MIDI's Interferometric View of Circumstellar Discs in Binary and Multiple Systems

LMU

Thorsten Ratzka

UK-Germany National Astronomy Meeting Manchester, March 26-29, 2012

A "typical" circumstellar disc

100 рс	200 km	200 m	
Ļ	\downarrow	\downarrow	~ 0.01"
1 AU	1 cm	10 µm	

The VLT Interferometer

The VLT Interferometer

Wavelength

MIDI in a "Nutshell"

Name	MID-infrared Interferometric Instrument		
First Light	December 2002		
Туре	Two-beam pupil-plane		
	interferometer		
Wavelegths	N-band (8 13 µm)		
Telescopes	UTs (8.2 m)	ATs (1.8 m)	
Baselines	47 130 m	8 200 m	
FoV	2 arcsec	10 arcsec	
Airy Disk	0.26 arcsec	1.14 arcsec	
Resolution	≥ 15 mas	≥ 10 mas	
Limit	1 Jy / 0.1 Jy	10 Jy / 0.5 Jy	

0

Optical Path Difference

Interferometric Observables

$$\langle E^*(\vec{r_1}, t_1) \times E(\vec{r_2}, t_2) \rangle = V(\vec{r_1} - \vec{r_2}, t_1 - t_2) = V(\vec{\rho}, 0) \langle E^*(\vec{r_1}, t_1) \times E(\vec{r_2}, t_2) \rangle = V(\vec{r_1} - \vec{r_2}, t_1 - t_2) = V(\vec{0}, \tau)$$

»visibility«

»For sources in the far field the normalised value of the spatial coherence function is equal to the Fourier transform of the normalised brightness distribution *I*.« (van Cittert-Zernike Theorem)

$$\frac{V_r(\vec{\rho})}{V_r(0)} = \frac{\int I(\vec{\alpha}) \exp(-i2\pi \frac{(\vec{\alpha} \cdot \vec{\rho})}{\lambda}) \, d\alpha}{\int I(\vec{\alpha}) \, d\alpha} \quad \text{intensity}$$

$$V_{r,\text{norm}}(u, v) = \frac{\int \int I(\alpha, \beta) \exp(-i2\pi (u\alpha + v\beta)) \, d\alpha \, d\beta}{\int \int I(\alpha, \beta) \, d\alpha \, d\beta} \quad \text{spatial frequencies} \quad \text{spatial frequencies} \quad \text{in units of B}/\lambda$$

A) Fringe Contrast

sometimes known as »Michelson visibility«, and related to the measured maximum and minimum intensities in the fringe pattern:

$$V_{\text{Michelson}} = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}}$$

visibility varies between 0 ($I_{min} = I_{max}$) and 1 ($I_{min} = 0$)

B) Fringe Phase

location of the central fringe with respect to the zero optical path difference

Z CMa - an unequal binary

consists of a FU Ori object (T Tau with a high accretion rate) and probably an embedded Herbig Be star that dominates the system at infrared wavelengths

A typical circumstellar disk!

- the resolution of the interferometer decreases with wavelength
- the emitting region becomes larger due to the temperature gradient
 - \rightarrow decreasing visibilities
 - \rightarrow direct size estimates

Radiative transfer model T Tau N

RY Tau - A case study

4 6 8 10 log P I days 1 1 1 1 1 0 13 0 3 1.3 62 13 Separation Earosec :

Dauphas & Chaussidon, AREPS, 39, 2011

The transitional disk of TW Hya

Ratzka et al., A&A, 328, 2007

Processed Dust around TW Hya

- ~ 8% of the mass is in submicron sized crystalline dust particles; ~83% of the mass is in sub-micron sized amorphous dust grains
- Comparison of the spectrally dispersed correlated flux with the dust model shows that most of the crystalline material is concentrated within 1 AU from the central star
- The disk of TW Hya is not well mixed

A non-prototypical prototype

A non-prototypical prototype

Fitting the binary signal

Ratzka et al., A&A, 502, 2009

Sketching the T Tau system

Herbst et al., AJ, 134, 359, 2007

Th. Ratzka., A&A 502, 623, 2009 & R. Köhler, A&A 482, 929, 2008

GV Tau - another IRC

- binary separated by 1.2"
- distance of ~ 140-160 pc
- variable on short timescales due to

inhomogeneities in the circumstellar material around the southern component?

variable accretion of the northern component?

 presence of a circumbinary envelope suggested

GV Tau - another IRC

Where do we stand?

