The Evolution of Tidal Dwarf Galaxies

Sylvia Plöckinger

Gerhard Hensler, Simone Recchi, Nigel Mitchell, Eduard Vorobiev (Vienna) Pavel Kroupa, Marcel Pawlowski (Bonn) NAM 2012, March 30th, 2012

DFG

Image Credit: Jean-Charles

Argelander-Institut für Astronomie

Tidal Dwarf Galaxies

- More than 60 TDG candidates observed.
- Internal kinematics show that. they are gravitationally bound systems.
 - They have active star formation.
- Should not contain dark matter.
- Stem from already pre-enriched material.

Tidal Dwarf Galaxies

N-body simulations of interacting galaxies

They found 593 substructures.

75 % fall back, but 25 % survive more than 2 Gyrs.

Motivation

We need high resolution simulations to answer the question:

Can TDGs turn into dSph/dE type galaxies?

against processes like:

Dynamical Friction (orbital decay)

Tidal Disruption

Star Formation and Stellar Feedback

Some Numerical Details

- *FLASH Version 3.2 (by FLASH center for computational science, University of Chicago)*
- *Adaptive Mesh Refinement (FLASH3.2)*
- Parallelization (FLASH3.2, with new work load routine by SP)
- *Multigrid Poisson Solver for self-gravity (FLASH3.2)*
- Unsplit Hydro Solver Light (based on the FLASH V3.2 unsplit solver, but uses only down to 4 % of the memory by Nigel Mitchell, University of Vienna)
 - Orbit module for velocity field inside the simulation box (by SP)
 - Chemistry module (by SP)

Some Numerical Details

- FLASH Version 3.2 (by FLASH center for computational science, University of Chicago)
- *Adaptive Mesh Refinement (FLASH3.2)*
- Parallelization (FLASH3.2, with new work load routine by SP)
- *Multigrid Poisson Solver for self-gravity (FLASH3.2)*
- Unsplit Hydro Solver Light (based on the FLASH V3.2 unsplit solver, but uses only down to 4 % of the memory by Nigel Mitchell, University of Vienna)
 - Orbit module for velocity field inside the simulation box (by SP)
 - Chemistry module (by SP)

The Orbit Module

Within the simulation box:

Time dependent external gravitational potential (additional to the self-gravity)
Wind: velocity field due to the motion of the simulation box
Tidal field

Tidal Field + Wind

Some Numerical Details

- FLASH Version 3.2 (by FLASH center for computational science, University of Chicago)
- Adaptive Mesh Refinement (FLASH3.2)
- Parallelization (FLASH3.2, with new work load routine by SP)
- *Multigrid Poisson Solver for self-gravity (FLASH3.2)*
- Unsplit Hydro Solver Light (based on the FLASH V3.2 unsplit solver, but uses only down to 4 % of the memory by Nigel Mitchell, University of Vienna)
 - Orbit module for velocity field inside the simulation box (by SP)
 - Chemistry module (by SP)

The Chemistry Module

- Radiative cooling
- Star Formation (IMF)
- Stellar Feedback
 - Stellar Wind Feedback
 - Supernova Feedback (incl. metal release)

Radiative Cooling + Ionization Included elements: H, He, C, N, O, Mg, Si, Fe

T < 10⁴ K: Dalgarno & McCray (1972) T > 10⁴ K: Boehringer & Hensler (1989)

Data from: Arnaud & Rothenflug (1985)

Self Regulated Star Formation

		Star Formation			Stellar Feedback		
$rac{dg}{dt}$	=	-	$\Psi(g,T)$	+	η	$rac{s}{ au}$	
$rac{ds}{dt}$	=	ξ	$\Psi(g,T)$	-		$rac{s}{ au}$	
$\frac{dr}{dt}$	=	$(1-\xi)$	$\Psi(g,T)$	+	$(1-\eta)$	$\frac{s}{\tau}$	

with stellar birth function:

 $\Psi(g,T) = C_n g^n e^{-T/T_s}$

 η ... fraction of gas ejected by SNe ξ ... mass fraction of newly formed massive stars

Köppen, Theis & Hensler (1995)

Heating of the ISM by one massive star during its lifetime:

with:

$$L_{Ly}(m) = 10^{40} \left(\frac{m}{M_{\odot}}\right)^{6} \text{ photons } \text{s}^{-1} \text{ star}^{-1}$$

$$\dot{m} = -10^{-15} \left(\frac{Z}{Z_{\odot}}\right)^{0.5} \left(\frac{L}{L_{\odot}}\right)^{1.6} \text{ M}_{\odot} \text{ yr}^{-1}$$

$$v_{\infty} = 3 \cdot 10^{3} \left(\frac{m}{M_{\odot}}\right)^{0.15} \left(\frac{Z}{Z_{\odot}}\right)^{0.08} \text{ km s}^{-1}$$

Theis, Burkert & Hensler (1992)

Stellar Feedback I - Energy

Maeder (1989):

$$\tau(m) = 1.1 \times 10^8 \left(\frac{m}{M_{\odot}}\right)^{-0.75} \text{ yr}$$

Stellar Feedback I - Energy

Maeder (1989):

$$\tau(m) = 1.1 \times 10^8 \left(\frac{m}{M_{\odot}}\right)^{-0.75} \text{ yr}$$

Stellar Feedback I - Energy

Maeder (1989):

$$\tau(m) = 1.1 \times 10^8 \left(\frac{m}{M_{\odot}}\right)^{-0.75} \text{ yr}$$

SN Feedback - Overcooling

Cooling is only applied to the non-SN material.

Stellar Feedback II - Chemistry

Results

Work in Progress!

First high resolution runs:

Simulation parameter:

 $egin{array}{r_{min}} &= 50\,{
m kpc} \ ecc &= 0.5 \ M_{ext} &= 10^{12}\,M_{\odot} \ au_w &= 3\,{
m Myrs} \end{array}$

Effective resolution:

$$\Delta x = 75 \,\mathrm{pc}$$

Initial gas mass = $1.29 \cdot 10^8 M_{\odot}$ Initial cloud radius = $4.4 \,\mathrm{kpc}$

t = 390 Myrs

Initial gas mass = $1.29 \cdot 10^8 M_{\odot}$

Initial gas mass: $1.29 \cdot 10^8 M_{\odot}$

Gas column density

Initial gas mass: $1.29 \cdot 10^8 M_{\odot}$

Gas column density

Low Mass Run

Effective resolution: $\Delta x = 63 \,\mathrm{pc}$

Initial gas mass: $1.6 \cdot 10^7 M_{\odot}$

Initial cloud radius: 1.5 kpc

$$r_{min} = 50 \, {
m kpc}$$

 $ecc = 0.5$
 $M_{ext} = 10^{12} \, M_{\odot}$
 $au_w = 3 \, {
m Myrs}$

Outlook

Mass flow along the tidal arm. Old stellar population. Include SN I More realistic gravitational potential Better initial distribution Include Stellar Hydrodynamics (with N. Mitchell, E. Vorobiev)

Pawlowski, Kroupa & de Boer (2011)

Thank you for your attention!

Contact: Sylvia Plöckinger e-mail: sylvia.ploeckinger@univie.ac.at web: homepage.univie.ac.at/sylvia.ploeckinger

Acknowledgements:

Flash Center for computational science