

The interplay between molecular and ionized gas surrounding the massive embedded star AFGL 2591

Katharine Johnston MPIA, Heidelberg

Debra Shepherd, NRAO Thomas Robitaille. MPIA Kenny Wood, U. of St Andrews Henrik Beuther, MPIA

The massive embedded star AFGL 2591

Hasegawa et al. 1995 4U offset (arcsec) 20 0 Dec. -20 [SII]-r_c-Hα ///// H2 -40 CO red CO blue -20 20 0 -40 40 R.A. offset (arcsec)

Combined JHK image of AFGL2591 (2'x2' field). Gemini North, near-IR commissioning image, 2001

Schematic of AFGL2591 (Fig 5, Preibisch et al. 2003)

 $2 \times 10^5 L_{\odot}$ at 3.33 kpc (Rygl et al. 2011)

Thursday, March 22, 2012

Modelling the dust geometry

The star formation "standard model"

Hosokawa et al. 2010

Modelled data using dust radiation transfer code Hyperion (Robitaille 2011) Optimisation routine for fitting: genetic code described in Johnston et al. 2011

Best fitting image profiles

with disk without disk

Thursday, March 22, 2012

Best fitting SED and images

The best-fitting SEDs: envelope without disk – – envelope plus disk –

2MASS observed ________ and model images

Thursday, March 22, 2012

How well constrained are the parameters?

How well constrained are the parameters?

Collimated ionized jet towards VLA3

Contours are -3, 3, 4, 5, 7, 10, 15, 20, 30, 40, 50... 100 × RMS noise RMS noise = 30 μ Jy beam⁻¹. Greyscale: -0.03 to 3.77 mJy beam⁻¹ (1.2 × peak value). Synthesized beam: 0.43 × 0.40", PA = 43°

Deconvolved length = 1.2" (4000AU at 3.33 kpc) Spectral index of VLA3 ~ 0.51

Momentum transport rate of ionized jet (Reynolds 1986): $5.4 \times 10^{-3} M_{\odot} \text{ yr}^{-1} \text{ kms}^{-1}$

Momentum transport rate of large-scale outflow (Hasegawa & Mitchell 1995): $8.3 \times 10^{-3} M_{\odot} yr^{-1} kms^{-1}$

Required momentum transport rate of jet for emission to be from shocks (Curiel et al. 1989): $3.4 \times 10^{-2} M_{\odot} \text{ yr}^{-1} \text{ kms}^{-1}$

Collimated ionized jet towards VLA3

Contours are -3, 3, 4, 5, 7, 10, 15, 20, 30, 40, 50... 100 × RMS noise RMS noise = 30 μ Jy beam⁻¹. Greyscale: -0.03 to 3.77 mJy beam⁻¹ (1.2 × peak value). Synthesized beam: 0.43 × 0.40", PA = 43°

Deconvolved length = 1.2" (4000AU at 3.33 kpc) Spectral index of VLA3 ~ 0.51

Momentum transport rate of ionized jet (Reynolds 1986): $5.4 \times 10^{-3} M_{\odot} \text{ yr}^{-1} \text{ kms}^{-1}$

Momentum transport rate of large-scale outflow (Hasegawa & Mitchell 1995): $8.3 \times 10^{-3} M_{\odot} \text{ yr}^{-1} \text{ kms}^{-1}$

Required momentum transport rate of jet for emission to be from shocks (Curiel et al. 1989): $3.4 \times 10^{-2} M_{\odot} \text{ yr}^{-1} \text{ kms}^{-1}$

C¹⁸O (1-0) tracing the outflow and inner envelope

Gemini North three-colour JHK image overlaid with contours of C¹⁸O emission

RED: -4.0 to -3.3 kms⁻¹ BLUE: -8.0 to -7.0 kms⁻¹ WHITE: 5.0 kms⁻¹ (central channel) Synthesized beam : $4.5 \times 3.6^{\circ}$, P.A. 93°.

C¹⁸O intensity-weighted first moment map

Contours: C¹⁸O integrated map from -2.3 to -8.7 kms⁻¹ Synthesized beam: 4.5×3.6 ", P.A. 93°

C¹⁸O (1-0) tracing the outflow and inner envelope

C¹⁸O channel map at 0.3 kms⁻¹ resolution between -7.7 and -5.3 kms⁻¹

 $\begin{array}{ll} \mbox{Map rms } \sigma = 0.1 \mbox{ Jy beam}^{-1} & \mbox{Peak flux = 1.1 Jy beam}^{-1} \\ \mbox{Contours at -3, 3, 4, 5, 6, 7, 8, 9, 10, 11 } \times \sigma & \mbox{Synth. Beam: } 4.5 \times 3.6'', \mbox{P.A. 93}^{\circ} \\ \mbox{v}_{\rm LSR}^{\sim} -5 \mbox{kms}^{-1} & \mbox{Synth. Beam: } 4.5 \times 3.6'', \mbox{P.A. 93}^{\circ} \\ \end{array}$

At higher velocities outflow is more collimated

Take away message: Massive stars can form in a similar manner to low-mass stars

Caveats (and possibly clues): Formation is not isolated! Formation on cluster scales