) from space will allow to break power spectrum degeneracies, providing better evidence for primordial B-mode detection</p>

- \rightarrow Not selected by ESA, but we have cleared the path on the foreground challenges
- → Series of 10 CORE papers (JCAP special issue)

arXiv:1704.04501v2 [astro-ph.CO] 19 Jun 2017

Exploring Cosmic Origins with CORE: *B*-mode Component Separation

M. Remazeilles,¹ A. J. Banday,^{2,3} C. Baccigalupi,^{4,5} S. Basak,^{6,4} A. Bonaldi,¹ G. De Zotti,⁷ J. Delabrouille,⁸ C. Dickinson,¹ H. K. Eriksen,⁹ J. Errard,¹⁰ R. Fernandez-Cobos,¹¹ U. Fuskeland,⁹ C. Hervías-Caimapo,¹ M. López-Caniego,¹² E. Martinez-González,¹¹ M. Roman,¹³ P. Vielva,¹¹ I. Wehus,⁹ A. Achucarro,^{14,15} P. Ade,¹⁶ R. Allison,¹⁷ M. Ashdown,^{18,19} M. Ballardini,^{20,21,22} R. Banerji,⁸ N. Bartolo,^{23,24,7} J. Bartlett,⁸ D. Baumann,²⁵ M. Bersanelli,^{26,27} M. Bonato,^{28,4} J. Borrill,²⁹ F. Bouchet,³⁰ F. Boulanger,³¹ T. Brinckmann,³² M. Bucher,⁸ C. Burigana,^{21,33,22} A. Buzzelli,^{34,35,36} Z.-Y. Cai,³⁷ M. Calvo,³⁸ C.-S. Carvalho,³⁹ G. Castellano,⁴⁰ A. Challinor,²⁵ J. Chluba,¹ S. Clesse,³² I. Colantoni,⁴⁰ A. Coppolecchia,^{34,41} M. Crook,⁴² G. D'Alessandro, 34,41 P. de Bernardis, 34,41 G. de Gasperis, 34,36 J.-M. Diego,¹¹ E. Di Valentino,^{30,43} S. Feeney,^{18,44} S. Ferraro,⁴⁵ F. Finelli,^{21,22} F. Forastieri,⁴⁶ S. Galli,³⁰ R. Genova-Santos,^{47,48} M. Gerbino,^{49,50} J. González-Nuevo,⁵¹ S. Grandis,^{52,53} J. Greenslade,¹⁸ S. Hagstotz,^{52,53} S. Hanany,⁵⁴ W. Handley,^{18,19} C. Hernandez-Monteagudo,⁵⁵ M. Hills,⁴² E. Hivon,³⁰ K. Kiiveri,^{56,57} T. Kisner,²⁹ T. Kitching,⁵⁸ M. Kunz,⁵⁹ H. Kurki-Suonio,^{56,57} L. Lamagna,^{34,41} A. Lasenby,^{18,19} M. Lattanzi,⁴⁶ J. Lesgourgues,³² A. Lewis,⁶⁰ M. Liguori,^{23,24,7} V. Lindholm,^{56,57} G. Luzzi,³⁴ B. Maffei,³¹ C.J.A.P. Martins,⁶¹ S. Masi,^{34,41} D. McCarthy,⁶² J.-B. Melin,⁶³ A. Melchiorri,^{34,41} D. Molinari,^{33,46,21} A. Monfardini,³⁸ P. Natoli,^{33,46} M. Negrello,¹⁶ A. Notari,⁶⁴ A. Paiella,^{34,41} D. Paoletti,²¹ G. Patanchon,⁸ M. Piat,⁸ G. Pisano,¹⁶ L. Polastri,^{33,45} G. Polenta,^{65,66} A. Pollo,⁶⁷ V. Poulin,^{32,68} M. Quartin,^{69,70} J.-A. Rubino-Martin,^{47,48} L. Salvati,^{34,41} A. Tartari,⁸ M. Tomasi,²⁶ D. Tramonte,⁴⁷ N. Trappe,⁶² T. Trombetti,^{21,33,22} C. Tucker,¹⁶ J. Valiviita,^{56,57} R. Van de Weijgaert,^{71,72} B. van Tent,⁷³ V. Vennin,⁷⁴ N. Vittorio, 35, 36 K. Young, 54 and M. Zannoni, 75, 76 for the CORE collaboration.

Accepted by JCAP (2017)

CORE specifications

Frequency	Beam	Q and U noise	RMS			
[GHz]	[arcmin]	$[\mu K.arcmin]$				
60	17.87	10.6				
70	15.39	10.0				
80	13.52	9.6				
90	12.08	7.3	100% of the sky			
100	10.92	7.1				
115	9.56	7.0	19 frequency bands:			
130	8.51	5.5	60 – 600 GHz			
145	7.68	5.1	Aggregated sensitivity:			
160	7.01	5.2	1.7 µK.arcmin			
175	6.45	5.1				
195	5.84	4.9	High spatial resolution			
220	5.23	5.4	allowing for 60% delensing			
255	4.57	7.9	Challinor et al 2017,			
295	3.99	10.5	for the CORE collaboration			
340	3.49(4.0)	15.7				
390	3.06(4.0)	31.1				
450	2.65(4.0)	64.9				
520	2.29(4.0)	164.8				
600	1.98(4.0)	506.7				

Delabrouille et al 2017, for the CORE collaboration

CORE sky simulations: Stokes Q maps

smoothed to 1° for illustration purposes

Component separation methods

• COMMANDER – Eriksen et al 2004, 2008 ; Remazeilles et al 2016, 2017

Bayesian multi-component spectral fit in each pixel through Gibbs sampling

SMICA – Delabrouille et al 2003 ; Cardoso et al 2008

Blind power spectra fit in harmonic space

• NILC – Delabrouille et al 2009 ; Remazeilles et al 2011 ; Basak et al 2012, 2013

Minimum-variance internal linear combination in wavelet space

• X-FORECAST – Errard et al 2016 ; Stompor et al 2016

Spectral fit of foreground mixing matrix + linear combination

The first 3 algorithms have been thoroughly used on Planck data Planck 2015 results. IX., A&A 2016

The 4 algorithms have been employed on CORE simulations for B-mode detection forecasts Remazeilles et al, for the CORE collaboration, JCAP 2017

CORE reconstruction of the primordial B-mode – without lensing –

14 σ detection of r = 10⁻² after foreground cleaning

CORE reconstruction of the primordial B-mode – without lensing –

12 σ detection of r = 5 \times 10⁻³ after foreground cleaning

CORE reconstruction of the primordial B-mode – with lensing –

4σ detection of r = 5 × 10⁻³ after foreground cleaning and 60% delensing

CORE reconstruction of the primordial B-mode – without lensing –

foreground residuals!

3σ bias on r = 10^{-3} after foreground cleaning

Lack of frequencies < 60 GHz

Remazeilles et al 2017, for the CORE collaboration

Sub-percent precision on foreground spectral parameters is required to allow the detection of B-modes at the level of $r = 10^{-3}$

On the importance of a broad frequency range

PICO

• 21 frequency bands : 21 – 800 GHz

• Overall sensitivity : ~ 1 µK.arcmin

CMBP						
del nu/nu	0,25		del center	1,2		
nul	30.GHz					
	nu	nu <u>low</u>	nu <u>high</u>	del nu	FWHM	PolWeight
Band#	(GHz)	(GHz)	(GHz)	(GHz)	(arcmin)	(uk*arcmin)
1	21	18,2	23,4	5,2	40,9	50
2	25	21,9	28,1	6,3	34,1	33
3	30	26,3	33,8	7,5	28,4	22,4
4	36,0	31,5	40,5	9,0	23,7	15
5	43,2	37,8	48,6	10,8	19,7	9,1
6	51,8	45,4	58,3	13,0	16,4	7
7	62,2	54,4	70,0	15,6	13,7	5
8	74,6	65,3	84,0	18,7	11,4	4
9	89,6	78,4	100,8	22,4	9,5	3,2
10	107,5	94,1	120,9	26,9	7,9	2,9
11	129,0	112,9	145,1	32,2	6,6	2,7
12	154,8	135,4	174,1	38,7	5,5	2,6
13	185,8	162,5	209,0	46,4	4,6	3,6
14	222,9	195,0	250,8	55,7	3,8	5,3
15	267,5	234,0	300,9	66,9	3,2	9
16	321,0	280,9	361,1	80,2	2,7	16,0
17	385,2	337,0	433,3	96,3	2,2	32
18	462,2	404,4	520,0	115,6	1,8	75
19	554,7	485,3	624,0	138,7	1,5	220,0
20	665,6	582,4	748,8	166,4	1,3	1100
21	798,7	698,9	898,5	199,7	1,1	10000,0

PICO reconstruction of primordial B-modes 21 – 800 GHz

 σ (r = 10⁻³) = 0.4 x 10⁻³ after foreground cleaning

M. Remazeilles

PICO reconstruction of primordial B-modes 43 – 462 GHz

Narrowing the frequency range of observations causes biases on large-scales due to foregrounds

M. Remazeilles

COMMANDER results on foregrounds PICO 21 – 800 GHz

COMMANDER results on foregrounds PICO 43 – 462 GHz

Subtle issues for B-mode component separation

#1. Foreground mismodelling

Remazeilles, Dickinson, Eriksen, Wehus, MNRAS (2016)

The Sneaky Point:

CMB experiments with narrow frequency range < 400 GHz show no evidence ($\chi 2 \sim 1$) for incorrect foreground modelling!

#2. Extragalactic compact foregrounds cannot be ignored

Polarized Radio and IR compact sources at ~ 100 GHz dominate the primordial CMB B-mode at $r = 10^{-3}$ on angular scales $\ell \gtrsim 50$

Curto et al 2013

#3. What about magnetic dust (MD)?

- Diffuse MD not yet observed!
- In theory, MD might be highly polarized ~35%
- Spectral degeneracy at ~ 100 GHz between CMB and MD
 - \rightarrow can be a killer for component separation

#4. Averaging effects

The actual foreground SED on the maps differs from the real SED in the sky !

Chluba, Hill, Abitbol, 2017

Mapping / pixelization

many values β_{dust} per pixel (effective SED: $\sum_{i} v^{\beta i} = v^{\beta + C \log(v) + ...}$)

Pixelization/averaging creates spurious curvatures on the foreground SED!

 \rightarrow Bias of $\Delta r \approx 10^{-3}$ if ignored in the parametric fitting

Remazeilles et al 2017, for the CORE collaboration

Dust spectral indices in the sky

Alternative solutions: effective modelling?

Moment expansion of the full foreground SED:

$$(v/v_0)^{\beta} (1 + C_1 (\ln (v/v_0))^2 + C_2 (\ln (v/v_0))^3 + ...)$$

Chluba, Hill, Abitbol, 2017

Moment expansion: dust temperature vs curvature

Example on LiteBIRD 40 – 402 GHz

Without frequencies > 400 GHz, dust temperature is not well constrained

Curvature is local thus better constrained than temperature over a narrow frequency range

M. Remazeilles

Conclusions

After foregrounds cleaning (COMMANDER + SMICA / NILC) and 60% delensing,

- CORE 60 600 GHz able to recover the primordial CMB B-mode power spectrum at $r = 5 \times 10^{-3}$ on both <u>reionization</u> and <u>recombination</u> peaks without bias.
- CORE 60 600 GHz able to detect $r = 5 \times 10^{-3}$ at 4σ significance without bias. \rightarrow allows to constrain the Starobinsky's R^2 inflation model.

After foregrounds cleaning (COMMANDER),

- PICO 21 800 GHz able to detect $r = 10^{-3}$ at 2.5 σ significance without bias.
- PICO 43 462 GHz (narrow frequency range) fails to detect $r = 10^{-3}$
- \rightarrow significant bias due to foreground contamination on large scales

General issues that future CMB B-mode experiments will be facing:

- Foreground mismodelling: omitting curvature, AME, dust components, decorrelation
- Lack of frequency range / sensitivity to β_{synch} and T_{dust}
- Averaging effects of foreground SEDs by pixelization / beam convolution
- Spectral degeneracies, e.g. CMB and magnetic dust?

Alternative solutions: moment expansion (Chluba et al 2017)

Thanks for your attention!

Backup slides

Why a broad frequency range is essential?

- To provide "lever arms" at low/high frequency for sensitive constraints on T $_{_{dust}}$ and $\beta_{_{synch}}$
 - → If not, then ~1% errors on T_{dust} and β_{synch} will extrapolate to an error $\Delta r \sim 10^{-3}$ on the B-mode power at CMB frequencies ~100 GHz

Remazeilles et al 2017, for the CORE collaboration

- To provide "red flags" on incorrect foreground modelling/assumptions and χ2-evidence for false detections of r
 - → Over a narrow frequency range, a multi-component fit can still get a good χ2 for the accurate fitting of the total sky emission (despite incorrect foreground models), nevertheless CMB and foreground B-modes might not be accurately separated!

Remazeilles, Dickinson, Eriksen, Wehus, MNRAS (2016)

- To break spectral degeneracies:
 - → At 70 100 GHz, the SEDs of CMB, magnetic dust, synchrotron with flattening curvature, are very much similar!

Draine & Hensley, ApJ (2013) Remazeilles, Dickinson, Eriksen, Wehus, MNRAS (2016)

Methodology

1. Component separation (Bayesian parametric fit with Gibbs sampler):

$$\begin{array}{lll} \boldsymbol{s}^{(i+1)} & \leftarrow & P\left(\boldsymbol{s} | C_{\ell}^{(i)}, \boldsymbol{\beta}^{(i)}, \boldsymbol{d}\right) \\ C_{\ell}^{(i+1)} & \leftarrow & P\left(C_{\ell} | \boldsymbol{s}^{(i+1)}\right), \\ \boldsymbol{\beta}^{(i+1)} & \leftarrow & P\left(\boldsymbol{\beta} | \boldsymbol{s}^{(i+1)}, \boldsymbol{d}\right), \end{array}$$

amplitudes (CMB & foregrounds) power spectra (CMB) spectral indices (foregrounds)

2. Likelihood estimation of r and A $_{lens}$:

$$-2\ln\mathcal{L}\left[\widehat{C}_{\ell}|C_{\ell}^{th}\left(r,A_{lens}\right)\right] = \sum_{\ell} (2\ell+1)\left[\ln\left(\frac{C_{\ell}^{th}}{\widehat{C}_{\ell}}\right) + \frac{C_{\ell}^{th}}{\widehat{C}_{\ell}} - 1\right]$$

$$C_{\ell}^{th} = r C_{\ell}^{tensor}(r=1) + A_{lens} C_{\ell}^{lensing}(r=0),$$

3. Blackwell-Rao posterior: $\mathcal{P}(r, A_{lens}) \approx \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}\left[\widehat{C}_{\ell}^{i} | C_{\ell}^{th}(r, A_{lens})\right]$

\rightarrow End-to-end propagation of the foreground uncertainties

PICO reconstruction of primordial B-modes No foregrounds, 50% mask

M. Remazeilles

Galactic foregrounds in polarization

Component	Spectrum	Polarization fraction	References	
Synchrotron	- Power-law β~-3, variations Δβ~0.2 - In theory, curvature C=-0.3 - Flattening from multiple power-laws / populations of electrons	~15-20% (up to ~50%)	Page et al (2007), Kogut et al (2007), Macellari et al (2011), Vidal et al (2015)	
Thermal dust Magnetic dust?	 Modified black-body Possibly 2 components/flattening at frequencies <300 GHz Decorrelation across frequencies Similar to thermal dust, but flatter index at frequencies ~100 GHz 	~5% - 10% (up to ~20+%) Variable (up to ~35% ?)	Ponthieu et al (2005), Planck intermediate results. XIX (2015), Planck intermediate results. L (2016) Draine & Lazarian (1999), Draine & Hensley (2013), Hoang & Lazarian (2015)	
Anomalous Microwave Emission (AME)	- Not yet detected (70GHz-300 GHz) - Peaked spectrum ~10-60 GHz	<~5% <~1%	Lazarian & Draine (2000), Dickinson (2011), Lopez- Caraballo et al. (2011), Macellari et al. (2011), Rubino-Martin et al. (2012), Planck 2015 results. XXV	
Free-free	- Power-law β~-2.14 with positive curvature (steepening at frequencies >~100 GHz)	Intrisically zero, in practice <~1%	Rybicki & Lightman (1979), Keating et al. (1998), Macellari et al. (2011)	