

#### **Evolution and Dynamics of the Eccentric Planetary System HD 181433**

## NAM2012 Giammarco Campanella

30<sup>th</sup> March 2012

Collaborators: Craig Agnor, Richard Nelson

# 101 Multiplanet Systems

Explain the wide eccentricity distribution of exoplanets
MMRs appear to be relatively common



#### Treating dynamical stability as an observable: a 5:2 mean motion resonance configuration for the extrasolar system HD 181433

Giammarco Campanella\*



The orbit of d was not completely sampled

Dynamical stability as an additional observable

#### Retrieving the stable best-fit solution



 We performe an independent analysis of the RV data.

• We test the long-term evolution of the retrieved solutions for Myrs.

 The uncertainity on a<sub>d</sub> reduces dramatically to the narrow band where the 5:2 MMR is possible.



#### **Characteristics of the stable best-fit**



## Possible scenarios for eccentricity growth in the extrasolar system HD 181433

Giammarco Campanella<sup>1\*</sup>, Craig Agnor<sup>1</sup> and Richard Nelson<sup>1</sup>

|       | HD 181 433b         | HD 181 433c           | HD 181 433d           |   |      | Star                       |
|-------|---------------------|-----------------------|-----------------------|---|------|----------------------------|
| Mass  | 7.4 ${ m M}_\oplus$ | 0.65 M <sub>Jup</sub> | 0.53 M <sub>Jup</sub> | 1 | Mass | $\sim 0.8~{\rm M}_{\odot}$ |
| Ecc.  | 0.39                | 0.27                  | 0.47                  | 1 |      |                            |
| P (d) | 9.4                 | 975                   | 2468                  | - |      |                            |

Campanella 2011

#### - SCATTERING

Planet x excites the others x removed - c and d move inwards





#### Sweeping Sec. Resonances / Stellar Spin-down

- Consider GR and J2 effects
- The magnetised wind remove angular momentum from rotating star





## Stellar Spin-down

- Model to test:
  - 3 terrestrial planets external to b
  - instabilities must be generated while e is increasing
  - b is released from the resonance
  - 3 planets removed or moved out leaving b with the present e



# The End!

5





#### **Additional planets?**



- Habitable Zone orbital distance  $a_{hab} = \sqrt{L_* / L_\odot} = 0.55 AU$ 

- Stable region at around 0.2 0.6 AU, confirmed by numerical simulations
- With a super-Earth in the HZ the fit improves. Signal would be at the noise level (F-test ~ 30%)
- The existence of this planet would support the "packed planetary systems" hypothesis

Barnes & Raymond 2004



- Consider GR effects
- Planets have a physical size
- Scenario: terrestrial planet (1-10  $M_{\oplus}$ ) at 2.5-5  $R_{H,m}$  from b

$$R_{H,m} = 0.5(a_1 + a_2) \left[ (M_1 + M_2) / 3M_* \right]^{1/3}$$

• Collisions, no ejections:

$$v_{orb,b} = \sqrt{GM_*/a_b} = 88Km/s$$

• Max kick from a 1 M<sub> $\oplus$ </sub>  $v_{esc,\oplus} = \sqrt{2Gm_{\oplus}/r_{\oplus}} \approx 11Km/s$ 

$$v_{esc,*} = \sqrt{2GM_*/a_*} \approx 124Km/s$$

$$e = v_{esc, \oplus} / v_{orb, b} \approx 0.13$$





- Engineered construction:
  - planet x excites the others, then removed

energy to remove x provided by moving inwards c and d

- how massive x needs to be to generate  $e_b$ ?  $e = v_{esc,x} / v_{orb,b} \approx 0.39$   $m_x = 0.22 \text{ M}_{\text{JUP}} \quad (\rho_x = \rho_{JUP})$   $E_i = -\frac{GM_*}{2} \left( \frac{m_c}{a_{c,i}} + \frac{m_d}{a_{d,i}} \right) \qquad E_f = -\frac{GM_*}{2} \left( \frac{m_c}{a_{c,f}} + \frac{m_d}{a_{d,f}} \right)$  $\Delta E = \frac{GM_*}{2} \frac{m_x}{a_{x,i}} \qquad \Delta E = E_i - E_f$ 

-  $a_{c,i}$ = 1.8 AU x: 2-5 R<sub>H,m</sub> outside d's orbit

#### **Sweeping Secular Resonances**



### Stellar Spin-down

• The magnetised outflowing wind remove angular momentum from rotating star:

For a G or  
K dwarf 
$$\alpha = 1.5 \times 10^{-14} \text{ yrs}$$

Dobbs-Dixon et al. 2004

$$\Omega \propto t^{-1/2}$$
 empirical relation for solar-type stars

Skumanich 1972



### Stellar Spin-down



#### **Conclusions**

- Around 100 planetary systems are known
- A broad range of properties need to be interpreted
- Dynamical stability used as an additional observable when considering RV data
- Planet-planet scattering can generate large eccentricity and throw planets into MMRs
- Sweeping secular resonances during an earlier stage of stellar evolution can generate large eccentricities
- The present state of the system HD 181433 may have been generated by scattering of giant and rocky planets while the star was a fast rotator



#### Number of planets by year of discovery







# The Ultimate Fate of HD 80606 b



# The Nearest Planetary System: Epsilon Eridani ~ 10 light years away two asteroid belts



#### 17 Kepler's Transiting Planet Systems

| Solar System 🛑 Planetary systems known prior to January 26, 2012 |                |                 |                 |                        | Planetary systems announced January 26, 2012 Duconfirmed planet candidates |                 |                 |                     |            |            |            |            |            |            |                    |                    |            |
|------------------------------------------------------------------|----------------|-----------------|-----------------|------------------------|----------------------------------------------------------------------------|-----------------|-----------------|---------------------|------------|------------|------------|------------|------------|------------|--------------------|--------------------|------------|
| Sol-b                                                            | •<br>Kepler-9d | •<br>Kepler-10b | •<br>Kepler-11b | <b>b</b><br>Kepler-18b | <b>b</b><br>Kepler-20b                                                     | •<br>Kol-961.02 | •<br>Kepler-23b | <b>K</b> 0I-1102.04 | Nepler-25b | KOI-250.03 | Kepler-27b | Kepler-28b | Kepler-29b | Kepler-30b | <b>K</b> 0I-935.04 | <b>K</b> 01-952.05 | Kepler-33b |
|                                                                  |                | •               | •               |                        |                                                                            |                 | ۹               | ۲                   |            | ٠          |            | ٩          | ٠          |            |                    | ۲                  | ۲          |
| Sol-c                                                            | Kepler-9b      | Kepler-10c      | Kepler-11c      | Kepler-18c             | Kepler-20e                                                                 | KOI-961.01      | Kepler-23c      | Kepler-24b          | Kepler-25c | Kepler-26b | Kepler-27c | Kepler-28c | Kepler-29c | Kepler-30c | Kepler-31b         | KOI-952.04         | Kepler-33c |
| •                                                                |                |                 | ٠               |                        | ۲                                                                          |                 | •               | ۲                   |            |            |            |            |            |            |                    |                    |            |
| Sol-d                                                            | Kepler-9c      |                 | Kepler-11d      | Kepler-18d             | Kepler-20c                                                                 | KOI-961.03      | KOI-168.02      | Kepler-24c          |            | Kepler-26c |            |            |            | Kepler-30d | Kepler-31c         | Kepler-32b         | Kepler-33d |
| Sol-e                                                            |                |                 | Kepler-11e      |                        | •<br>Kepler-20f                                                            |                 |                 | <b>KOI-1102.03</b>  |            |            |            |            |            |            | <b>K</b> 0I-935.03 | Kepler-32c         | Kepler-33f |
|                                                                  |                |                 | ٠               |                        | •                                                                          |                 |                 |                     |            |            |            |            |            |            |                    |                    | ۲          |
| Sol-f                                                            |                |                 | Kepler-11f      |                        | Kepler-20d                                                                 |                 |                 |                     |            |            |            |            |            |            |                    | K01-952.03         | Kepler-33e |
|                                                                  |                |                 |                 |                        |                                                                            |                 |                 |                     |            |            |            |            |            |            |                    |                    |            |
| Sol-g                                                            |                |                 | Kepler-11g      |                        |                                                                            |                 |                 |                     |            |            |            |            |            |            |                    |                    |            |
|                                                                  |                |                 |                 |                        |                                                                            |                 |                 |                     |            |            |            |            |            |            |                    |                    |            |

Sol-h

Sol-i

## Kepler-9: A System with 3 Transiting Planets



QMUL 2012, G. Campanella

SPACE,

www.SPACE.com

## "Tatooine" for Real •

TATOOINE'S TWIN SUNS SET OVER THE SKYWALKER HOUSEHOLD IN STAR WARS (PHOTO: LUCASFILM LTD.)

Just like the planet **Tatooine** from the *Star Wars* movies, a newly discovered planet circles a pair of stars that orbit one another. Planet **Kepler-16 b** is 200 light-years from Earth and is thought to be similar in size and mass to the planet Saturn.





STARS AND PLANET SHOWN ENLARGED IN RELATION TO THE SIZE OF THE ORBITS

SOURCE: THE JOURNAL SCIENCE. STAR WARS IS © AND ™ LUCASFILM LTD.

#### QMUL 2012, G. Cannpanella

KARL TATE / © SPACE.com

## The Habitable Zone

- *Habitable Zone (HZ):* the region around a star within which an Earth-like planet can sustain **liquid water** on its surface.
- Planets inside the HZ are not necessarily habitable.





#### Smallest planet known to orbit in the middle of the HZ of a sun-like star



|          | Kepler-22 b          |
|----------|----------------------|
| Mass     | $< 35~{ m M}_\oplus$ |
| Radius   | 2.4 R $_\oplus$      |
| P (days) | 290                  |

#### Borucki et al. 2012

QMUL 2012, G. Campanella

# 699 Candidates detected by RV

