

A Detailed Investigation of the HII Region RCW175: from radio to mid-IR wavelengths

Christopher Tibbs

IPAC/Caltech

In collaboration with: Roberta Paladini, Clive Dickinson, Mathieu Compiègne, Nicolas Flagey, Alberto Noriega-Crespo, Sean Carey, Sachindev Shenoy, Simon Casassus

Tibbs et al. (submitted to ApJ)

RCW175 Observations

NVSS 1.4 GHz	Effelsberg 1.4 GHz	Effelsberg 2.7 GHz	Parkes 5 GHz	Green Bank 8.35 GHz
		0		3
Nobeyama 10 GHz	Green Bank 14.35 GHz	CBI 31 GHz	WMAP 94 GHz	SPIRE 500 micron
		3		JE .
SPIRE 350 micron	SPIRE 250 micron	PACS 160 micron	IRIS 100 micron	PACS 70 micron
P		es.		*
IRIS 60 micron	IRIS 25 micron	MIPS 24 micron	IRIS 12 micron	IRAC 8 micron

RCW175 Observations

Cosmic Background Imager (CBI) data at 31GHz (Dickinson et al. 2009)

RCW175 Observations

Herschel HiGal 70, 160, 250, 350 and 500µm data (Molinari et al. 2010)

RCW175 Observations

Spitzer MIPSGAL 24µm data (Carey et al. 2009) and GLIMPSE 8µm data (Churchwell et al. 2009)

C. Tibbs

Morphology of RCW175

Blue = 8μm, green = 24μm, red = 350μm

Dust Modelling

- DUSTEM (Compiègne et al. 2011) is a dust emission model based on the formalism of the Desert et al. (1990) model.
- Previously been used to characterise the dust properties:
 - in the regions of diffuse emission on the Galactic plane (Compiègne et al. 2011)
 - in the Eagle Nebula (Flagey et al. 2011)
 - in the Perseus molecular cloud (Tibbs et al. 2011; see poster 154)

7 8

6

10 11 12

9

C. Tibbs

Dust Modelling

2.5

2

0.6 0.7 0.8 0.9 1

SED

~70% of the 31GHz is anomalous

- Compute flux densities of RCW175 from the radio to the mid-IR using aperture photometry.
- This is an update of the SED produced by Dickinson et al. (2009) for this region.
- We simultaneously fit the data for:
 - free-free emission
 - spinning dust emission
 - thermal dust emission
- Possible synchrotron contribution from nearby SNRs.
- We model the thermal dust emission using 2 components to represent the cold and warm dust as we know the entire region is not at one temperature.
- We fit a generic WIM spinning dust model.

YSO Candidates

- Use the MIPSGAL Point Source catalogue (Shenoy et al. in prep) which is band merged with the GLIMPSE (3.6, 4.5, 5.8 and 8µm) and 2MASS (J, H and K) source catalogues.
- We select only sources with > 95% reliability, and find 95 sources with vicinity of RCW175.
- To find YSOc we implement a colourcolour selection criteria adopted from Rebull et al. (2010).

YSO Candidates

C. Tibbs

Origin of the AME

Conclusions

- The CBI 31 GHz emission is originating from 2 peaks of AME within RCW175.
 - One of the peaks is located towards G29.0-0.6 and the other is located towards G29.1-0.7.
- The AME is correlated with the exciting radiation field in both components.
 - This suggests that the AME is due to electric dipole emission arising from spinning dust grains spun-up by photon-grain interactions.
- The AME in G29.1-0.7 is not correlated with the PAHs in the PDR and we speculate that the major gas ions may be contributing to the observed spinning dust.