

Cassini 2000

Cassini 2000

Elemental abundances at Jupiter Galileo Probe Mass Spectrometer

Where's the water?

How much oxygen is there in the solar system?

How did the gas giant planets form?

Juno Mission Overview

```
NASA New Frontiers mission - competitive
Principal Investigator: Scott Bolton
Southwest Research Institute
```

First solar-powered mission to Jupiter

- Eight science instruments to conduct gravity, magnetic and atmospheric investigations, plus a camera for education and public outreach
- Spinning, polar orbiter spacecraft launched on August 5th 2011
- 5-year cruise to Jupiter, arriving July 2016
- About 1 year at Jupiter, ending with de-orbit into Jupiter in 2017
- Elliptical 11-day orbit swings below radiation belts to minimize radiation exposure
- $2^{\text {nd }}$ mission in NASA's New Frontiers Program

Science Objective: Improve our understanding of giant planet formation and evolution by studying Jupiter's origin, interior structure, atmospheric composition and dynamics, and magnetosphere

Juno Science Objectives

Origin and evolution of Jupiter: Juno will improve our understanding of the history of the solar system - and planetary systems around other stars

Juno will investigate Jupiter's

- Origin,
- Interior,
- Atmosphere and
- Magnetosphere.

The orbit: the key to the whole mission
All orbits near the dawn terminator

Extra Orbit 33
View from Sun

32 polar orbits
Perijove ~5000 km

11 day period
Duck under radiation belts...

Skim above clouds...

Juno Baseline Mission

The Juno spacecraft

Juno's key components: Radiation vault

© The Juno spacecraft

Juno' s key components: Solar arrays
$2 \mathrm{~m} \times 7.5 \mathrm{~m}$ arrays producing $\sim 300 \mathrm{~W}$
Sun-pointed, spinning 3 rpm

$\mathrm{J}_{2}, \mathrm{~J}_{4}, \mathrm{~J}_{6}$ and tides give core mass once water abundance is known
$J_{8}-J_{30}$ give deep winds down to

$$
r \sim 0.8 R_{J}
$$

\qquad model signature of deep winds

What internal flows drive Jupiter's magnetic dynamo?

Reveals Jupiter's Dynamo Process

Magnetic Spectra of Earth and Jupiter

Current knowledge of Jupiter is limited to $\mathrm{n}<4$

Earth dynamo at $\mathrm{n}>14$ is hidden by ${ }_{10}{ }^{8}$ crustal field

Juno will measure out to $n \sim 20$
Determine spectral shape, dynamo radius, and secular variations

Radiometry sounds atmosphere to 1000 bar depth

Determines water and ammonia global abundances

6 wavelengths between 1.3 and 50 cm

Using the Internal Heat to Map the Water

-Strong Magnetic Field

- Large
$100 \times$ Earth's magnetosphere
- Rotation-dominated 10 hour period
- lo plasma source
~1 ton/sec S,O ions
- Equatorial region is well studied
- Polar region is completely unexplored

Jupiter's Polar Magnetosphere is completely unexplored

1. Main Aurora
2. Polar Aurora
3. Io Spot + Wake

Hubble Space Telescope

Shown in magnetic coordinates

- rotating with Jupiter

Grodent et al.

Main Aurora

$\sim 1^{\circ}$ Narrow

Shape constant,
 fixed in magnetic co-ordinates

Steady intensity
Clarke et al., Grodent et al. HST

The main aurora is the signature of Jupiter's attempt to spin up its magnetosphere

Hill 1979; Cowley \& Bunce 2001; Nichols \& Cowley 2004; Ray et al. 2010

Polar Aurora: Debate about Dynamics of Outer Magnetosphere

Equatorial View

Polar Magnetosphere Exploration

Plasma/radio waves reveal processes responsible for particle acceleration

UV \& IR images provides context for in-situ observations

Polar orbit is perfect for in-situ exploration of polar magnetosphere

Juno Launch Aug 5, 2011

Can Juno study the moons?

Juno' s orbit deliberately avoids the four large Galilean moons.

Why go all that way and not visit Europa?

... maybe in the later orbits

End of mission

Why crash a perfectly good spacecraft into Jupiter?

After 33 orbits and 15 months at Jupiter, Juno will have received a dose of radiation equal to 100 million dental x-rays!

Eventually radiation damage would render Juno uncontrollable, so the spacecraft is sent into Jupiter in a controlled way so there' s no possibility it will impact the icy moons.
\qquad

