A Dual Polarised Wideband Planar Phased Array for Radio Astronomy

Dr David Zhang and Prof. A. K. Brown
School of Electrical and Electronic Engineering
The University of Manchester
Email: david.zhang@manchester.ac.uk

Outline

\square A brief review of wide-band aperture array antenna design
-AA-mid Antenna design for PrepSKA
-Conclusions and future work

The SKA mid-frequency array

- The requirement is for approaching two octaves of bandwidth (400MHz to 1.4 GHz)
- A scan angle of at least +/-45degs
- Polarimetry is required on the radio astronomical sources so that two orthogonal polarisations are needed

A brief review of wide-band aperture array antenna design

- Three structures have been compared in both theory and in hardware:
- Vivaldi antenna
- A structure developed by ASTRON using a thin metallised foil known as FLOTT
- A modified Bunny Ear antenna incorporating comb line chokes[1]
- All aluminium laser cut structure
- A planar antenna using coupled ring radiators termed ORA (Octagonal Ring Antenna,[2])
- Implemented using polystyrene dielectric and thin copper radiating rings

1. Y. Zhang, A. K. Brown, "Bunny Ear Combline Antennas for Compact Wide-Band Dual-Polarized Aperture Array," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 8, pp. 3071-3075, August 2011.
2. Y. Zhang, A. K. Brown, "Octagonal Ring Antenna for a Compact Dual-Polarized Aperture Array," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 10, pp. 3927-3932, October 2011.

Active reflection coefficient

Three candidate designs (16×16 finite arrays)

FLOTT

BECA

ORA

Cross polarisation in the intercardinal plane at 1 GHz , based on the finite array measurement for the centre element

D-plane 45° Cut

Scanned element pattern for the centre element of the finite array

E-plane ($0^{\circ} \mathrm{Cut}$)

H-plane ($90^{\circ} \mathrm{Cut}$)

Design Summary

\square Tapered slot antenna shows a higher cross polarization in the inter-cardinal plane (45°-plane)
\square A long tapered slotline is needed to produce a broad frequency bandwidth, as a result, the radiation pattern can be narrow at the high end of frequency band
-ORA exhibits a broad radiation pattern and a smooth cross polarisation performance over the entire scan range

AA-mid Antenna Design for PrepSKA

The target Operating frequency band: $400 \mathrm{MHz}-1.4 \mathrm{GHz}, \pm 45^{\circ}$ scan angle
\square The element separation for the AA-mid aperture array

The feeding methods of ORA

The ORA finite array analysis

Element separation for AA-Mid

The maximum element spacing in the array is limited by the appearance of grating lobes, and the electromagnetic interactions between the elements with scan, the resulting numbers are not normally the same

The infinite ORA array with 125 mm element separation

The infinite ORA array with 125 mm element separation

400MHz-1350MHz, maximum 45° scan angle

 mm element separation
$450 \mathrm{MHz}-1400 \mathrm{MHz}$, maximum 45° scan angle

Feeding methods for ORA

Coplanar waveguide feed for EM measurements, SKADS

50 ohms single-ended output, feasible for radiation pattern measurement, but this balun can be lossy!

Single-ended and differential feeding methods

The single-ended stripline

Differential coaxial cable feeding stripline feed, 112 mm

ORA performance with differential coaxial cable feeds, 112 mm element spacing

The ORA Finite Array Analysis

The passive reflection coefficient for ORA with the stripline feed

Single-ended Stripline feed for the 5×5 subarray of the 10×10 finite array tile

 reflection coefficient measured

Conclusions

- Three different structures have been designed and performance compared
- The Vivaldi is well known and provides broadband performance
- It suffers from potentially high cross-polarisation in the inter-cardinal planes
- Care must be taken to avoid narrow frequency resonances in the input impedence
- BECA offers slightly improved cross polarisation and less susceptibility to input resonances but is potentially more complex
- ORA provides a planar array alternative which is promising, has low scan loss and lower cross-polarisation with potentially simpler construction but requires further investigation for large scale manufacture

Thank you very much!

