

Astrochemistry of Acetonitrile Ices

A. Abdulgalil, D. Marchione, A. Rosu-Finsen, John Thrower, M. Collings, & M. McCoustra Heriot-Watt University Aarhus University

> *F. Islam & M E. Palumbo* INAF – Osservatorio Astrofisico di Catania

> *E. Congiu & F. Dulieu* Observatoire de Paris, Université de Cergy

HERIOT WATT UNIVERSITY

Outline

Astrochemistry of Nitriles

- The importance of nitriles

- CN-bearing species *Laboratory Astrochemistry*

- Instrumentations
- Surface structure
- RAIRS Studies
- Energetic Processing

Summary

Why we study nitriles?

- Nitriles represent large class of organic molecules in the ISM
- Nitriles are thought to be the parents of many of the amino acids
- Understanding their chemistry is important to determine their

abundance in the interstellar environments

CN-bearing molecules

Molecule	Titan's Atmosphere	Comets	ISM
CH ₃ CN	✓	✓	✓
CH ₃ CH ₂ CN	-	-	✓
(CH ₃) ₂ CHCN	-	-	-
(CH ₃) ₃ CCN	-	-	-
CH ₂ CHCN	-	-	✓
HCCCN	✓	\checkmark	✓
C_2N_2	~	-	-

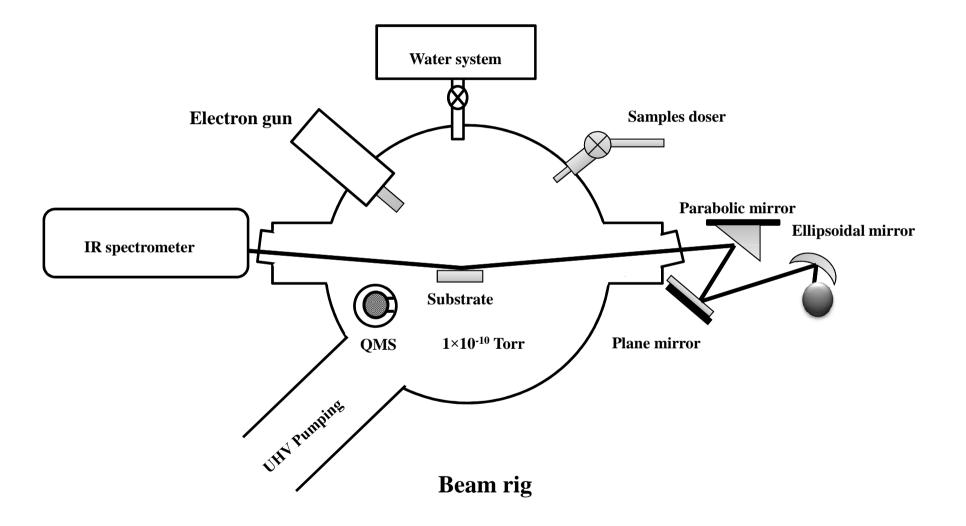
Environment	Abundance
Titan's atmosphere	0.003ª
Cometary coma (Hale-Bopp)	0.02 ^b
Cold molecular cloud (L134N)	<0.01 ^b
Hot cores Sgr $B_2(N)$	0.3 ^b

Hudson et al, Icarus, 2004, **171**, 466. Kelly Beatty et al, The New Solar System, 4th ed, 1999. pp 280 Charnley et al., *Adv. Space Res.*, 2002, **30**, 1419.

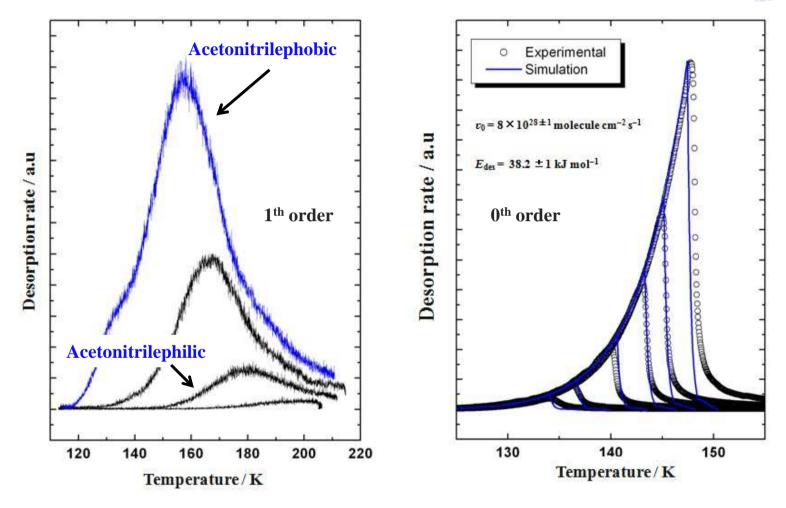
^a Fractional abundance in ppm

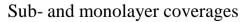
^bFractional abundance relative to water

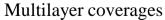
Laboratory Astrochemistry at HWU



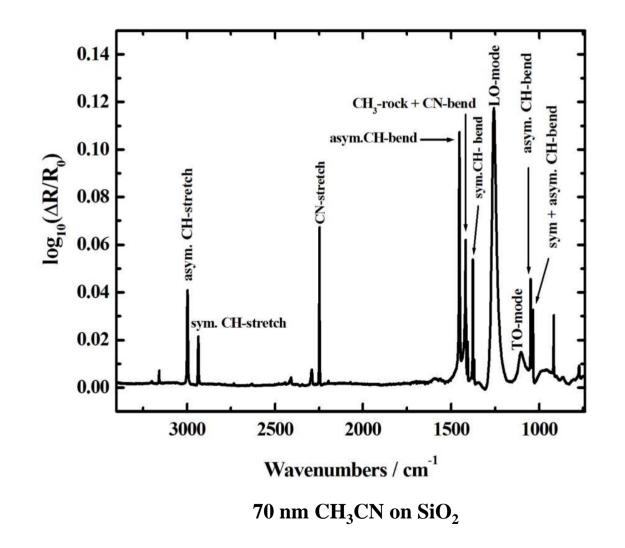
Beam Rig


Laboratory Astrochemistry at HWU



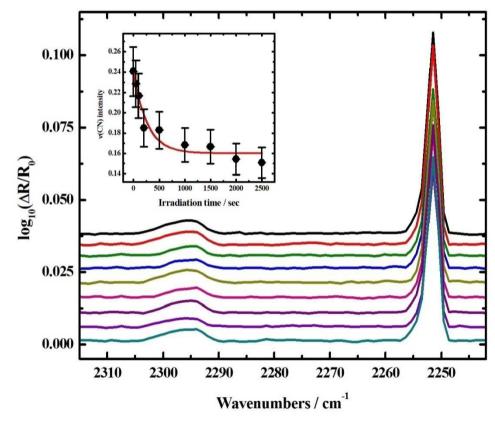


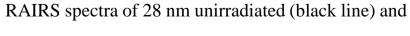
Surface Structure



Acetonitrilephobic: clustering and islanding ($E_{des} < 40 \text{ kJ mol}^{-1}$)

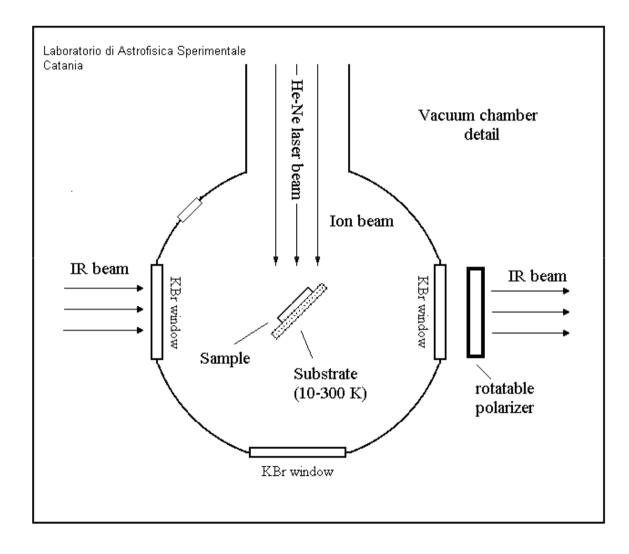
Acetonitrilephilic: isolated adsorbate ($E_{des} > 40 \text{ kJ mol}^{-1}$)

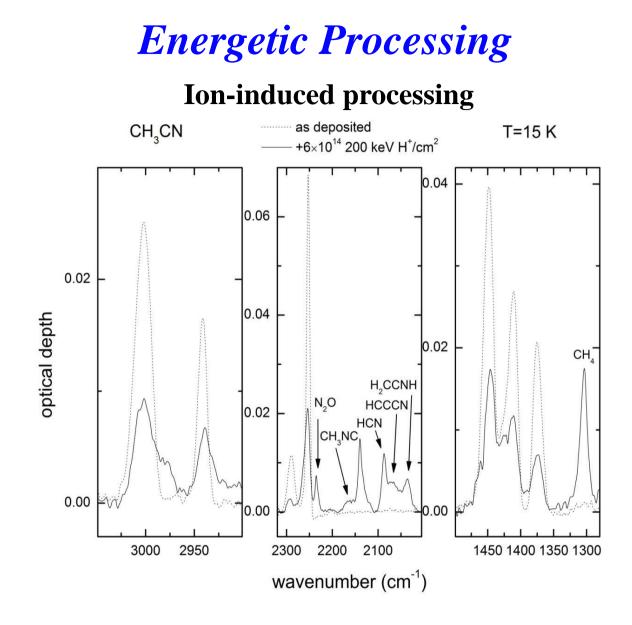

RAIRS Studies

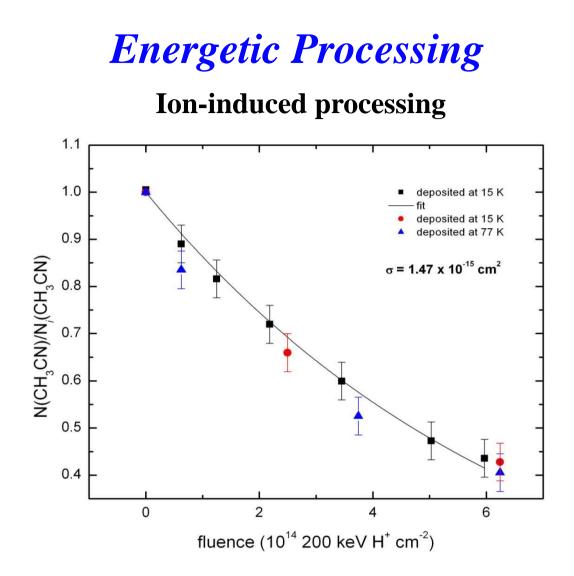

Energetic Processing

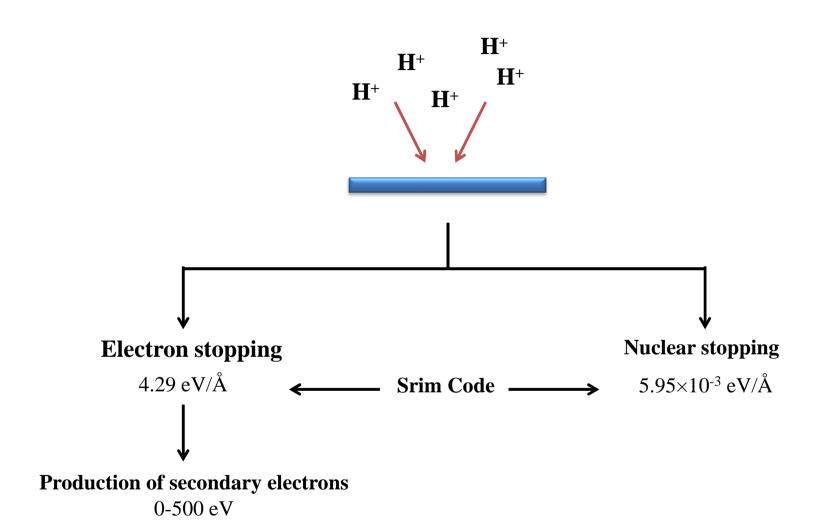
Low energy electron-induced processing

Electron Energy (eV)	Desorption Cross-section (cm²)	
250	$1.9 (\pm 0.08) \times 10^{-17}$	
300	$4.2 (\pm 0.01) \times 10^{-17}$	
350	$1.1 (\pm 0.004) \times 10^{-17}$	
400	$1.1 (\pm 0.002) \times 10^{-17}$	




Irradiated (colourful lines) CH₃CN ice


Laboratory Astrophysics at Catania



Laboratory Astrophysics at Catania

Summary

Heriot-Watt University

1. Surface structure:

- 1) < 0.28 nm sub-monolayer growth is favoured with strong E_{des} to the surface.
- At 0.28-1.4 nm, completion of the monolayer (clustering and islanding) at 35 kJ mol⁻¹ resulting in 1st order desorption regime.
- At high films thickness up to 70 nm of CH₃CN (island formation), 0th order desorption regime is resulted.

2. RAIRS:

Negligible shifts in IR peaks of CH_3CN because it does not interact strongly with silica surface (Van der Waals forces).

3. Energetic Processing (Low energy electron processing):

✤ For CH₃CN/ silica regime and within any film thickness, the interaction is electronpromoted desorption with *k* value of 1.18×10^{-5} s⁻¹.

Summary

Osservatorio Astrofisico di Catania

Energetic Processing (Ion processing):

- * Ion irradiation resulted in the formation of new absorption bands indicating the presence of many new species such as H_2CCNH , HCCCN, HCN and CH_3NC .
- the rate constant for chemical transformation of the CH₃CN determined in the proton irradiation (1.47×10⁻³ s⁻¹) is higher than the rate constant for electron-promoted desorption performed at the HWU.

Acknowledgement

Prof. Martin McCoustra

Dr. Mark Collings

John Thrower (Previous PhD student)

Dr. Jerome Lasne

Demian Marchione (PhD student)

Alexander Rosu-Finsen (MChem student)

Lisa Hudgson (Previous BSc student)

Lars Finger (Project student- Marburg University)

Elizabeth Hall (Previous MChem student)

Kylie Beasley (Previous MChem student Funding

LASSIE FP7 initial Training Network

Dr. Farah Islam

INAF – Osservatorio Astrofisico di Catania

Prof. Maria Elisabetta Plumbo

Observatoire de Paris, Université de Cergy E. Congiu & F. Dulieu

Libyan Embassy - London

Thank you for your attention