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Introduction
Waves are ubiquitous in the solar atmosphere (Tomczyk et al. 2007, 
Okamoto et al. 2007, De Moortel et al. 2000, McIntosh et al. 2011, ... )

Measuring their properties with imaging and spectroscopic 
instruments allows the determination of the in-situ plasma 
conditions: coronal seismology (Nakariakov & Verwichte 2005, De 
Moortel & Nakariakov 2012). 

For this purpose their correct interpretation is essential (De 
Pontieu et al 2007, Erdelyi & Fedun 2007, Van Doorsselaere et al 2008,...).

!Necessity for determining the observational signatures of MHD 
modes: forward modeling (Cooper et al 2003, Williams 2004, Antolin et 
al. 2008, Taroyan & Erdelyi 2009, De Moortel & Pascoe 2012, Gruszecki et 
al. 2012).

OBJECTIVE: Determine the line-of-sight geometrical effects 
on wave observations concentrating first on the sausage mode.
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Model
Ideal axisymmetric plasma cylinder with sausage 
mode, described by (Edwin & Roberts 1983):

Gruszecki, Nakariakov & Van Doorsselaere: Sausage oscillations

Fig. 1. Snapshots of the perturbations of the physical param-
eters in a plasma cylinder at t = 3 (the time is normalised to
w/CAe): the mass density ! (top left panel), the longitudinal
component of the magnetic field Bz (bottom left panel), the
transverse component of the velocity, Vy, (top right panel) and
the longitudinal component of the velocity Vz (bottom right
panel). The spatial coordinates are measured in units of w that
is the half width of the cylinder.

Qualitatively, this behaviour is well consistent with the
estimates which can be obtained analytically for a cylinder
with a cylindrical coordinate system (r,ϕ, z) and a
discontuous density profile:

"0(r) =

{

"i for r < w,
"e for r > w, (11)

as described in e.g. (Edwin & Roberts 1983).
Using a Fourier decomposition in time and z (∼
exp i(kz − ωt)), the solutions with azimuthal symme-
try (∂/∂ϕ = 0) or sausage modes can be described
with the equations:
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where K0 and J0 are the 0-th order Bessel func-
tions. In this system, the density perturbation can
be calculated from

"pert = "− "0 = −
i

ω
∇ · ("0V ). (17)

The solution for the discontinuous equilibrium den-
sity profile is shown together with the numerical

Fig. 2. Snapshots of the density perturbation as a function of
the radial coordinate. The blue line corresponds to the result
obtained by simulations for a plasma cylinder, and the red line
shows the solution in the cylinder with a discontinuous
density profile.

solution in Fig. 2. The solutions follow qualita-
tively the same behaviour. The discontinuity in the
density perturbation for the idealised cylinder is
of course smoothed out in the numerical solution.
Thus, in a low-β environment, the plasma is redistributed
mainly in the transverse direction, while the total mass of
a certain cross-section remains almost the same (and ex-
actly the same in the zero-β case). This can also be in-
ferred from equations 13 and 15, where the vertical
velocity component is clearly proportional to the
plasma-β, and the horizontal component is not. We
have also checked in the simulations that the lon-
gitudinal contribution ∂Vz/∂z to the divergence of
velocity ∇·V is smaller than the perpendicular con-
tribution ∂Vx/∂x+ ∂Vy/∂y.

Figure 3 shows two typical scenarios of the time evo-
lution of the sausage modes: the trapped (top panel) and
leaky (bottom panel) regimes. The trapped mode corre-
sponds to the fifth longitudinal harmonic and the leaky
mode to the first harmonic. Hence their wavelengths are
either greater or smaller than the cutoff wavelength, re-
spectively. The signal shown is the perturbation of the lon-
gitudinal component of magnetic field, Bz, at the centre
of cylinder. Because of their symmetry both excited modes
have the maximum perturbation of this physical quantity
there. The signal corresponding to the trapped mode is al-
most harmonic and decay-less. The apparent variations of
its amplitude are caused by some minor contamination of
the signal by other harmonics which are excited because of
the mismatch between the initial excitation and the spa-
tial structure of the fifth longitudinal harmonics. In the
leaky regime we see that the oscillation is also harmonic,
but quickly decaying in time. The decay is associated with
the radiation of the fast magnetoacoustic waves in the ex-
ternal medium. The efficiency of the leakage is determined
by the ratio of the longitudinal wavelength and the cutoff
wavelength. In physical terms, for a fixed wavelength and
the diameter of the cylinder, the leakage is more efficient
for a lower ratio of the internal and external densities. In
Fig. 3 we illustrate this effect by showing the time behaviour
of the leaky mode for two values of the density contrast,
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of cylinder. Because of their symmetry both excited modes
have the maximum perturbation of this physical quantity
there. The signal corresponding to the trapped mode is al-
most harmonic and decay-less. The apparent variations of
its amplitude are caused by some minor contamination of
the signal by other harmonics which are excited because of
the mismatch between the initial excitation and the spa-
tial structure of the fifth longitudinal harmonics. In the
leaky regime we see that the oscillation is also harmonic,
but quickly decaying in time. The decay is associated with
the radiation of the fast magnetoacoustic waves in the ex-
ternal medium. The efficiency of the leakage is determined
by the ratio of the longitudinal wavelength and the cutoff
wavelength. In physical terms, for a fixed wavelength and
the diameter of the cylinder, the leakage is more efficient
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Fig. 3 we illustrate this effect by showing the time behaviour
of the leaky mode for two values of the density contrast,
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Low β-plasma. Density contrast ρe /ρi  = 0.6, Magnetic 
field variation Be /Bi = 1.7, wavenumber = 3.6/R

Sausage mode: essentially compressible and transverse. 
Emission in Fe IX coronal line (171.07 Å) (CHIANTI, 
Dere et al. 2009)
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Model

A slice along the 
axis of the tube
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Model

Different viewing angles (rays): 0°, 30°, 45°, 60°
For each ray we consider different spatial resolution: 
1 pixel (0R), 1 radius (1R), 3 radiuses (3R) 
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Model

Different viewing angles (rays): 0°, 30°, 45°, 60°
For each ray we consider different spatial resolution: 
1 pixel (0R), 1 radius (1R), 3 radiuses (3R) 
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Model

Different viewing angles (rays): 0°, 30°, 45°, 60°
For each ray we consider different spatial resolution: 
1 pixel (0R), 1 radius (1R), 3 radiuses (3R) 
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Model

Different viewing angles (rays): 0°, 30°, 45°, 60°
For each ray we consider different spatial resolution: 
1 pixel (0R), 1 radius (1R), 3 radiuses (3R) 
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Model

Different viewing angles (rays): 0°, 30°, 45°, 60°
For each ray we consider different spatial resolution: 
1 pixel (0R), 1 radius (1R), 3 radiuses (3R) 

z

y

z

yvr vz

Monday, April 2, 2012



Model

Different viewing angles (rays): 0°, 30°, 45°, 60°
For each ray we consider different spatial resolution: 
1 pixel (0R), 1 radius (1R), 3 radiuses (3R) 
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Model

Different viewing angles (rays): 0°, 30°, 45°, 60°
For each ray we consider different spatial resolution: 
1 pixel (0R), 1 radius (1R), 3 radiuses (3R) 
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Model

Different viewing angles (rays): 0°, 30°, 45°, 60°
For each ray we consider different spatial resolution: 
1 pixel (0R), 1 radius (1R), 3 radiuses (3R) 
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Model

Different viewing angles (rays): 0°, 30°, 45°, 60°
For each ray we consider different spatial resolution: 
1 pixel (0R), 1 radius (1R), 3 radiuses (3R) 
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Results - imaging

Integrated 
emission along 

l.o.s. for different 
viewing angles
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Results - imaging 
integrated emission along rays
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Intensity variations < 10% and decrease with resolution
(Gruszecki et al. 2012): ray crosses >1 wavelength.
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Results - imaging
integrated emission along rays
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The effect is more dramatic for larger viewing angles.
For resolution up to 1R and angles up to 45° the emission 
variation along z is noticeable. 
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Results - spectroscopic
0° angle

0 R 1 R 3 R

ray 1

ray 2

ray 1

ray 2

ray 1

ray 2

velocity [km/s] velocity [km/s] velocity [km/s]
0-50 50 0-50 50 0-50 50

Double peak for high resolution
Periodic non gaussianity for low resolution, irrespective 
of ray crossing location

Monday, April 2, 2012



30° angle

0 R 1 R 3 R

ray 1

ray 2

ray 1

ray 2

ray 1

ray 2

velocity [km/s]
0-50 50

velocity [km/s]
0-50 50

velocity [km/s]
0-50 50

Periodic blueshift and redshift excursions up to 1R resolution.
Dependent on ray crossing location

Results - spectroscopic
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45° angle

0 R 1 R 3 R

ray 1

ray 2

ray 1

ray 2

ray 1

ray 2

velocity [km/s]
0-50 50

velocity [km/s]
0-50 50

velocity [km/s]
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Results - spectroscopic

Effect perdures for viewing angles up to 45° 
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60° angle
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Results - spectroscopic
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Conclusions
Line-of-sight geometrical effects for a tube oscillating with 
the sausage mode: angle & resolution

 For imaging instruments:

Observable periodic intensity variations (< 10%) for 
spatial resolutions up to 1R and viewing angles up to 45°

Significant intensity variation along tube axis matching 
nodal structure of the standing wave

For spectroscopic instruments:

Periodic non-gaussianity irrespective of viewing location 
and resolution (up to 3R)

Periodic blueshift and redshift excursions up to 1R 
resolution when viewing at an angle (up to 45°). Effect 
depends on viewing location along the tube.
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