			Conclusions
Energetic	particle diffus	ion in structured to	urbulence
l	T. Laitinen, S Jeremiah Horrock JK-Germany Natic Manc March	. Dalla and J. Kelly s Institute, UCLAN, UK onal Astronomy Meeting hester, UK 27-30 2012	3

Interpreting multispacecraft observations

- SEPs observed after propagation in turbulent medium
 - How to interpret wide longitudinal spread?
- To uncover the acceleration physics, the SEP transport must be understood

- Recently the use of full-orbit simulations in modelled turbulence has gained attention
 - Turbulence typically modelled through Fourier mode description and spatially homogeneous

Issues in SEP transport modelling

- Heliosphere is a highly varying, non-constant plasma environment
- Transient structures, varies spatially and temporally
- Turbulence evolves non-linearly

Sheeley et al (1997)

Issues in SEP transport modelling

- Heliosphere is a highly varying, non-constant plasma environment
- Transient structures, varies spatially and temporally
- Turbulence evolves non-linearly

Sheeley et al (1997)

Laitinen. Dalla & Kelly

Issues in SEP transport modelling

- Heliosphere is a highly varying, non-constant plasma environment
- Transient structures, varies spatially and temporally
- Turbulence evolves non-linearly

Motivation	Model	Results	Conclusions
Enveloped	turbulence		
	$\beta_{\rm p}^{2} = 4$ $\beta_{\rm p}^{2} = 1$ 0 110 115 120	$\vec{\kappa}^{2}_{\mu\nu}$	

 In this work (Laitinen et al, ApJ, 2012), we remove the assumption of homogeneity by introducing turbulent envelopes

$$\mathfrak{A}_i(z) = \frac{1}{2} \left[1 - \cos\left(2\pi \frac{z-z_i}{L_p}\right) \right], \qquad z_i \leq z < z_i + L_p.$$

to form the total magnetic field

$$\mathbf{B}(x, y, z) = B_0 \hat{\mathbf{u}}_z + \sum_{i=1}^{N_p} \mathfrak{A}_i(z) \, \delta \mathbf{B}_i(x, y, z), \text{ with}$$
$$\delta \mathbf{B}_i(x, y, z) = \sum_{n=1}^N A(k_n) \hat{\xi}_{n,i} \exp\{\iota(k_n z'_{n,i} + \beta_{n,i})\}$$

z [r_s]

z [r_s]

Motivation	M o del	Results	Conclusions
Enveloped	turbulence		
	$\beta_{p} = 4$ $\beta_{p} = 4$ $\rho_{p} = 4$ $\rho_{$	$ \frac{3}{10} $ $ \frac{100}{110} $ $ \frac{110}{115} $ $ \frac{120}{120} $	

- Two models considered:
 - Modulated wavefield: Only amplitude modulated

$$\mathbf{B}(x,y,z) = B_0 \hat{\mathbf{u}}_z + \delta \mathbf{B}(x,y,z) \sum_{i=1}^{N_p} \mathfrak{A}_i(z)$$

• Random envelope: Enveloping breaks the coherence

$$\mathbf{B}(x,y,z) = B_0 \hat{\mathbf{u}}_z + \sum_{i=1}^{N_p} \mathfrak{A}_i(z) \, \delta \mathbf{B}_i(x,y,z), \text{ with}$$
$$\delta \mathbf{B}_i(x,y,z) = \sum_{n=1}^N A(k_n) \hat{\xi}_{n,i} \exp\{\iota(k_n z'_{n,i} + \beta_{n,i})\}$$

Laitinen, Dalla & Kelly

z [r_s]

 $z [r_s]$

- δB_i defined as a slab/2D composite turbulence with Kolmogorov spectrum (Giacalone&Jokipii 1999)
- Comparison with homogeneous turbulence case with same mean energy density in the simulation volume

Model

Results

Field lines

- Homogeneous turbulence: some field lines random-walk to large distances
- Modulated wavefield: qualitatively similar to the homogeneous turbulence

 Random envelope: random walk is more restricted

Laitinen, Dalla & Kelly SEPs in Structured Turbulence 5 / 7

Perpendicular diffusion coefficient

 Modulated wavefield: depends on enveloping density

- Random enveloping: depends on envelope length
- Caused by the loss of coherence, parametrised by the envelope length

 $E = 10 \,\mathrm{MeV}, \, \delta B^2 / B^2 = 1, \, L_c = 2.15 \,\mathrm{r_{\odot}}$

		Conclusions
Conclusions		

- Inhomogeneities in turbulence alter significantly the transport of energetic particles
- Parallel transport is reduced by up to 70% when structure size approaches the resonant scales
- Perpendicular transport reduced by up to factor 10 because of loss of coherence of 2D-structures along mean field direction
 - Caused by the modified field line meandering
- These effects should be taken into account when seeking understanding of the SEP event scenarios