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Sagittarius | Previous Work
• Ibata 2001 - spherical halo

•Helmi 2004 - prolate halo, based on 
velocity data

• Johnston et al. 2005 - oblate halo, 
spatial distribution of M-stars

• Fellhauer et al. 2006 - spherical halo 
assume bifurcation = two different 
wraps

• Law et al. 2009/Law & Majewski 2010 
- (mildly) triaxial, fitting position + 
radial velocity data
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Figure 1. Leading tail particles in the “Field of Streams” area for different orientations of the Sgr disc with respect to its orbital plane

(see text). SDSS data are shown in the upper-left panel. Our colour-coding denotes different heliocentric distances (blue, green and red

for D < 25, 15–40 and 30–60 kpc, respectively). Dotted lines show a projection of the Sgr orbit integrated forward in time.

3 RESULTS

The angle subtended by the internal angular momentum
vector of Sgr and that of its orbit about the MW, i.e.
θ0 ≡ acos[Ĵint · Ĵorb] is a free parameter in our study. Un-
der this definition, θ0 = 0 denotes a model where the spin
vector of the Sgr disc and the normal vector of the orbital
plane are perfectly aligned, whilst θ0 > 0 and θ0 < 0 respec-
tively indicate models where Sgr rotates in a prograde and
retrograde motion with respect to its Galactic orbit.

Fig. 1 shows the projection on the “Field of streams”
area of the sky (Belokurov et al. 2006) of Sgr stellar debris
for different disc orientations after integrating our N-body
models for 2.5 orbital periods. For simplicity, we show only
particles that belong to the leading tail of the Sgr stream,
given that the trailing tail has not been detected yet in the
Northern Galactic Hemisphere. This Figure illustrates a few
interesting points. The first is during the stripping process a
fraction of the internal angular momentum of Sgr transfers
to the stream. As a result, the stream tail(s) do not trace
the progenitor’s orbit (dashed lines in Fig. 1). In practical
terms, our results suggest that internal rotation in the pro-
genitor of the Sgr stream may have to be taken into account
when inferring the shape of the MW halo from fitting the
position and velocity of stream pieces. A second interest-
ing point is that bifurcations in the leading tail of the Sgr
stream naturally appear in this area of the sky if the spin
vector and the normal vector of the orbital plane are mis-
aligned. The separation between the bifurcated arms clearly

becomes more prominent as the value of |θ0| increases. In-
terestingly, by colour-coding the stellar particles according
to their heliocentric distances, we can appreciate that in all
models both arms show a very similar gradient throughout
the sky, in concordance with observational data (Belokurov
et al. 2006; Niederste-Ostholt et al. 2010). Hence, internal
rotation in the Sgr dwarf mainly affects the apparent prece-
sion of the stream plane on the sky.

The model with θ0 = −20◦ has a striking resemblance
with the Field of Streams. It also provides a reasonable
match to most of the existing observational constraints.
Fig. 2 shows the projected location (upper panel), heliocen-
tric distance (middle panel) and line-of-sight velocity (lower
panel) of the leading (open symbols) and trailing (closed
symbols) tail particles of a Sgr stream model with initial ori-
entation θ0 = −20◦. By colour-coding the particles accord-
ing to the time at which they are stripped, we can appreciate
that the bifurcation arises from material lost at consecu-
tive pericentric passages. In particular, the southern, more
prominent tail of the leading arm (stream A) corresponds to
stars that were lost at the third most recent pericentric inter-
action, i.e. � 2 Gyr ago (coloured in red), whilst the fainter
northern tail (stream B) is more recent and is composed of
stars that became unbound at the penultimate pericentre,
i.e. � 1 Gyr ago (in blue). This result clearly implies that
the minimum age of the Sgr stream is two orbital periods,
which justifies the choice of integration time for our N-body
models.

This model correctly reproduces the distances and ve-
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(see text). SDSS data are shown in the upper-left panel. Our colour-coding denotes different heliocentric distances (blue, green and red

for D < 25, 15–40 and 30–60 kpc, respectively). Dotted lines show a projection of the Sgr orbit integrated forward in time.
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vector of the Sgr disc and the normal vector of the orbital
plane are perfectly aligned, whilst θ0 > 0 and θ0 < 0 respec-
tively indicate models where Sgr rotates in a prograde and
retrograde motion with respect to its Galactic orbit.

Fig. 1 shows the projection on the “Field of streams”
area of the sky (Belokurov et al. 2006) of Sgr stellar debris
for different disc orientations after integrating our N-body
models for 2.5 orbital periods. For simplicity, we show only
particles that belong to the leading tail of the Sgr stream,
given that the trailing tail has not been detected yet in the
Northern Galactic Hemisphere. This Figure illustrates a few
interesting points. The first is during the stripping process a
fraction of the internal angular momentum of Sgr transfers
to the stream. As a result, the stream tail(s) do not trace
the progenitor’s orbit (dashed lines in Fig. 1). In practical
terms, our results suggest that internal rotation in the pro-
genitor of the Sgr stream may have to be taken into account
when inferring the shape of the MW halo from fitting the
position and velocity of stream pieces. A second interest-
ing point is that bifurcations in the leading tail of the Sgr
stream naturally appear in this area of the sky if the spin
vector and the normal vector of the orbital plane are mis-
aligned. The separation between the bifurcated arms clearly

becomes more prominent as the value of |θ0| increases. In-
terestingly, by colour-coding the stellar particles according
to their heliocentric distances, we can appreciate that in all
models both arms show a very similar gradient throughout
the sky, in concordance with observational data (Belokurov
et al. 2006; Niederste-Ostholt et al. 2010). Hence, internal
rotation in the Sgr dwarf mainly affects the apparent prece-
sion of the stream plane on the sky.

The model with θ0 = −20◦ has a striking resemblance
with the Field of Streams. It also provides a reasonable
match to most of the existing observational constraints.
Fig. 2 shows the projected location (upper panel), heliocen-
tric distance (middle panel) and line-of-sight velocity (lower
panel) of the leading (open symbols) and trailing (closed
symbols) tail particles of a Sgr stream model with initial ori-
entation θ0 = −20◦. By colour-coding the particles accord-
ing to the time at which they are stripped, we can appreciate
that the bifurcation arises from material lost at consecu-
tive pericentric passages. In particular, the southern, more
prominent tail of the leading arm (stream A) corresponds to
stars that were lost at the third most recent pericentric inter-
action, i.e. � 2 Gyr ago (coloured in red), whilst the fainter
northern tail (stream B) is more recent and is composed of
stars that became unbound at the penultimate pericentre,
i.e. � 1 Gyr ago (in blue). This result clearly implies that
the minimum age of the Sgr stream is two orbital periods,
which justifies the choice of integration time for our N-body
models.

This model correctly reproduces the distances and ve-

c� 0000 RAS, MNRAS 000, 000–000

Penarrubia et al. 2010/2011

Complex = expensive!



Alternatives | Previous Work268 KOPOSOV, RIX, & HOGG Vol. 712

Figure 13. Data–model comparison for the best-fit orbit in a flattened logarithmic potential (Equation (5) with Vc = 220 km s−1 and qΦ = 0.9. The color
data points with error bars show the observational data, while the black lines show the model predictions for the orbit with "X(0) = (−3.41, 13.00, 9.58) kpc,
"̇X(0) = (−200.4,−162.6, 13.9) km s−1. The top left panel shows the positions on the sky, the top right panel shows the proper motions, the bottom left panel shows
the distances, and the bottom right panel shows the radial velocities. On the top right panel, red circles and thin line show µφ1 , while blue squares and thick line show
µφ2 .
(A color version of this figure is available in the online journal.)

the plausibility of that potential. The minimization is performed
using the MPFIT code (Markwardt 2009) implementing the
Levenberg–Marquardt technique (Marquardt 1963) translated
into Python.6 The data used to constrain the potential are given
in the Tables 1, 2, 3, and 4 (except the SDSS measurements of
the radial velocities which are given in the end of Section 3).

It is crucial to note that the conversion of ( "X(t), "̇X(t)) to
the space of observables depends on the position and motion
of the observer, i.e., on distance from the Sun to the Galactic
center (R0) and on the 3D velocity of the Sun in the Galaxy rest
frame ( "V0). At this stage, we adopt R0 = 8.5 kpc based on recent
determinations (e.g., Ghez et al. 2008; Gillessen et al. 2009), but
later we will relax this. The second parameter "V0 ≡ "VLSR+∆ "VLSR
(where VLSR is the velocity of the local standard of rest (LSR)
and ∆ "VLSR is the Sun’s velocity relative to the LSR) is linked to
the fitting not only through conversion of the observable relative
stream velocities to the GC rest system, but also conceptually
through the plausible demand that Φ( "X) and in particular
Vc(R0, 0) also reproduces "VLSR. In this way, constraints on

6 http://code.google.com/p/astrolibpy/

the potential flattening can be derived by considering r dΦ
dr

in
the disk plane ( "VLSR) and the plane of the GD-1 stream. The
velocity of the Sun relative to the LSR ∆ "VLSR is quite well
known from the HIPPARCOS measurements (Dehnen & Binney
1998): ∆ "VLSR[km s−1] = 10"ex +5.25"ey +7.17"ez. The velocity of
the LSR, i.e., Vc(R0, 0) has a considerable uncertainty (Brand
& Blitz 1993; Ghez et al. 2008; Xue et al. 2008; Reid et al.
2009). Initially, we will consider the velocity of the LSR simply
a consequence of the assumed potential, i.e., VLSR ≡ Vc(R0, 0).

Figure 13 illustrates the result of such fitting, by overplotting
the best-fit orbit for the plausible potential with Vc = 220 km s−1

and qΦ = 0.9 over observational data. It is clear that even for
the simple flattened logarithmic potential, an orbit can be found
that reproduces the observables well. This fit serves to illustrate
a few generic points that also hold for orbit fits in differing
potentials: the stream moves on a retrograde orbit and it is near
pericenter, where the stream is expected to approximate an orbit
well (Dehnen et al. 2004). After fitting a first orbit, we may also
note its global parameters (see Figure 14 for a 3D map of the
orbit): the pericenter is at 14 kpc from the GC; the apocenter is
at 26 kpc; and the inclination is 39◦.
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and ∆ "VLSR is the Sun’s velocity relative to the LSR) is linked to
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through the plausible demand that Φ( "X) and in particular
Vc(R0, 0) also reproduces "VLSR. In this way, constraints on
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dr

in
the disk plane ( "VLSR) and the plane of the GD-1 stream. The
velocity of the Sun relative to the LSR ∆ "VLSR is quite well
known from the HIPPARCOS measurements (Dehnen & Binney
1998): ∆ "VLSR[km s−1] = 10"ex +5.25"ey +7.17"ez. The velocity of
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2009). Initially, we will consider the velocity of the LSR simply
a consequence of the assumed potential, i.e., VLSR ≡ Vc(R0, 0).

Figure 13 illustrates the result of such fitting, by overplotting
the best-fit orbit for the plausible potential with Vc = 220 km s−1

and qΦ = 0.9 over observational data. It is clear that even for
the simple flattened logarithmic potential, an orbit can be found
that reproduces the observables well. This fit serves to illustrate
a few generic points that also hold for orbit fits in differing
potentials: the stream moves on a retrograde orbit and it is near
pericenter, where the stream is expected to approximate an orbit
well (Dehnen et al. 2004). After fitting a first orbit, we may also
note its global parameters (see Figure 14 for a 3D map of the
orbit): the pericenter is at 14 kpc from the GC; the apocenter is
at 26 kpc; and the inclination is 39◦.

GD1; Koposov et al. 2010

also Newberg et al. 2010, Willett et al. 2009
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the plausibility of that potential. The minimization is performed
using the MPFIT code (Markwardt 2009) implementing the
Levenberg–Marquardt technique (Marquardt 1963) translated
into Python.6 The data used to constrain the potential are given
in the Tables 1, 2, 3, and 4 (except the SDSS measurements of
the radial velocities which are given in the end of Section 3).
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center (R0) and on the 3D velocity of the Sun in the Galaxy rest
frame ( "V0). At this stage, we adopt R0 = 8.5 kpc based on recent
determinations (e.g., Ghez et al. 2008; Gillessen et al. 2009), but
later we will relax this. The second parameter "V0 ≡ "VLSR+∆ "VLSR
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through the plausible demand that Φ( "X) and in particular
Vc(R0, 0) also reproduces "VLSR. In this way, constraints on
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known from the HIPPARCOS measurements (Dehnen & Binney
1998): ∆ "VLSR[km s−1] = 10"ex +5.25"ey +7.17"ez. The velocity of
the LSR, i.e., Vc(R0, 0) has a considerable uncertainty (Brand
& Blitz 1993; Ghez et al. 2008; Xue et al. 2008; Reid et al.
2009). Initially, we will consider the velocity of the LSR simply
a consequence of the assumed potential, i.e., VLSR ≡ Vc(R0, 0).

Figure 13 illustrates the result of such fitting, by overplotting
the best-fit orbit for the plausible potential with Vc = 220 km s−1

and qΦ = 0.9 over observational data. It is clear that even for
the simple flattened logarithmic potential, an orbit can be found
that reproduces the observables well. This fit serves to illustrate
a few generic points that also hold for orbit fits in differing
potentials: the stream moves on a retrograde orbit and it is near
pericenter, where the stream is expected to approximate an orbit
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GD1; Koposov et al. 2010

also Newberg et al. 2010, Willett et al. 2009
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Figure 13. The distribution of particles for cluster C1, near its 14th apocen-
tre passage on orbit I4. The upper panel shows the angle-space distribution,
while the lower panel shows the configuration in real space. The grey par-
ticles show positions directly computed from the N-body simulation, while
the red particles show those positions predicted from mapping the action-
space distribution in the bottom-right panel of Fig. 10. The two distributions
almost precisely overlap. In both plots, the black arrowed curves show the
trajectory of the progenitor orbit, while the blue curves show the mapping
of the dashed line from Fig. 10. The blue curve is everywhere a much closer
match to the stream particles than is the progenitor orbit.

Our experiment is based on the simulated tidal stream of Fig. 13.
This particular example is for a stream at apocentre: this is relevant,
because many actual observed streams are discovered close to apsis,
for example the Orphan stream (Belokurov et al. 2007) and GD-1
(Grillmair & Dionatos 2006).

We first create two sets of pseudo-data: one corresponding to
the progenitor orbit, marked as a black line in Fig. 13, and one
corresponding to the predicted stream track, marked as a blue line.
Each pseudo-data set contains approximately 40 phase-space coor-
dinates, sampled evenly from the length of the corresponding track,
as shown in Fig. 13.

We now wish to measure the quality with which an orbit for a
given set of isochrone-potential parameters can be made to fit the
data. For the purposes of this exercise, we have assumed the func-
tional form of the potential to be known. Further, we have granted
ourselves pseudo-data with full and accurate positional and ve-
locity information. Granting ourselves an unrealistically complete
pseudo-data set simplifies considerably the matter of finding an or-

bit that is close to the best-fitting one. In practice, one typically
proceeds with one or more phase-space coordinates unknown, or
known with substantially less precision than the others. In this case,
our purpose is solely to demonstrate the errors that can be made by
naively assuming that an observed stream can be fit with an orbit.
Granting ourselves an unrealistically complete set of pseudo-data
does not diminish our conclusions in this regard.

For each set of potential parameters, we choose an orbit as fol-
lows. We first select a datum near the centroid of the stream, and
declare that our chosen orbit must pass directly through this datum.
Although it may be that some nearby orbit, one that does not pass
directly through this point, would make a better-fitting orbit, any
such orbit must pass very close to the selected datum, because it is
close to the centroid. Thus, such an orbit cannot be much better fit-
ting than one that passes directly through the datum. Having chosen
a datum, for a given set of potential parameters, an orbit is defined.

Having chosen our orbit, a goodness-of-fit statistic χ 2 is calcu-
lated as follows. For each datum in the stream, with phase-space
coordinate wi, a location along the orbit w′

i is chosen that minimizes
the square difference

(wi − w′
i)

2. (54)

Having obtained the w′
i, the goodness-of-fit χ 2 is defined by

χ 2 =
∑

i,j

(wi,j − w′
i,j )2

σ 2
j

, (55)

where j are the phase-space coordinates, and σ j is the rms of (wi,j +
w′

i,j)/2 over i. This χ 2 statistic provides a dimensionless measure
of the phase-space distance between the best-fitting orbit in a given
potential, and the pseudo-data.

If the pseudo-data set were a sample of a perfect orbit in some
potential, we expect the value of χ 2 to be exactly zero, when the
correct potential parameters are used. As the potential parameters
are varied away from their true values, we expect the value of χ 2 to
rise, as the best-fitting orbit becomes a steadily worse representation
of the data. Hence, we expect minima in χ 2 to be associated with
the potential parameters that are optimum, from the perspective of
fitting an orbit to the data. We seek such minima by plotting the value
of χ 2 over a range of likely values for the potential parameters.

7.1 Results

The upper panel of Fig. 14 shows the goodness-of-fit χ 2, for the
best-fitting orbit, in an isochrone potential with mass parameter
GM as shown. For each value for GM, the isochrone parameter b
is chosen such that the potential reproduces the fiducial rotational
speed of vc = 240 km s−1 at R0 = 8 kpc, since in practical usage one
would generally require any acceptable potential to reproduce other
observed features of the Milky Way galaxy, such as the circular
velocity at the solar radius. This has the effect of reducing the
dimensionality of the search for the best-fitting solution to a single
parameter.

Along each of the black and blue curves in Fig. 14, χ 2 has a
minimum at the potential parameters for which the best-fitting orbit
has been found. In the case of the black curve, which attempts to fit
to pseudo-data derived directly from the progenitor orbit, the value
of GM is correctly identified with high precision, thus validating
the technique.

For the blue curve, which attempts to fit pseudo-data derived from
the stream track, the quality of the fit at optimum GM is significantly
degraded when compared to the black curve. This indicates that,

C© 2011 The Authors, MNRAS 413, 1852–1874
Monthly Notices of the Royal Astronomical Society C© 2011 RAS
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Figure 9. Correcting for tidal tails: The left and right panels show stream B in the XZ and VxVz planes, respectively. The black dots
are particles from an N-body simulation of the stream. The grey dotted curve is the orbit of the progenitor, the remnant of which is
the concentrated sphere. The blue and red dots are the corrected points for the leading and trailing arms, respectively. The very close
correspondence between the computationally-expensive N-body simulation and the locus of the “corrected stream” points is evident.

streams. However, γ itself is not found to be constrained by

fitting the projections of these streams.

Another significant parameter of the halo is its mass,

which determines the circular velocities at large radii. In or-

der to see how well our technique estimates this quantity,

we plot the distribution of the circular velocity at 50 kpc,

V50, shown in Figure 12, calculated from the potential pa-

rameters at each step of the coldest MCMC chain. As seen

in the case for logarithmic orbits, these distributions are de-

generate and it is not possible to constrain the halo mass

with only positional information of a stream. We find that

the remaining parameters of the halo, i.e. the outer slope

β, the central density ρ0 and the scale radius r0 can have

different values for the same value of the flattening qρ to

produce streams that look identical in projection. The dis-

tributions of these parameters are degenerate (as shown in

Figure 13 for β) and the projection of a stream alone cannot

constrain them. The combination of these parameters result

in different circular velocities, making the distribution of V50

degenerate.

As for the orbital parameters, the line of sight distance

y0 of the progenitor from the center of the galaxy is well-

constrained (although there may be a sign discrepancy, as

was seen in the case of pure orbits), whereas the line of

sight velocity or the tangential velocity components of the

progenitor cannot be recovered.

5.2 Adding circular velocities

For many spiral galaxies, inner rotational velocities are avail-

able (for instance from H I kinematics) or are feasible to

measure with current instrumentation, which provides in-

formation on the inner mass profile of the galaxy. Figure

14 shows the effects of adding the rotational velocities (here

assumed to extend up to 30 kpc) to the projected positions

for stream B (to take a particular example). Comparing the

corresponding distributions for the stream in Figures 12 and

13, we see that there is a marked improvement in the esti-

mate of the outer power slope β. This is, as explained in

the previous section, due to the correlation of β and the

circular velocity parameter V50, the latter being estimated

accurately with the provision of the inner circular velocities.

The peaks of the distributions in qρ in Figure 14 and Figure

11 are at similar positions, but the former is less smooth as

a different proposal step size was used to fit the stream in

this case. Though not shown here, the degeneracies in the

scale radius r0 and the central density ρ0 are also removed

and we obtain accurate estimates of these parameters. More-

over, distance to the progenitor and its velocities can also be

constrained when the rotational curve is added to the fitting

data. As seen in the distance parameter, there may be a sign

discrepancy in the estimate of the line of sight velocity vy0
of the progenitor, but not in the estimates of its tangential

velocity components.

5.3 Adding line of sight velocities

Using stream G as an example, we illustrate the effects of

adding kinematic data to the projected geometry of the

stream (but without circular velocities) on the estimates of

qρ and V50. Figure 15 shows the qρ distributions in each

case in the top panels and the V50 distributions in the bot-
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Figure 13. The distribution of particles for cluster C1, near its 14th apocen-
tre passage on orbit I4. The upper panel shows the angle-space distribution,
while the lower panel shows the configuration in real space. The grey par-
ticles show positions directly computed from the N-body simulation, while
the red particles show those positions predicted from mapping the action-
space distribution in the bottom-right panel of Fig. 10. The two distributions
almost precisely overlap. In both plots, the black arrowed curves show the
trajectory of the progenitor orbit, while the blue curves show the mapping
of the dashed line from Fig. 10. The blue curve is everywhere a much closer
match to the stream particles than is the progenitor orbit.

Our experiment is based on the simulated tidal stream of Fig. 13.
This particular example is for a stream at apocentre: this is relevant,
because many actual observed streams are discovered close to apsis,
for example the Orphan stream (Belokurov et al. 2007) and GD-1
(Grillmair & Dionatos 2006).

We first create two sets of pseudo-data: one corresponding to
the progenitor orbit, marked as a black line in Fig. 13, and one
corresponding to the predicted stream track, marked as a blue line.
Each pseudo-data set contains approximately 40 phase-space coor-
dinates, sampled evenly from the length of the corresponding track,
as shown in Fig. 13.

We now wish to measure the quality with which an orbit for a
given set of isochrone-potential parameters can be made to fit the
data. For the purposes of this exercise, we have assumed the func-
tional form of the potential to be known. Further, we have granted
ourselves pseudo-data with full and accurate positional and ve-
locity information. Granting ourselves an unrealistically complete
pseudo-data set simplifies considerably the matter of finding an or-

bit that is close to the best-fitting one. In practice, one typically
proceeds with one or more phase-space coordinates unknown, or
known with substantially less precision than the others. In this case,
our purpose is solely to demonstrate the errors that can be made by
naively assuming that an observed stream can be fit with an orbit.
Granting ourselves an unrealistically complete set of pseudo-data
does not diminish our conclusions in this regard.

For each set of potential parameters, we choose an orbit as fol-
lows. We first select a datum near the centroid of the stream, and
declare that our chosen orbit must pass directly through this datum.
Although it may be that some nearby orbit, one that does not pass
directly through this point, would make a better-fitting orbit, any
such orbit must pass very close to the selected datum, because it is
close to the centroid. Thus, such an orbit cannot be much better fit-
ting than one that passes directly through the datum. Having chosen
a datum, for a given set of potential parameters, an orbit is defined.

Having chosen our orbit, a goodness-of-fit statistic χ 2 is calcu-
lated as follows. For each datum in the stream, with phase-space
coordinate wi, a location along the orbit w′

i is chosen that minimizes
the square difference

(wi − w′
i)

2. (54)

Having obtained the w′
i, the goodness-of-fit χ 2 is defined by

χ 2 =
∑

i,j

(wi,j − w′
i,j )2

σ 2
j

, (55)

where j are the phase-space coordinates, and σ j is the rms of (wi,j +
w′

i,j)/2 over i. This χ 2 statistic provides a dimensionless measure
of the phase-space distance between the best-fitting orbit in a given
potential, and the pseudo-data.

If the pseudo-data set were a sample of a perfect orbit in some
potential, we expect the value of χ 2 to be exactly zero, when the
correct potential parameters are used. As the potential parameters
are varied away from their true values, we expect the value of χ 2 to
rise, as the best-fitting orbit becomes a steadily worse representation
of the data. Hence, we expect minima in χ 2 to be associated with
the potential parameters that are optimum, from the perspective of
fitting an orbit to the data. We seek such minima by plotting the value
of χ 2 over a range of likely values for the potential parameters.

7.1 Results

The upper panel of Fig. 14 shows the goodness-of-fit χ 2, for the
best-fitting orbit, in an isochrone potential with mass parameter
GM as shown. For each value for GM, the isochrone parameter b
is chosen such that the potential reproduces the fiducial rotational
speed of vc = 240 km s−1 at R0 = 8 kpc, since in practical usage one
would generally require any acceptable potential to reproduce other
observed features of the Milky Way galaxy, such as the circular
velocity at the solar radius. This has the effect of reducing the
dimensionality of the search for the best-fitting solution to a single
parameter.

Along each of the black and blue curves in Fig. 14, χ 2 has a
minimum at the potential parameters for which the best-fitting orbit
has been found. In the case of the black curve, which attempts to fit
to pseudo-data derived directly from the progenitor orbit, the value
of GM is correctly identified with high precision, thus validating
the technique.

For the blue curve, which attempts to fit pseudo-data derived from
the stream track, the quality of the fit at optimum GM is significantly
degraded when compared to the black curve. This indicates that,
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Figure 9. Correcting for tidal tails: The left and right panels show stream B in the XZ and VxVz planes, respectively. The black dots
are particles from an N-body simulation of the stream. The grey dotted curve is the orbit of the progenitor, the remnant of which is
the concentrated sphere. The blue and red dots are the corrected points for the leading and trailing arms, respectively. The very close
correspondence between the computationally-expensive N-body simulation and the locus of the “corrected stream” points is evident.

streams. However, γ itself is not found to be constrained by

fitting the projections of these streams.

Another significant parameter of the halo is its mass,

which determines the circular velocities at large radii. In or-

der to see how well our technique estimates this quantity,

we plot the distribution of the circular velocity at 50 kpc,

V50, shown in Figure 12, calculated from the potential pa-

rameters at each step of the coldest MCMC chain. As seen

in the case for logarithmic orbits, these distributions are de-

generate and it is not possible to constrain the halo mass

with only positional information of a stream. We find that

the remaining parameters of the halo, i.e. the outer slope

β, the central density ρ0 and the scale radius r0 can have

different values for the same value of the flattening qρ to

produce streams that look identical in projection. The dis-

tributions of these parameters are degenerate (as shown in

Figure 13 for β) and the projection of a stream alone cannot

constrain them. The combination of these parameters result

in different circular velocities, making the distribution of V50

degenerate.

As for the orbital parameters, the line of sight distance

y0 of the progenitor from the center of the galaxy is well-

constrained (although there may be a sign discrepancy, as

was seen in the case of pure orbits), whereas the line of

sight velocity or the tangential velocity components of the

progenitor cannot be recovered.

5.2 Adding circular velocities

For many spiral galaxies, inner rotational velocities are avail-

able (for instance from H I kinematics) or are feasible to

measure with current instrumentation, which provides in-

formation on the inner mass profile of the galaxy. Figure

14 shows the effects of adding the rotational velocities (here

assumed to extend up to 30 kpc) to the projected positions

for stream B (to take a particular example). Comparing the

corresponding distributions for the stream in Figures 12 and

13, we see that there is a marked improvement in the esti-

mate of the outer power slope β. This is, as explained in

the previous section, due to the correlation of β and the

circular velocity parameter V50, the latter being estimated

accurately with the provision of the inner circular velocities.

The peaks of the distributions in qρ in Figure 14 and Figure

11 are at similar positions, but the former is less smooth as

a different proposal step size was used to fit the stream in

this case. Though not shown here, the degeneracies in the

scale radius r0 and the central density ρ0 are also removed

and we obtain accurate estimates of these parameters. More-

over, distance to the progenitor and its velocities can also be

constrained when the rotational curve is added to the fitting

data. As seen in the distance parameter, there may be a sign

discrepancy in the estimate of the line of sight velocity vy0
of the progenitor, but not in the estimates of its tangential

velocity components.

5.3 Adding line of sight velocities

Using stream G as an example, we illustrate the effects of

adding kinematic data to the projected geometry of the

stream (but without circular velocities) on the estimates of

qρ and V50. Figure 15 shows the qρ distributions in each

case in the top panels and the V50 distributions in the bot-
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Alternatives | This Work

• `thin stream approximation’  = 
stream-orbit-offset significantly less 
than errors:

- (half) the stream width

- radial velocity dispersion

- distance + proper motion 
measurement errors

Lux et al. 2012, in prep



•Globular cluster stream

• Low eccentricity; no cloudy 
morphology 

• advantageous orbital alignment

•High inclination with respect to 
the disc

•Distant from the disc 

•more?

� 45◦

d � 10 kpc

Thin Streams | Criteria

M ≤ 105M⊙
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Lux et al. 2012, submitted to MNRAS



Thin Streams | Summary

• So far Sagittarius provides the 
best constraints on the MW halo 
shape

•Thin streams promise a simpler 
approach

•However, the current data is not 
constraining

• Serendipity: NGC 5466 promises a 
new way to constrain the MW halo 
shape
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a workshop on finding subhaloes in cosmological simulations 
in 
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