
It's about Time 
 
Time is nature’s way of preventing everything happening at once. 
                         John Wheeler 
 
Let us first discuss how astronomers measured the passage of time until the 1960's. 
 
Local Solar Time 
  
For centuries, the time of day was directly linked to the Sun’s passage across the sky, 
with 24 hours being the time between one transit of the Sun across the meridian (the 
line across the sky from north to south) and that on the following day.  This time 
standard is called “Local Solar Time” and is the time indicated on a sundial.  The time 
such clocks would show would thus vary across the United Kingdom, as Noon is later 
in the west.  It is surprising the difference this makes.  In total, the United Kingdom 
stretches 9.55 degrees in longitude from Lowestoft in the east to Mangor Beg in 
County Fermanagh, Northern Ireland in the west.  As 15 degrees is equivalent to 1 
hour, this is a time difference of just over 38 minutes!   
 
Greenwich Mean Time 
 
As the railways progressed across the UK, this difference became an embarrassment 
and so London or “Greenwich” time was applied across the whole of the UK.  A 
further problem had become apparent as clocks became more accurate: due to the fact 
that, as the Earth’s orbit is elliptical and the Earth’s rotation axis is inclined to the 
plane of the solar system, the length of the day varies slightly.   The day length can 
vary by nearly 60 seconds! 
 

   
 
The variation in the length of the day. 
 
 Thus 24 hours, as measured by clocks, was defined to be the average length of the 
day over one year.  This time standard became known as Greenwich Mean Time 
(GMT).   
 
 
 



 
The Equation of Time 
 
The use of GMT has the consequence that, during the year, our clocks get in and out 
of step with the Sun.  The difference between GMT and the local solar time at 
Greenwich is called the “Equation of Time”.  The result is that the Sun is not always 
due south at noon - even in London - and the Sun can transit (cross the meridian) up 
to 16 minutes 33 seconds before noon as measured by a clock giving GMT and up to 
14 minutes 6 seconds afterwards.  This means that sunrise and sunset are not usually 
symmetrically centred on midday and this does give a noticeable effect around 
Christmas time   Though the shortest day is on December 21st, the Winter Solstice, the 
earliest sunset is around December 10th and the latest sunrise does not occur until Jan 
2nd, so the mornings continue to get darker for a couple of weeks after December 21st 
whilst, by the beginning of January, the evenings are appreciably longer.  
 

 
 
The "Equation of Time" - the difference between GMT and local solar time at 
Greenwich Observatory.   
 
This means that: 
The Sun is not usually due south at midday. 
Sunrise and sunset are not equally spaced about midday. 
One consequence is that: 

the earliest sunset is around December 12th.   
         -  15:52  (London) 
     the latest sunrise is around December 30th. 
  -   08:06  (London) 
 
Evenings are getting lighter, but mornings continue to get darker after Christmas. 
     
 
Universal Time  
 
Greenwich Mean Time was formally replaced by Universal Time (UT) in 1928 
(though the title has not yet come into common usage).  In fact, Britain has never 
legally moved from GMT to UT!  But it doesn’t matter as GMT is now identical to 
UT.  For the majority of time prior to 1967, one second was defined as one 86,400th of 
a mean day as determined by the rotation of the Earth.  The rotation rate of the Earth 
was thus our fundamental time standard.  The problem with this definition is that, due 



to the tidal forces of the Moon, the Earths rotation rate is gradually slowing and, as a 
consequence, the length of time defined by the second was increasing!  
 
Ephemeris Time 
 
For a while, the definition of the second was tied down to the motion of the Earth 
around the Sun rather than the rotation of the Earth. This was known as Ephemeris 
Time (ET).  In 1956 the IAU recommended that “the second be defined as 
1/31,556,925.9747 of a year as measured from one spring equinox to the next.  
 
During the 1960’s Atomic clocks were built, as will be described below, and it was 
realised that these would make a far superior time standard.  So, in 1967, a new 
definition of the second was made: 
 

The second is the duration of 9 192 631 770 periods of the radiation 

corresponding to the transition between the two hyperfine levels of the 

ground state of the caesium 133 atom. 

 

 

Thus our clocks are now related to an Atomic Time standard which uses Caesium 
Beam frequency standards to determine the length of the second.   
 
But this has not stopped the Earth’s rotation from slowing down, and so very 
gradually the synchronization between the Sun’s position in the sky and our clocks 
will be lost.  To overcome this, when the difference between the time measured by the 
atomic clocks and the Sun (as determined by the Earth's rotation rate) differs by 
around a second, a leap second is inserted to bring solar and atomic time back in step.  
This is usually done at midnight on New Year’s Eve or the 30th June.  Since the time 
definition was changed, 22 leap seconds have had to be added, about one every 18 
months, but there were none between 1998 and 2005 showing the slowdown is not 
particularly regular.  Leap seconds are somewhat of a nuisance for systems such as 
the Global Positioning System (GPS) Network and there is pressure to do away with 
them which is, not surprisingly, opposed by astronomers!  If no correction were made 
and the average slow down over the last 39 years of  0.56 of a second per year 
continues, then in 1000 years UT and solar time would have drifted apart by  ~ 9 
minutes.  
 
It may well be that the definition of the second was not quite right as, even though the 
rotation rate of the Earth is not changing much at the moment, we are having to insert 
quite a number of leap seconds. Had Atomic Time been defined as 9192,631,937 
cycles instead of 9192,631,770, only six leap seconds would have been needed! 
 
Sidereal Time 
 
If one started an electronic stop watch running on UT as the star Rigel, in Orion, was 
seen to cross the meridian and stopped it the following night when it again crossed the 
meridian, it would be found to read 23 hours, 56 minutes and 4.09 seconds, not 24 
hours.  This period is called the sidereal day and is the length of the day as measured 
with respect to the apparent rotation of the stars.   
 



Why does the sidereal day have this value?  Imagine that the Earth was not rotating 
around its axis and we could observe from the dark side of the Earth facing away from 
the Sun.  At some point in time we would see the star Rigel (in Orion) due south.  As 
the Earth moves around the Sun, Rigel would be seen to move towards the west and, 
three months later, would set from view.  Six months later after setting in the west, it 
would be seen to rise in the east and precisely one year later we would see it due south 
again.  So, in the absence of the Earth’s rotation, Rigel would appear to make one 
rotation of the Earth in one year and so the sidereal day would be one Earth year.  But, 
in reality, during this time, the Earth has made ~365 rotations so, in relation to the star 
Rigel (or any other star), the Earth has made a total of ~ 365 +1 rotations in one year 
and hence there are ~366 sidereal days in one year.  The sidereal day is thus a little 
shorter and is approximately 365/366 of an Earth day. 
 
The difference would be ~ 1/366 of a day or 1440/366 minutes giving 3.93 minutes or 
3 minutes 55.8 seconds. The length of the sidereal day on this simplified calculation is 
thus approximately 23 hrs 56 minutes 4.2 seconds, very close to the actual value. 
 
Clocks 
 
Sundials 
 
These are perhaps the most fundamental clocks of all - they keep, by definition, local 
solar time.  They are not, unfortunately, as useful in the UK as more southerly 
countries!   They are made in many forms; some with a horizontal flat face with 
gnomon pointing up to the pole star, some with vertical faces on the sides of buildings 
and some where a band stretches around the gnomon.  There is quite an art, and some 
mathematics, employed in their design with a particularly interesting one, where a 
person acts as the vertical gnomon, called an analemmatic sundial.  
 
Water Clocks  
 
These are rather fun, and until the invention of the pendulum clock, the most accurate.  
The simplest form just filled a cylinder of constant cross section from a steady supply 
of water.  As in all water clocks, the key to accuracy was to have a constant “head” of 
water so that the water flow into the clock was constant.  A good way the achieve this 
was to allow more water that required for the clock itself to pass into a reservoir 
which thus continuously overflows and so is kept brim full.  An exit pipe at some 
distance below the surface will thus have a constant head of water above it and so be 
at a fixed pressure.  Later, water clocks were designed to provide a mechanical system 
to move an hour hand (and perhaps a minute hand) around a dial, for example in the 
simple cylinder design, a float might rise carrying a toothed vertical arm mounted on 
it to rotate the hour hand of a clock face.  Later, some clocks were based on a water 
wheel which would rotate at a constant speed to drive the hands through a series of 
gears.  
 
Pendulum Clocks 
 
The idea of using a pendulum to keep time is attributed to Galileo who, as a student in 
1602, is said to have watched a suspended lamp swing back and forth in the cathedral 
of Pisa and timed its swing using his pulse.  Galileo's discovery was that the period of 



swing of a pendulum (at least for relatively small swings) is independent of its 
amplitude - the so called “isochronism” of the pendulum.  In 1603 a friend of his 
began to use a short pendulum to measure the pulse rate of his patients.  
 
In 1641, at the age of 77 and totally blind, Galileo, aided by his son, turned his 
attention to using a pendulum to construct a clock but although drawings were made 
and a clock partly constructed in 1649, it was never completed.  Galileo’s work 
inspired the Dutch scientist Christiaan Huygens in 1657 to invent and patent a 
working pendulum clock.  His first design used a verge escapement, which required 
quite a wide pendulum swing causing its period to be somewhat variable.  He made a 
second design which used gears to limit the swing and then, in his third design, used 
curved “jaws” to effectively change the length of the pendulum dependant on the 
swing so correcting the problem to a large extent.  
  

 
Christiaan Huygen's first pendulum clock. 
 
Later, in 1670, clockmakers invented the anchor escapement which reduced the 
pendulum's swing to 4°-6°.  This allowed the clock's case to accommodate longer, 
slower pendulums - in particular, the “seconds” pendulum (also called the Royal 
pendulum).   The length of the pendulum is about 1 metre with each swing taking one 
second.  The tall narrow clocks built using these pendulums became known as 
grandfather clocks and, because of their increased accuracy, a minute hand began to 
be added after 1690.  
 
One problem was that pendulum clocks were observed to slow down in summer due 
to the thermal expansion of the pendulum rod. This was solved by the invention of the 
mercury pendulum, which had a mercury vessel as its bob, and the gridiron pendulum 
that used alternating rods of iron and zinc.   More recently, pendulums made of Invar, 
a steel–nickel alloy, having an exceedingly low coefficient of expansion have been 
used.  A key objective to obtain high precision is to try to allow the pendulum to run 
as freely as possible and the most accurate pendulum clocks (called regulators) only 
give a sustaining pulse to the pendulum every 30 seconds.   
 



The pendulum swing (and hence period) will also be slightly affected by changes in 
the barometric pressure.  A bellow device which changes its size as a function of 
pressure can be used to compensate, but some of the very best regulator pendulums 
are operated in a near vacuum.   It should be noted that, as the period of a pendulum is 
a function of the gravitational pull of the Earth, they have to be calibrated for both 
their height above sea level and the latitude of its location!  (The effective 
gravitational pull of the Earth at the equator is reduced relative to the poles due to the 
Earth’s rotation.) 
 
For many years, regulators, located in observatories to allow astronomical calibration, 
served as the primary standards for national time distribution services. Initially, the 
US time standard used Riefler pendulum clocks, accurate to about 10 milliseconds per 
day. In 1929 it switched to the Shortt free pendulum clock (about 1 second per year) 
before phasing in quartz time standards in the 1930s.  
 
Quartz Clocks 
 
A quartz clock uses an electronic oscillator that is regulated by a quartz crystal to 
keep time.  They are at least an order of magnitude more accurate than good 
mechanical clocks.   In most modern quartz clocks or watches, the quartz crystal 
resonator is in the shape of a small tuning fork, laser-trimmed to vibrate at 32,768 Hz. 
This frequency is equal to 215 Hz.  A power of 2 is chosen so a chain of 15 digital 
divide-by-2 stages can derive the 1 Hz signal which then drives the clock or watch’s 
second hand.  A typical quartz wristwatch will gain or lose less than a half second per 
day at body temperature. 
 
If a quartz watch is kept at a reasonably constant temperature it can be accurate within 
10 seconds per year.  To improve accuracy, quartz chronometers which are to be used 
as time standards include a crystal oven to keep the crystal at a constant temperature.  
From the 1930’s, quartz time standards replaced pendulum regulators in providing 
national time standards.  In 1932 a quartz clock was able to measure the tiny weekly 
variations in the rotation rate of the Earth and that (due to the Moon’s tidal forces) the 
rotation rate was slowing down!  As a second was then defined as 1/84,600th of a day, 
this of course means that the period of a second was not constant – not accepted 
kindly by physicists!   
 
Atomic Clocks 
 
Quartz time standards remained in use until the 1960’s when they were replaced by 
atomic clocks. These are the most accurate time and frequency standards known, and 
use the precise microwave signal that electrons emit or absorb when they change 
energy levels in an atom.  They provide accuracies of approximately 1 part in 1014 
which is ~ 10-9 seconds per day!  
 
The first accurate atomic clock was built by Louis Essen and Jack Parry in 1955 at the 
National Physical Laboratory in the UK and used a beam of caesium-133 atoms 
passing through a cylinder which acts as a resonant cavity at the frequency emitted by 
the caesium atoms.  Such caesium beam clocks provide the fundamental time 
standards of most nations, but are very expensive and usually backed up with 
Hydrogen Maser atomic clocks such as that at Jodrell Bank.   



 
Louis Essen and Jack Parry with the first Caesium Beam Atomic Frequency 
Standard. 
 
The hydrogen maser uses the fact that, when in a magnetic field, the lowest energy 
level of hydrogen is split into two.  In the upper energy level, the spins of the proton 
and electron are parallel whilst in the lower, anti-parallel.  A beam of hydrogen atoms 
is produced (having equal numbers in both states) which is passed through a special 
(hexapole) magnet which splits them into two beams.  The beam of hydrogen atoms 
in the higher state is passed into a resonant cavity which contains radiation at the 
frequency corresponding to the transition from the upper to the lower state - 
1,420,405,752 Hz.  This radiation stimulates the arriving atoms to radiate and build up 
the level of radiation in the cavity.  A small probe extracts a small amount of energy 
from the cavity which is used to lock a crystal oscillator to a frequency with equal 
precision.  This frequency can then be divided down to give a “pulse” at 1Hz to drive 
a clock.   
 

 
The resonant cavity of a Hydrogen Maser Time standard. 
 
The most common atomic clocks use excited rubidium atoms.  They are inexpensive 
but are inherently less accurate.  However, they can be periodically corrected by a 
GPS receiver to achieve long-term accuracy equal to the U.S. national time standards. 



 
The most accurate atomic clock in continuous use today is NIST-F1, which is now the 
USA’s primary time and frequency standard.  It is a caesium fountain atomic clock 
which extracts the resonant frequency (9,192,631,770 Hz) of the caesium atoms when 
they are virtually stationary.  Six infrared laser beams gently push the caesium atoms 
together into a ball which slows down the movement of the atoms and cools them to 
temperatures near absolute zero.  This beautifully removes the effect of the Doppler 
shift that affects atomic clocks that use atoms in motion. The precision given by 
NIST-F1 is now about 5 x 10-16, which means it would neither gain nor lose a second 
in more than 60 million years and is about ten times more accurate than the caesium 
beam atomic clock that served as the United State's primary time and frequency 
standard from 1993-1999. 
 
Time Transfer 
 
The fundamental problem is that it takes time for a time signal to travel from the 
source to the user.   At 1 pm a gun is fired from the ramparts of Edinburgh Castle to 
allow those there to set their clocks or watches.  Holyrood Palace is at the other end of 
the Royal Mile and so the sound of the gun reaches there 5 seconds later, so any 
clocks using this time signal will result in the clock being a little slow.  
 
Observatories close to harbours around the world often had (and some still have) 
“time balls” which are hoisted at (as for example in the case of the Royal Greenwich 
Observatory) 12:55, and dropped at precisely 1pm.  Here the time signal travels at the 
speed of light.   
 
  

  
 
The Royal Greenwich Observatory has a clock mounted outside its gates locked to 
Greenwich Mean Time and first John Belville and later his wife Mary set an Arnold 
& Son Chronometer to this time and took the chronometer around London to allow 
time to be set accurately.  Mary became the first “Time Lady” and, in 1892 passed on 
the clock and business to their daughter Ruth.  Every Monday, Ruth Belville visited 



the observatory and had the accuracy of the chronometer (which she called "Arnold") 
certified. She then walked around London selling on the time.  She carried on this 
service until the 1930s. 
 

    
Ruth Belville, the most famous “Time Lady”. 
 
Radio Controlled “Atomic Clocks” 
 
Such clocks and wristwatches are now widely available and are based on quartz watch 
movements but with additional circuitry to receive time signals from a number of 
longwave radio transmitters around the world such as “MSF” in the UK.   These 
signals are used to correct the time displayed by the clock - often around midnight - 
and can even adjust for British Summer Time. They will normally be accurate to the 
second which is good enough for most people.  An interesting point is that such a 
clock in London will be about 1.6 milliseconds slow as it takes this time for the time 
signal to reach London from the transmitter in Cumbria!  (It has moved there from 
Rugby.) 
 
Pulsars - the best natural clocks in the universe 
 
Pulsars were discovered serendipitously by Jocelyn Bell in 1973 when she discovered 
a radio source that was giving a series of very regularly spaced pulses – hence the 
name, pulsar, given them by the science correspondent of the Daily Telegraph.  Fred 
Hoyle suggested that the signal might be pulsed emissions coming from an oscillating 
neutron star - the theoretical remnant of a supernova but never previously observed.  
Some three months later Thomas Gold at Cornell University in Ithaca, USA, gave a 
satisfying explanation for the pulsed signals.  
 
Gold suggested that the radio signals were indeed coming from neutron stars, the 
remnants of giant stars, but that the neutron star was not oscillating, but instead 
spinning rapidly around its axis.  He surmised that the rotation, coupled with the 
expected intense magnetic field generates two steady beams of radio waves along the 
axis of the magnetic field lines, one beam above the north magnetic pole and one 



above the south magnetic pole.  If (as in the case of the Earth) the magnetic field axis 
is not aligned with the neutron star's rotation axis, these two beans would sweep 
around the sky rather like the beam from a lighthouse.  If then, by chance, one of the 
two beams crossed our location in space, our radio telescopes would detect a sequence 
of regular pulses - just as Bell had observed - whose period was simply the rotation 
rate of the neutron star. 
  
Gold, in this paper, pointed out that a neutron star (due to the conservation of angular 
momentum when it was formed) could easily be spinning at such rates.  He expected 
that most pulsars should be spinning even faster than the first two observed by 
Jocelyn Bell and suggested a maximum rate of around 100 pulses per second.  
   

 
 
Twin beams emitted by a Pulsar.  
 
Since then, nearly 2000 pulsars have been discovered.  The majority have periods 
between 0.25 and 2 seconds.  It is thought that as the pulsar rotation rate slows the 
emission mechanism breaks down and the slowest pulsar detected has a period of 
4.308 seconds.   
 
Millisecond Pulsars 
 
There is a class of "millisecond" pulsars where the proximity of a companion star has 
enabled the neutron star to "pull" material from the outer envelope of the adjacent star 
onto itself.  This also transfers angular momentum so spinning the pulsar up to give 
periods in the millisecond range - hence their name.  The fastest known pulsar is 
spinning at just over 700 times per second - with a point on its equator moving at 20% 
of the speed of light and close the point where it is thought theoretically that the 
neutron star would break up!  
 
Pulsars slowly radiate energy, which is derived from their angular momentum.  This 
is so high that the rate of slowdown is exceptionally slow and so pulsars make highly 
accurate clocks and some may even be able to challenge the accuracy of the best 
atomic clocks.  One of the best pulsar clocks known at the present time is 1713+07 
which has been "spun up" by matter falling onto it from a companion white dwarf 
star.  It now has a pulse period of 4.57 milliseconds - spinning  218.8 times per second  
- and is currently slowing down at a rate of 200 nanoseconds in 12 years.   That is a 
precision of one part in 1,892,160,000,000  ~ better than one part in 1013! 
 



An absolute time standard - Cosmic Time   
 
In 1905, Albert Einstein, then working in the Berne Patent Office, published his paper 
on the Special Theory of Relativity.  Perhaps one of the most well known aspects of 
this theory is that moving clocks appear to run slow when compared to a clock at rest 
with an observer - a phenomena called time dilation.  This prediction has been 
proven by flying highly accurate atomic clocks around the world and has to be taken 
into account in the Global Positioning System (GPS) used for navigation.   
 
As time is relative can we actually define a time standard with which to observe the 
evolution of the universe?  One could, perhaps, define what might be called cosmic 
time as that measured by a clock that is stationary with respect to the universe as a 
whole.  But how would this time relate to clocks on Earth?  We know that the Earth is 
moving around the Sun, and that the Sun is moving around the centre of our Milky 
Way galaxy once every ~220 million years.  But can we measure how fast the solar 
system is moving with respect to the universe?   Perhaps surprisingly, we can.   
 
Since 1965, observations have been made of what is called the Cosmic Microwave 
Background (CMB) – radiation that originated near the time of its origin and which 
now pervades the whole universe.  This radiation is very largely composed of a mix of 
long wavelength infra-red and very short wavelength radio waves - it has a 
"blackbody spectrum".  For simplicity, just suppose that it is made up of only one 
wavelength and that the solar system is moving in a certain direction with respect to 
this radiation.  The Doppler effect will alter the apparent wavelength that we observe 
so that, when looking along the direction in which the solar system is moving it will 
be blue shifted and appear to have a shorter wavelength.  Conversely, in the opposite 
direction, the radiation will appear to be red shifted and have a longer wavelength.  
From very precise measurements of the CMB we now know that we are moving 
through towards the constellation Leo at a speed of ~ 650 km/second.  (2,340,000 
km/hr or about 0.22% of the speed of light!)  This is thus our speed with respect to the 
universe as a whole.  
 
We can thus calculate how the time of a clock at rest with the universe – measuring 
cosmic time – will differ from our clocks.  To do this we need to derive the formula 
that determines the observed time dilation as a function of relative speed.  This is not 
difficult if we can imagine a very simple “clock”.   
 

 
Diagram (a) show a photon clock at rest with the observer, whilst diagram (b) 
shows a photon clock moving at a speed v with respect to the observer. 
 



The clock is made by reflecting a photon back and forth between a pair of perfect 
mirrors separated by a distance, d, as seen in the figure part (a). Our “tick” happens 
every time the photon reflects off the lower mirror and so the photon will travel a 
distance 2d between each tick.  Our fundamental time period, t1, will thus be given by: 
 
           t1  = 2d / c 
 
Suppose we observe such a clock moving past us at speed v.  We will see the situation 
shown in part (b).  As seen from our point of view, the photon will have to travel a 
longer distance, l, between each tick.  This distance is given by 
 
            l  = ((2d)2 + (vt2)

2)1/2 
  
So the time interval between each tick, t2, will then be given by 
 
                     t2  =  l / c  =  ((4d2 + v2t2

2) / c2 )1/2 
 
(c has been squared and put inside the square root.) 
Squaring both sides and cross multiplying gives 
 
                 t2

2c2  =  4d2 + v2t2
2 

 
We can now relate t2  and t1 to v by substituting for d from above using d2  =  t1

2 c2  / 4, 
giving, 

                           t2
2c2  =  t1

2 c2  + v2t2
2 

  
and 
                 t2

2 (c2 - v2)    =  t1
2 c2  

  
so, finally, 
               t2 / t1     =  c2 /  sqrt (c2 - v2)   

    
or,              t2 / t1    =  1 /  sqrt(1 - v2 / c2) 
 
This is the time dilation formula, giving the ratio of time intervals as a function of the 
relative speed v.   Note that the time dilation only become significant when v 
approaches the value of c.  

 
We can now enter our speed with respect to the universe, 650 km/sec, into this 
equation and get the ratio 1.0000023.  This is exceedingly small so, to a very good 
approximation, our clocks can be used to measure the time scale of the universe.   
 
[Note:  The effects of gravitational time dilation which is described below also needs 
to be considered.  Due to this effect, clocks on the Earth’s surface run slow compared 
to a clock in free space by ~700 picoseconds per second which is the order of 1 part in 
~ 10-9 - a far smaller effect than caused by our passage through space and thus can be 
ignored.] 
 
 
 



Muon Decay 
 
The time dilation predicted by Einstein’s theory has been tested many times.  Perhaps 
the simplest demonstration is given by the fact that we can observe Muons at the 
surface of the Earth.  Muons are radioactive particles which decay into an electron 
and 2 neutrinos with a half life of 1.56 microseconds (2x10-6 seconds) measured when 
they are at rest.   This means that after 1.56 microseconds half will have decayed. 
Many are produced at a height of ~10 km in the upper atmosphere by the influx of 
cosmic rays and travel towards the ground at a speed of ~0.98c.   They would thus 
take ~ 34 microseconds to reach the ground.  34 microseconds is nearly 22 half lives 
and thus we might expect that very few would reach the ground - only about 1 in three 
million.  However, as seen by us, a clock traveling with the muon at 0.98c will appear 
to be running slow by a factor of 5 and so the effective half life of the muon will be 
7.8 microseconds.  This is only 4.3 half lives and, as a result about 150,000 out of 3 
million will reach the ground and so we can detect a significant muon flux at sea 
level.    
 
It is worth looking at this as if we were traveling with the muon.  We would not see 
time dilated but the end result must be the same.  This is achieved because, as seen by 
the muon traveling at 0.98c, the distance it has to travel is less by just the same factor 
as the time appeared to be dilated to an observer on the ground.  This is called length 
contraction.  The net result is that the muon still travels for only 4.3 half lives. 
 
Gravitational Time Dilation 
 
If you were an astronaut traveling at a constant speed in a spaceship you would feel 
weightless, but suppose it accelerates upwards in the direction vertically above you.  
As the body of the spaceship moved upwards, you would find that your feet would 
very soon touch and stand upright on the floor and become aware that your body had 
weight.  If the acceleration of the spacecraft was the same as the value of g (the 
acceleration due to gravity) at the surface of the Earth your apparent weight would be 
exactly the same and you could not tell the difference.  Einstein pointed out that there 
is no way of distinguishing between the two scenarios.   The acceleration due to 
gravity that we experience due to the mass of an object like the Earth is exactly 
equivalent in its effects to those experienced by those within an accelerating frame of 
reference.  This observation became the basis of his General Theory of Relativity. 
 
This will enable us to see that there is a second form of time dilation.  Imagine our 
photon clock with the mirrors on each side of the spaceship which is accelerating 
upwards.   If an observer in free space (away from any mass) could see what was 
going on he would see the photon move horizontally in a straight line and hit the 
mirror at a point nearer the bottom of the space craft (as the mirror had moved 
upwards whilst the photon crossed the spaceship).  The reflected photon would then 
cross the spaceship again and he could note its arrival time - the first tick of the clock.  
The length of this tick as measured by this observer would be exactly the same as if 
the spaceship were stationary.  As seen by him the clock would keep the same time as 
one that was stationary.  Now consider what a lady astronaut would observe.  She 
would see that the photon has hit the second mirror at a point nearer to the bottom of 
the spacecraft but, to her, it will have appeared to follow a (longer) curved path from 
one side to the other.  As Einstein states that this is exactly equivalent to being in a 



gravitational field caused by adjacent mass, we should expect that, in the presence of 
matter, light will follow curved lines through space, not straight ones!  If she follows 
the photon back to the mirror on the other side, it will also appear to follow a curved 
path so that, the length of the tick as measured by her will be longer than that 
observed by our external observer - time has been dilated.  This form of time dilation 
is called Gravitational Time Dilation . 
 
We can carry out a simple calculation to estimate the effect of the curvature.  Suppose 
the photon travels a distance l across the cabin taking a time t = l/c.  If the spaceship 
moving with an acceleration g it will have moved vertically a distance L = 1/2 g t2.  
(This is a standard formula in simple mechanics.)  The angle that the photon appears 
to be deflected down is given by: 
    theta = L/l = 1/2 g l /c2    (where theta is in radians) 
 
The angle through which the light has been deflected becomes greater the longer the 
path it travels in the gravitational field as one might expect. If we put in the value for 
g at the surface of the Earth and the width of a typical lecture theatre, say 10m, one 
gets a value of 5 x 10-16 radians or 10-10 arc seconds.  We could not observe this!  
However consider the Sun; here, g at its surface is, at 270 m/s2, about 28 times bigger 
than on Earth and the light from a star will travel a considerable distance within the 
Sun's gravitational field (this obviously get less the further away from the Sun).  The 
exact calculation gives a deflection of 1.75 arc seconds - as has now been shown 
experimentally to a high degree of precision. 
 

   
Eddington's expedition to test Einstein's Theory of General Relativity. 
 
As the gravitational field gets stronger the time dilation gets greater as, for example, 
when approaching a black hole.  At what is called the event horizon of the black hole 



- from within which not even light can escape - the time dilation observed by an 
observer in free space becomes infinite and time is effectively frozen! 
 
Relativity and the Global Positioning System 
 
Due to time dilation, the atomic clocks providing the time signals in the GPS satellite 
constellation and traveling around the globe at a speed of 3.9 km/sec, will lose ~7.2 
microseconds per day as measured by clocks on the ground.  It should however be 
pointed out that there is an even greater effect due to the fact that the GPS clocks are 
in a weaker gravitational field.  This makes them run fast compared to clocks on the 
ground by 45.9 microseconds per day.  Combining the two effects give a net offset of 
+38.7 microseconds per day.  If not corrected, this would give rise to an increasing 
error in position that would increase by ~ 10 km per day.  To account for this, the 
frequency standards on board the GPS satellites are given a rate offset prior to launch, 
making them run slightly slow - they are set to 10.22999999543 MHz instead of 10.23 
MHz.  The fact that we can use GPS receivers to navigate only works if both of 
Einstein’s theories are taken into account! 
 
Spacetime 
 
Soon after Einstein produce his theory a very elegant geometrical representation if its 
ideas was produced by considering what one observed within a 4 dimensional space 
time - three dimensions of space and one of time and called Minkowski Spacetime. 
It is worth trying to understand a little about this to perhaps explain why the odd 
things that are observed happen. 
 
Let us start with a simple analogy:  suppose that on a large area of concrete there is a 
x/y grid marked out (as shown in the accompanying diagram) and a person starts out 
at the origin and walks for a given time in any direction. Say he will have walked a 
distance d.  At the end of that time his position will thus lie on a circle of radius d 
centered on the origin.  The route of his path across the concrete will be a straight line 
having a length (d) and a direction.  Things that have both a length (or it can be a 
speed) in a specific direction are called vectors.   In physics we use the word "speed" 
to describe movement in any arbitrary direction i.e., walking at a speed of 3 miles per 
hour and "velocity" when a direction is also given  i.e., walking due north at a speed 
of 3 miles per hour.  If our walker laid a paint trail behind him, the line would 
represent the vector of his movement across the concrete.   Now one important 
concept for later is that no matter from where one observed this vector it would have 
the same length - the length is said to be invariant. 
 
There are two consequent points.  
 
Firstly, one can dissect the vector into two components, one along the x axis and one 
along the y axis.  As the vector length is invariant if one increases the component 
along, say, the x axis by making him walk in a different direction then the component 
along the y direction must decrease.  
 
Secondly, the length of the vector is given by Pythagoras's theorem which states that 
the square of the vector length (d2) is given by the sum of the x and y components 
squared so that: 



   d2   =   x2    +    y2  
 

    
How could we translate these ideas into a 4 dimensional space time? 
 
In the case described above we could say that the person leaves the origin at time T = 
0 and arrives at a later time, say T = t.  So the beginning and end of his walk are two 
events which are determined by both a position in space and a moment in time. 
       
If we can get the geometry right there must be some vector - which we could call the 
spacetime vector (it is actually called the Minkoski 4 vector as it lies within 4 
dimensions) - that exists which would also be invariant.  This means that, as before, it 
would have the same direction and magnitude no matter who observed it. 
 
The first problem is that we cannot mix different "dimensions" such as length and 
time.  This is easily got round by either converting length into time by dividing by a 
speed or by converting time into length by multiplying time by a speed.  It is simpler 
to choose the latter so, instead of time, we multiply the time by a constant speed, let’s 
call it c, which thus has the dimensions of length.  This should not seem too alien as 
we use "light years" all the time as a unit of length, this being a length given by 
multiplying the speed of light by the number of seconds in a year. 
 
To make this simpler (without changing the basic idea at all) we will reduce the 
number of space dimensions to one so we have just one dimension in space (say x) 
along with one in time,t, multiplied by c, ct. 
 

    
A spacetime vector, s. 



 
It turns out that there are only two possible ways of combining these to values to give 
the magnitude, s, of the spacetime vector:  
 
    s2 =  (ct)2  +  x2   
or   
                                      s2 =  (ct)2  -   x2. 
 
The first is just Pythagoras again, but it turns out that if this is used to define the 
length of s, it turns out that some observers would actually see the person arrive 
before he had left.  In fact, in itself, this is not a fundamental flaw but there is a further 
problem: suppose that this observer saw that when our walker arrived (now only 
walking in the x dimension) he fell into a pot hole and broke his leg, the observer 
could actually inform the person before he left not to go as far in that direction.  This 
violates the fundamental law of causality - we cannot go back in time to change a 
future event.  The classic example of a problem involving causality is the "grandfather 
paradox": what if one were to go back in time and kill one's own grandfather before 
one's father was conceived?  
 
This then, only leaves the second option.  However, this still leaves open the 
possibility of breaching the requirement of causality unless there is a maximum limit 
to the value at which one can travel through space - a cosmic speed limit if you like.   
 
Let us see what we can learn using the "spacetime vector" formula: s2 =  (ct)2  -   x2. 
 
Suppose you see a friend off for a one hour journey from a station where you are 
initially both located.  We will assume that the railway track is straight so we can 
work in one dimension and that, at the station, the distance coordinate have the value 
0.  For you x = 0 and for your friend X = 0.  He travels for a time t1 at a constant 
speed v.  As observed by your friend his position in space will not have changed; X  
 
 

 
My friend takes a train journey. 
 



will still be 0, and the time interval that he measured on his wristwatch will be t1.  So, 
as observed by him: 
       s2  =  (c t1)

2  
 
As measured by you, he will have traveled a distance given by vt2 in a time t2.  Your 
measurement of the spacetime vector is thus: 
 
       s2  =  (ct2)

2 - (vt2)
2 

 
As the spacetime vector is invariant these must be equal so that: 
 
                                     (c t1)

2  =  (ct2)
2 - (vt2)

 2 

 

   c2 t1
2      =   c2t2

2 - v2t2
 2    or   t2

 2 (c2 - v2) =    c2  t1
2     

 
Dividing through by c2  gives: 
 
    t2

 2(1 - v2/c2)  =  t1
 2              

 
So finally we get:               t2  =  t1 / sqrt(1 - v2/c2)      
 
or:   t2/ t1  =  1 / sqrt(1 - v2/c2)   
 
This is exactly the formula we derived earlier but only if we interpret c as the 
velocity of light.  So it appears that light travels at the cosmic speed limit. 
 
So the spacetime vector linking two events must be invariant but, as seen by different 
observers, the time and distance components well normally be different.  Our muon 
experiment described above gives a simple example.  As measured from the ground 
the two events A, when a muon is created in the upper atmosphere, and B when it 
reaches the ground have a time interval between them of 34 microseconds and a 
distance interval of 10km but these are 6.8 microseconds and 2 km as observed by the 
muon.   
 
The Twin Paradox 
 
As I am a twin, it might be worth briefly discussing the twin paradox.  I stay here on 
Earth and my twin brother travels into space accelerating into space at 1g - it will feel 
just like on Earth!  After 10 years the ship decelerates at 1 g to come to rest after 20 
years.  It then turns around and returns home arriving after 40 years as measured by 
the clock on board the spacecraft.  My twin will find that 59,000 years will have 
passed on Earth and that he has effectively travelled into the future! 
 
The paradox is that the twin in the spaceship could regard himself as stationary and 
that the earthbound twin as moving away and then back towards him so, by 
symmetry, they ought to age by the same amount.  But of course there is no real 
symmetry as the space bound twin has accelerated, decelerated and changed direction 
whilst the earthbound twin has stayed stationary (approximately) on Earth.   Some 
authors state that it is the fact that accelerations take place that breaks the symmetry 
(i.e., the effects of General Relativity), others that it can be explained simply by the 



fact that the space bound twin has changed his direction, but all agree that there is no 
paradox!   
 
One can remove the effects of acceleration of one considers some moving clocks.  
One, travelling at 0.6c passes the Earth and its clock is synchronised with on Earth as 
it passes by.  Its clock will run slow by a factor of 1.25 so that, after 5 years have 
passed on Earth, only 4 will have passed on the moving clock.  At this point a clock 
moving back towards the Earth also moving at 0.6c passes it and its clock is 
synchronised as it passes the first one.  When it reaches the Earth as is compared to 
the clock on Earth it will show that only 8 years have elapsed not 10.   
       

 
 
Atomic clocks have been flown around the world and are found to have counted fewer 
“ticks” than a clock stationary on the ground.  In 1971, Hafele and Keating sent 
caesium beam atomic clocks carried by aircraft round the equator in opposite 
directions.  Due to the rotation of the earth, one aircraft travelled round the world at a 
net speed of about 1500mph, and the other at a net speed of about 500mph.  Taking 
the effects of gravitational time dilation into account the results agreed well with 
predictions. 
 
Time Travel 
 
As we have shown, relativity allows one way travel into the future, but is travel into 
the past possible?  This is highly debatable!   As was pointed out in setting out the 
idea of a spacetime vector the principle of causality – that is that one cannot go back 
in time and so possibly change the future - both eliminated one form of possible 
geometry and also defined an upper limit on travel through space – the speed of light. 
 
Thus, I believe, special relativity specifically bans time travel into the past.  However, 
general relativity may possibly allow a loophole if space can be sufficiently “warped” 
by the presence of matter to form what are called wormholes (first proposed by John 
Wheeler) which could, in principle (but probably not in practice) allow a “shortcut” 
from one part of the universe to another as indicated in the diagram.  These are also 
called “Einstein-Rosen bridges” as in the 1930’s Einstein had anticipated them in 
work he carried out with Nathen Rosen.  How might a wormhole (if we could create 
one) be used to go back in time? 
 



 

 
A wormhole producing a shortcut through space 
 
I decide to go to the Andromeda galaxy in my Mk10 spaceship which is parked on the 
lawn outside my lounge. My wife does not like space travel, but would like to see 
what Andromeda is like.  We make a very short wormhole that goes from our lounge 
into the spaceship.  Though this, she can see what is going on as I accelerate away to a 
speed of 99.999999999999999999 the speed of light and reach Andromeda in 4 
hours!   You might think that the wormhole has to stretch - it doesn’t.  Amazingly 
general relativity allows it to remain the same length throughout the voyage - the 
further away I am the better a shortcut it is!  My wife is able to see Andromeda as the 
opening of the wormhole is located conveniently besides a porthole in the spaceship.   
 
I turn the spaceship round and head home arriving on my lawn 4 hour later and so just 
8 hours since I left.  But everything is different, my house can no longer be seen 
through the portholes of the spacecraft.  However, I am not at all surprised as I had 
learnt about special relativity from George Gamov’s book “Mr Tomkins in 
Wonderland”.  I know that by travelling so close to the speed of light on my journey I 
will have travelled just over 5 million years into the future.  (Andromeda is ~2.5 
million light years away so, as measured on Earth, had I travelled at the speed of light 
my return journey would have taken ~5 million years.)  I take a look around and leave 
the spaceship door open.   But remember; I still have my link through the wormhole 
to my lounge.  It is time for the supper, so I crawl through the wormhole and greet my 
wife.   In doing so I travelled back in time 5 million years! 
 
My journey has turned a wormhole - a tunnel through space - into a tunnel through 
time and it has become a time machine!  People who lived ~5,000,000 years into the 
future at the location of my house (this would probably still be above sea level as my 
house is at a height of 500 ft) they could enter the spaceship, crawl through the 
wormhole and travel back to the present.  It is probably apparent that a significant 
limitation of such a time machine is that it is only possible to go as far back in time as 
the initial creation of the worm hole.  This means that using such a machine will not 
allow you to go back to a time before it was created.  As such a time machine has yet 
to be constructed, tourists from the future cannot reach this far back in time - which 
perhaps explains why we do not come across them! 
 
The making of such a wormhole would require a substance with negative energy - a 
form of “exotic matter” - but it appears that quantum physics might make this 
possible.  I would not hold your breath though! 



 
It has been suggested by some physicists that the absence of time travel and the 
existence of causality might be due to the anthropic principle. The argument is that, if 
time travel on short time scales is possible, intelligent life could not evolve because it 
would be impossible for a being to sort events into a past and a future and hence 
comprehend the world around them.  
 
One final point:  if time travel were to be useful, it would have to be a combination of 
both time and space travel.  If one simply moved forwards in time but did not move in 
space, then you might find you end up in empty space as the Earth will have moved 
on in its orbit around the Sun, the Sun will have moved on in its orbit around the 
centre of the galaxy - which is itself moving through the universe! 
 
 
When did time begin? 
 
When the spectra of galaxies were first observed in the early 1900's it was found that 
their observed spectral lines, such as those of hydrogen and calcium, were shifted 
from the positions of the lines when observed in the laboratory.  In the closest 
galaxies the lines were shifted toward the blue end of the spectrum, but for galaxies 
beyond our local group, the lines were shifted towards the red.  This effect is called a 
redshift or blueshift and the simple explanation attributes this effect to the speed of 
approach or recession of the galaxy, similar to the falling pitch of a receding train 
whistle, which we know of as the Doppler effect.  
 
Some of the earliest observations of red and blue shifts were made by the American 
astronomer Vesto Slipher.  By 1915 Slipher had measured the shifts for 15 galaxies, 
11 of which were redshifted.  Two years later, a further 6 redshifts had been measured 
and it became obvious that only the nearer galaxies (those within our local group) 
showed blueshifts.  From the measured shifts and, using the Doppler formula, he was 
able to calculate the velocities of approach or recession of these galaxies.  These data 
were used by Edwin Hubble in what was perhaps the greatest observational discovery 
of the last century, and it is perhaps a little unfair that Slipher has not been given more 
recognition.  
 
The expansion of the universe 
  
In the late 1920's, Edwin Hubble, using the 100" Hooker Telescope on Mount Wilson, 
measured the distances of galaxies in which he could observe a type of very bright 
variable star called Cepheid Variables which vary in brightness with very regular 
periods.  He combined these measurements with those of their speed of approach or 
recession (provided by Slipher) of their host galaxies (measured from the blue or red 
shifts in their spectral lines) to produce a plot of speed against distance.  All, except 
the closest galaxies, were receding from us and he found that the greater the distance, 
the greater the apparent speed of recession.  From this he derived "Hubble's Law" in 
which the speed of recession and distance were directly proportional and related by 
"Hubble's constant" or H0.  The value that is derived from his original data was ~500 
km/sec/Mpc.  Such a linear relationship is a direct result of observing a universe that 
is expanding uniformly, so Hubble had shown that we live within an expanding 
universe.  The use of the word "constant" is perhaps misleading.  It would only be a 



real constant if the universe expanded linearly throughout the whole of its existence.  
It has not - which is why the subscript is used.  H0 is the current value of Hubble's 
constant!  
 

 
Hubble's plot of Recession Velocity against Distance.  
 
If one makes the simple assumption that the universe has expanded at a uniform rate 
throughout its existence, then it is possible to backtrack in time until the universe 
would have had no size - its origin - and hence estimate the age, known as the Hubble 
Age, of the universe.  This is very simply given by 1/H0 and, using 500 km/sec/Mpc, 
one derives an age of about 2000 million years:   
 
 
   1/H0   =   1 Mpc  / 500 km/sec 
    =   3.26 million light years / 500 km/sec 
    =   3.26 x 106 x 365 x 24 x 3600 x 3 x 105 sec / 500 
    =   3.26 x 106 x 3 x 105 years / 500 
    =   1.96 x 109 years   
    = ~ 2 Billion years 
A problem with age 
 
This result obviously became a problem as the age of the solar system was determined 
(~ 4,500 million years) and calculations relating to the evolution of stars made by 
Hoyle and others indicated that some stars must be much older than that, ~ 10 to 12 
thousand million years old.  During the blackouts of World War II, Walter Baade, 
recalculated the distance scale and this reduced Hubble's constant to ~250 
km/sec/Mpc.  There still remained many problems in estimating distances.  Gradually 
the observational data have been refined and, as a result, the estimate of Hubble's 
constant has reduced in value to about 72 km/sec/Mpc.   
 
If this value is used to calculate the age of the universe we get 13.6 billion years.  This 
is almost exactly the best current value of the age of the universe which is thought to 
lie between 13.6 and13.7 billion years.  To be honest, this is a lucky coincidence.  The 
universe has not expanded at a uniform rate - which our calculation depended on.  We 



now believe that during the first ~9 billion years its expansion rate was slowing - 
gravity was reigning in the initial expansion - but that for the last 5 billion years the 
rate of expansion has been increasing.   These two effects have canceled out so that 
now, and only now, in the life of the universe, a linear calculation does give the right 
answer! 

   
This shows how a simple linear expansion gives an age which is very close to the 
actual age of the universe. 
 
Was the Big Bang the origin of time?  St Augustine stated that God created the world 
with time not in time.  Certainly this is true within our own 4 dimensional universe.  
But some cosmologists believe that our universe was created by the coming together 
of two “branes” moving in a higher unseen dimension and, if so, time existed before 
the Big Bang and the cosmos (that is the totality of everything) could be far, far older.    
 
We may never know!  
 
 


