3D Hydrodynamics Simulations and Energetics of Emerging Superbubbles

Martin Krause Excellence Cluster Universe, Garching, Germany

with: Roland Diehl, Andi Burkert, Katharina Fierlinger, Rasmus Voss, Udo Ziegler

Overview

Introduction

- Superbubbles
- The energy problem
- Hydrodynamic simulations
 - Emerging superbubble from
 3 massive stars
 - Vishniac instability
 - Energetics
- Conclusions

Superbubbles

- Groups of stars (clusters / associations) combine their wind bubbles to "superbubbles"
- Superbubble expansion commonly modelled by Weaver (1977)-law:

 Superbubb connect to halo

$$R \propto (Lt^3/\rho_0)^{1/5}$$

Top:Rosette nebula (optical, Xrays: red), Chandra homepage

Bottom X-ray + H α of N158 in the LMC, Sasaki et al. 2011

Growth rate discrepancy in superbubbles

Energy problem:

- Observationally, even single bubbles are claimed to be inefficient, e.g. Garcia-Segura & Mac Low (1995), 0.5% for NGC 6888, but lack of hard evidence for a sample
- Superbubbles expand slower than expected from their stellar content (e.g. Oey & Garcia -Segura 2004)
- Explanations: cooling (shell & interior), mass loading / mixing of shocked wind w. entrained gas, evaporation of shell material, cosmic ray losses
- Galactic winds: Observations require high energy efficiency > 10% SN

⇒ We do not understand energy transfer in superbubbles.

Questions:

- What is the reason for the energy deficit in bubbles / superbubbles?
- Losses during bubble merging?
- ⇒ Hydrodynamic simulations
- Confidence in theory: match observations

Overview

- Introduction
 - Superbubbles
 - The energy problem
- Hydrodynamic simulations
 - Emerging superbubble from
 3 massive stars
 - Vishniac instability
 - Energetics
- Conclusions

Codes: RAMSES & NIRVANA, 2D/3D, ||, AMR

3S1-hr Time = 0.84 Myr

Vishniac instability

2000

1500

1000

500

- Remember analytic wind shell models (Weaver 1977, right): shocked ISM $cools \Rightarrow thin shell$
- Vishniac 1983: perturbation to thin shell \Rightarrow Ğ Maximum density

overstability, fragmentation

• Vishniac & Ryu 1989: overdensity threshold factor 10 (SN) & 25 (wind).

Time / Myr

Comparison to observations

Fig. 1 The remnant from a supernova in Cassiopeia, which exploded \sim 300 years ago. The distance to this SNR is \sim 3.4 kpc, and the diameter of this remnant is \sim 10 light year (\sim 3 pc). Image from Chandra telescope (http://rst.gsfc.nasa.gov, section 20, Novae and Supernovae)

Rosette nebula (optical, X-rays: red), Chandra homepage

Vishniac instability creates thick shell (from thin on)
 + filaments, sim: ≈ 20% outer radius

• Churchwell et al (2006): 322 bubbles, thick=20-40%

Tuesday, April 10, 2012

Energetics

- Most energy radiated away
- Wind
 phase: >10%
 retained
 (incr. w. res,
 negl. direct
 UV)
- SN: all gone after≈ IMyr

Tuesday, April 10, 2012

Toy model for Orion OB1

OB association

- Population synthesis (mass loss, energy)
- Spherical region, ø5 pc
- Distance Δx from cloud edge
- Cold dense molecular cloud
 - $(n = 100 \,\mathrm{cm}^{-3}, T = 100 \,\mathrm{K})$
- Hot dilute ISM
 - $(n = 1 \text{ cm}^{-3}, T = 10000 \text{ K})$

→ Katharina Fierlinger (et. al. in prep) → **POSTER**

Tuesday, April 10, 2012

3D Hydrodynamics Simulations and Energetics of Emerging Superbubbles

- Introduction
- Hydrodynamic simulations
- Conclusions
 - Vishniac instability might be responsible for large shell observed thickness & filaments inside (Caveat: ionisation)
 - Energetics: more energy into ISM if parent stars closer together
 - Bubble merging does not solve energy problem
 - Efficiency: > \approx 10% / pre-SN, consistent with observations
 - SN: dissipate in I Myr
 - significant differences (\approx factor 2) after first SN
 - But still max eff. if distance $<\approx 30$ pc

