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Motivation
Joule heating has been identified as an important source of thermal 
energy in the solar corona (for instance, Peter et al., 2006; Gudiksen 
and Nordlund, 2005). 

The effectiveness of this process however, depends critically on the 
value of resistivity which enables current dissipation and the direct 
conversion of magnetic energy into thermal energy.

The appropriate value of resistivity in the solar corona is still an open 
question.

Tuesday, March 27, 12



Model

Domain: 

x-[0,46.5]Mm

y-[0,46.5]Mm

z-[0,31]Mm

Transition Region at 1.5Mm

defined through density (->Temperature)

Tuesday, March 27, 12



Model

Domain: 

x-[0,46.5]Mm

y-[0,46.5]Mm

z-[0,31]Mm

Transition Region at 1.5Mm

defined through density (->Temperature)

0 10 20 30 40 50 60
10−4

10−3

10−2

10−1

100

101

102

103

104

ẑ
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Model (B-field)
XRT/Hinode observation of X-ray BP on Dec. 19, 2006

Javadi et al., 2011

B-field extrapolated from first 8 modes of 
Fourier filtered LOS observations
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Model (velocity)
Photospheric plasma motion 
is determined through local 
correlation-tracking of the 
Fourier filtered LOS B-field.

Flow is approximated by the  
inclusion of incompressible 
flow vortices (no emergence) 
at the photospheric 
boundary. 

Javadi et al. (2011)
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Model (velocity cont.)
Chromospheric plasma coupled to 
neutral motion near photospheric 
boundary through height-dep. 
“collisional” coupling term.
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The Resistive MHD Equations (normalized):

@⇢

@t
= �r · ⇢u

@(⇢u)

@t
= �r · (⇢uu)�r(h�) + j ⇥B � µ(u� u0)

@B

@t
= r⇥ (u⇥B � ⌘j)

@h

@t
= �r · hu� (1� �)

�
h1��⌘j2

where, p = 2h� (!conservative energy equation for ideal MHD)
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Numerics
Leapfrog / DuFort-Frankel

Non-uniform grid:

2nd order --> explicit control over 
resistivity (not dep. on grid resolution)

Thorough OpenMP parallelization

Normalization:
Plasma Parameter Normalization Value

Density N
o

= 2⇥ 1015 m�3

Length L
o

= 500 km
Magnetic Field B

o

= 1⇥ 10�4 T
Alfvén Speed v

A

= 50 km/s
Time ⌧

o

= 10.25 s
Pressure P

o

= 4⇥ 10�3 Pa
Temperature T

o

= 7.2⇥ 104 K
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Resistivity
Parameter dep.:

where,          ,                , and     is taken 
as the electron thermal speed scaled to the 
MHD grid scale.

vcrit

⌘⇤ = ⌘0 +

(
0; if |vcc| < vcrit

⌘eff

⇣
vcc

vcrit
� 1

⌘
; if |vcc| � vcrit

vcc = j/ne ⌘eff = 300 ⌦m
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Current Sheet Formation
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Current sheets form where photospheric flow shears
magnetically connected regions

Current Sheet Formation
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Lorentz  forces within the 
chromosphere force cool 
plasma upwards
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Lorentz  forces within the 
chromosphere force cool 
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Lorentz  forces within the 
chromosphere force cool 
plasma upwards

Compressional wave propagating 
into the corona
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Resistivity Models
In order to investigate the role played by the 
resistivity in heating the corona we consider 
variations to the resistivity model including:

Constant Uniform Resistivities

Variation of the Resistivity Coefficient (     )

Variation of the Critical Value (     )

Constant Uniform Critical Value (     )

⌘⇤ = ⌘0 +

(
0; if |vcc| < vcrit

⌘eff

⇣
vcc

vcrit
� 1

⌘
; if |vcc| � vcrit

⌘eff

vcrit

vcrit
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Constant Uniform Resistivity
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Variation of Resistivity 
Coefficient (    )
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Variation of vcrit
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Constant Uniform vcrit

0 10 20 30 40 50 60 70 80−5

0

5

10

15

20

25

30
Constant Critical Parameter

time (oA)
 

 
vu¢ p (vcrit=1x10

−8)

d j2 (vcrit=1x10
−8)

vu¢ p (vcrit=1x10
−6)

d j2 (vcrit=1x10
−6)

Tuesday, March 27, 12



Conclusions
 In agreement with Spangler 2009, we find the Spitzer 

resistivity too low to enable significant heating within the 
corona directly through current dissipation.

Our results indicate a tendency for lower critical 
parameters to generate earlier onset and larger spatial extent 
of anomalous resistivity, thus leading to a more significant 
Joule dissipation and a greater increase in thermal energy 
within the corona. This is extends the findings of Roussev 
(2002) for the case of 2D reconnection to 3D.

For most resistivity models considered herein, compression 
dominates Joule heating in driving coronal thermal energy 
increase. However, given a sufficiently large value of 
anomalous resistivity, the Joule heating may become the 
dominant source of heating (Büchner et al. (2006) have 
estimated the anomalous resistivity arising from non-linear ion 
acoustic instabilities to be as large as 6x10^4 Ohm-m).
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